/** @file | |
Network library. | |
Copyright (c) 2005 - 2009, Intel Corporation.<BR> | |
All rights reserved. This program and the accompanying materials | |
are licensed and made available under the terms and conditions of the BSD License | |
which accompanies this distribution. The full text of the license may be found at | |
http://opensource.org/licenses/bsd-license.php | |
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, | |
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. | |
**/ | |
#include <Uefi.h> | |
#include <Protocol/DriverBinding.h> | |
#include <Protocol/ServiceBinding.h> | |
#include <Protocol/SimpleNetwork.h> | |
#include <Protocol/ManagedNetwork.h> | |
#include <Protocol/HiiConfigRouting.h> | |
#include <Protocol/ComponentName.h> | |
#include <Protocol/ComponentName2.h> | |
#include <Guid/NicIp4ConfigNvData.h> | |
#include <Library/NetLib.h> | |
#include <Library/BaseLib.h> | |
#include <Library/DebugLib.h> | |
#include <Library/BaseMemoryLib.h> | |
#include <Library/UefiBootServicesTableLib.h> | |
#include <Library/UefiRuntimeServicesTableLib.h> | |
#include <Library/MemoryAllocationLib.h> | |
#include <Library/DevicePathLib.h> | |
#include <Library/HiiLib.h> | |
#include <Library/PrintLib.h> | |
GLOBAL_REMOVE_IF_UNREFERENCED CONST CHAR8 mNetLibHexStr[] = {'0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F'}; | |
#define NIC_ITEM_CONFIG_SIZE sizeof (NIC_IP4_CONFIG_INFO) + sizeof (EFI_IP4_ROUTE_TABLE) * MAX_IP4_CONFIG_IN_VARIABLE | |
// | |
// All the supported IP4 maskes in host byte order. | |
// | |
IP4_ADDR gIp4AllMasks[IP4_MASK_NUM] = { | |
0x00000000, | |
0x80000000, | |
0xC0000000, | |
0xE0000000, | |
0xF0000000, | |
0xF8000000, | |
0xFC000000, | |
0xFE000000, | |
0xFF000000, | |
0xFF800000, | |
0xFFC00000, | |
0xFFE00000, | |
0xFFF00000, | |
0xFFF80000, | |
0xFFFC0000, | |
0xFFFE0000, | |
0xFFFF0000, | |
0xFFFF8000, | |
0xFFFFC000, | |
0xFFFFE000, | |
0xFFFFF000, | |
0xFFFFF800, | |
0xFFFFFC00, | |
0xFFFFFE00, | |
0xFFFFFF00, | |
0xFFFFFF80, | |
0xFFFFFFC0, | |
0xFFFFFFE0, | |
0xFFFFFFF0, | |
0xFFFFFFF8, | |
0xFFFFFFFC, | |
0xFFFFFFFE, | |
0xFFFFFFFF, | |
}; | |
EFI_IPv4_ADDRESS mZeroIp4Addr = {{0, 0, 0, 0}}; | |
/** | |
Return the length of the mask. | |
Return the length of the mask, the correct value is from 0 to 32. | |
If the mask is invalid, return the invalid length 33, which is IP4_MASK_NUM. | |
NetMask is in the host byte order. | |
@param[in] NetMask The netmask to get the length from. | |
@return The length of the netmask, IP4_MASK_NUM if the mask is invalid. | |
**/ | |
INTN | |
EFIAPI | |
NetGetMaskLength ( | |
IN IP4_ADDR NetMask | |
) | |
{ | |
INTN Index; | |
for (Index = 0; Index < IP4_MASK_NUM; Index++) { | |
if (NetMask == gIp4AllMasks[Index]) { | |
break; | |
} | |
} | |
return Index; | |
} | |
/** | |
Return the class of the IP address, such as class A, B, C. | |
Addr is in host byte order. | |
The address of class A starts with 0. | |
If the address belong to class A, return IP4_ADDR_CLASSA. | |
The address of class B starts with 10. | |
If the address belong to class B, return IP4_ADDR_CLASSB. | |
The address of class C starts with 110. | |
If the address belong to class C, return IP4_ADDR_CLASSC. | |
The address of class D starts with 1110. | |
If the address belong to class D, return IP4_ADDR_CLASSD. | |
The address of class E starts with 1111. | |
If the address belong to class E, return IP4_ADDR_CLASSE. | |
@param[in] Addr The address to get the class from. | |
@return IP address class, such as IP4_ADDR_CLASSA. | |
**/ | |
INTN | |
EFIAPI | |
NetGetIpClass ( | |
IN IP4_ADDR Addr | |
) | |
{ | |
UINT8 ByteOne; | |
ByteOne = (UINT8) (Addr >> 24); | |
if ((ByteOne & 0x80) == 0) { | |
return IP4_ADDR_CLASSA; | |
} else if ((ByteOne & 0xC0) == 0x80) { | |
return IP4_ADDR_CLASSB; | |
} else if ((ByteOne & 0xE0) == 0xC0) { | |
return IP4_ADDR_CLASSC; | |
} else if ((ByteOne & 0xF0) == 0xE0) { | |
return IP4_ADDR_CLASSD; | |
} else { | |
return IP4_ADDR_CLASSE; | |
} | |
} | |
/** | |
Check whether the IP is a valid unicast address according to | |
the netmask. If NetMask is zero, use the IP address's class to get the default mask. | |
If Ip is 0, IP is not a valid unicast address. | |
Class D address is used for multicasting and class E address is reserved for future. If Ip | |
belongs to class D or class E, IP is not a valid unicast address. | |
If all bits of the host address of IP are 0 or 1, IP is also not a valid unicast address. | |
@param[in] Ip The IP to check against. | |
@param[in] NetMask The mask of the IP. | |
@return TRUE if IP is a valid unicast address on the network, otherwise FALSE. | |
**/ | |
BOOLEAN | |
EFIAPI | |
Ip4IsUnicast ( | |
IN IP4_ADDR Ip, | |
IN IP4_ADDR NetMask | |
) | |
{ | |
INTN Class; | |
Class = NetGetIpClass (Ip); | |
if ((Ip == 0) || (Class >= IP4_ADDR_CLASSD)) { | |
return FALSE; | |
} | |
if (NetMask == 0) { | |
NetMask = gIp4AllMasks[Class << 3]; | |
} | |
if (((Ip &~NetMask) == ~NetMask) || ((Ip &~NetMask) == 0)) { | |
return FALSE; | |
} | |
return TRUE; | |
} | |
/** | |
Initialize a random seed using current time. | |
Get current time first. Then initialize a random seed based on some basic | |
mathematics operation on the hour, day, minute, second, nanosecond and year | |
of the current time. | |
@return The random seed initialized with current time. | |
**/ | |
UINT32 | |
EFIAPI | |
NetRandomInitSeed ( | |
VOID | |
) | |
{ | |
EFI_TIME Time; | |
UINT32 Seed; | |
gRT->GetTime (&Time, NULL); | |
Seed = (~Time.Hour << 24 | Time.Day << 16 | Time.Minute << 8 | Time.Second); | |
Seed ^= Time.Nanosecond; | |
Seed ^= Time.Year << 7; | |
return Seed; | |
} | |
/** | |
Extract a UINT32 from a byte stream. | |
Copy a UINT32 from a byte stream, then converts it from Network | |
byte order to host byte order. Use this function to avoid alignment error. | |
@param[in] Buf The buffer to extract the UINT32. | |
@return The UINT32 extracted. | |
**/ | |
UINT32 | |
EFIAPI | |
NetGetUint32 ( | |
IN UINT8 *Buf | |
) | |
{ | |
UINT32 Value; | |
CopyMem (&Value, Buf, sizeof (UINT32)); | |
return NTOHL (Value); | |
} | |
/** | |
Put a UINT32 to the byte stream in network byte order. | |
Converts a UINT32 from host byte order to network byte order. Then copy it to the | |
byte stream. | |
@param[in, out] Buf The buffer to put the UINT32. | |
@param[in] Data The data to put. | |
**/ | |
VOID | |
EFIAPI | |
NetPutUint32 ( | |
IN OUT UINT8 *Buf, | |
IN UINT32 Data | |
) | |
{ | |
Data = HTONL (Data); | |
CopyMem (Buf, &Data, sizeof (UINT32)); | |
} | |
/** | |
Remove the first node entry on the list, and return the removed node entry. | |
Removes the first node Entry from a doubly linked list. It is up to the caller of | |
this function to release the memory used by the first node if that is required. On | |
exit, the removed node is returned. | |
If Head is NULL, then ASSERT(). | |
If Head was not initialized, then ASSERT(). | |
If PcdMaximumLinkedListLength is not zero, and the number of nodes in the | |
linked list including the head node is greater than or equal to PcdMaximumLinkedListLength, | |
then ASSERT(). | |
@param[in, out] Head The list header. | |
@return The first node entry that is removed from the list, NULL if the list is empty. | |
**/ | |
LIST_ENTRY * | |
EFIAPI | |
NetListRemoveHead ( | |
IN OUT LIST_ENTRY *Head | |
) | |
{ | |
LIST_ENTRY *First; | |
ASSERT (Head != NULL); | |
if (IsListEmpty (Head)) { | |
return NULL; | |
} | |
First = Head->ForwardLink; | |
Head->ForwardLink = First->ForwardLink; | |
First->ForwardLink->BackLink = Head; | |
DEBUG_CODE ( | |
First->ForwardLink = (LIST_ENTRY *) NULL; | |
First->BackLink = (LIST_ENTRY *) NULL; | |
); | |
return First; | |
} | |
/** | |
Remove the last node entry on the list and and return the removed node entry. | |
Removes the last node entry from a doubly linked list. It is up to the caller of | |
this function to release the memory used by the first node if that is required. On | |
exit, the removed node is returned. | |
If Head is NULL, then ASSERT(). | |
If Head was not initialized, then ASSERT(). | |
If PcdMaximumLinkedListLength is not zero, and the number of nodes in the | |
linked list including the head node is greater than or equal to PcdMaximumLinkedListLength, | |
then ASSERT(). | |
@param[in, out] Head The list head. | |
@return The last node entry that is removed from the list, NULL if the list is empty. | |
**/ | |
LIST_ENTRY * | |
EFIAPI | |
NetListRemoveTail ( | |
IN OUT LIST_ENTRY *Head | |
) | |
{ | |
LIST_ENTRY *Last; | |
ASSERT (Head != NULL); | |
if (IsListEmpty (Head)) { | |
return NULL; | |
} | |
Last = Head->BackLink; | |
Head->BackLink = Last->BackLink; | |
Last->BackLink->ForwardLink = Head; | |
DEBUG_CODE ( | |
Last->ForwardLink = (LIST_ENTRY *) NULL; | |
Last->BackLink = (LIST_ENTRY *) NULL; | |
); | |
return Last; | |
} | |
/** | |
Insert a new node entry after a designated node entry of a doubly linked list. | |
Inserts a new node entry donated by NewEntry after the node entry donated by PrevEntry | |
of the doubly linked list. | |
@param[in, out] PrevEntry The previous entry to insert after. | |
@param[in, out] NewEntry The new entry to insert. | |
**/ | |
VOID | |
EFIAPI | |
NetListInsertAfter ( | |
IN OUT LIST_ENTRY *PrevEntry, | |
IN OUT LIST_ENTRY *NewEntry | |
) | |
{ | |
NewEntry->BackLink = PrevEntry; | |
NewEntry->ForwardLink = PrevEntry->ForwardLink; | |
PrevEntry->ForwardLink->BackLink = NewEntry; | |
PrevEntry->ForwardLink = NewEntry; | |
} | |
/** | |
Insert a new node entry before a designated node entry of a doubly linked list. | |
Inserts a new node entry donated by NewEntry after the node entry donated by PostEntry | |
of the doubly linked list. | |
@param[in, out] PostEntry The entry to insert before. | |
@param[in, out] NewEntry The new entry to insert. | |
**/ | |
VOID | |
EFIAPI | |
NetListInsertBefore ( | |
IN OUT LIST_ENTRY *PostEntry, | |
IN OUT LIST_ENTRY *NewEntry | |
) | |
{ | |
NewEntry->ForwardLink = PostEntry; | |
NewEntry->BackLink = PostEntry->BackLink; | |
PostEntry->BackLink->ForwardLink = NewEntry; | |
PostEntry->BackLink = NewEntry; | |
} | |
/** | |
Initialize the netmap. Netmap is a reposity to keep the <Key, Value> pairs. | |
Initialize the forward and backward links of two head nodes donated by Map->Used | |
and Map->Recycled of two doubly linked lists. | |
Initializes the count of the <Key, Value> pairs in the netmap to zero. | |
If Map is NULL, then ASSERT(). | |
If the address of Map->Used is NULL, then ASSERT(). | |
If the address of Map->Recycled is NULl, then ASSERT(). | |
@param[in, out] Map The netmap to initialize. | |
**/ | |
VOID | |
EFIAPI | |
NetMapInit ( | |
IN OUT NET_MAP *Map | |
) | |
{ | |
ASSERT (Map != NULL); | |
InitializeListHead (&Map->Used); | |
InitializeListHead (&Map->Recycled); | |
Map->Count = 0; | |
} | |
/** | |
To clean up the netmap, that is, release allocated memories. | |
Removes all nodes of the Used doubly linked list and free memory of all related netmap items. | |
Removes all nodes of the Recycled doubly linked list and free memory of all related netmap items. | |
The number of the <Key, Value> pairs in the netmap is set to be zero. | |
If Map is NULL, then ASSERT(). | |
@param[in, out] Map The netmap to clean up. | |
**/ | |
VOID | |
EFIAPI | |
NetMapClean ( | |
IN OUT NET_MAP *Map | |
) | |
{ | |
NET_MAP_ITEM *Item; | |
LIST_ENTRY *Entry; | |
LIST_ENTRY *Next; | |
ASSERT (Map != NULL); | |
NET_LIST_FOR_EACH_SAFE (Entry, Next, &Map->Used) { | |
Item = NET_LIST_USER_STRUCT (Entry, NET_MAP_ITEM, Link); | |
RemoveEntryList (&Item->Link); | |
Map->Count--; | |
gBS->FreePool (Item); | |
} | |
ASSERT ((Map->Count == 0) && IsListEmpty (&Map->Used)); | |
NET_LIST_FOR_EACH_SAFE (Entry, Next, &Map->Recycled) { | |
Item = NET_LIST_USER_STRUCT (Entry, NET_MAP_ITEM, Link); | |
RemoveEntryList (&Item->Link); | |
gBS->FreePool (Item); | |
} | |
ASSERT (IsListEmpty (&Map->Recycled)); | |
} | |
/** | |
Test whether the netmap is empty and return true if it is. | |
If the number of the <Key, Value> pairs in the netmap is zero, return TRUE. | |
If Map is NULL, then ASSERT(). | |
@param[in] Map The net map to test. | |
@return TRUE if the netmap is empty, otherwise FALSE. | |
**/ | |
BOOLEAN | |
EFIAPI | |
NetMapIsEmpty ( | |
IN NET_MAP *Map | |
) | |
{ | |
ASSERT (Map != NULL); | |
return (BOOLEAN) (Map->Count == 0); | |
} | |
/** | |
Return the number of the <Key, Value> pairs in the netmap. | |
@param[in] Map The netmap to get the entry number. | |
@return The entry number in the netmap. | |
**/ | |
UINTN | |
EFIAPI | |
NetMapGetCount ( | |
IN NET_MAP *Map | |
) | |
{ | |
return Map->Count; | |
} | |
/** | |
Return one allocated item. | |
If the Recycled doubly linked list of the netmap is empty, it will try to allocate | |
a batch of items if there are enough resources and add corresponding nodes to the begining | |
of the Recycled doubly linked list of the netmap. Otherwise, it will directly remove | |
the fist node entry of the Recycled doubly linked list and return the corresponding item. | |
If Map is NULL, then ASSERT(). | |
@param[in, out] Map The netmap to allocate item for. | |
@return The allocated item. If NULL, the | |
allocation failed due to resource limit. | |
**/ | |
NET_MAP_ITEM * | |
NetMapAllocItem ( | |
IN OUT NET_MAP *Map | |
) | |
{ | |
NET_MAP_ITEM *Item; | |
LIST_ENTRY *Head; | |
UINTN Index; | |
ASSERT (Map != NULL); | |
Head = &Map->Recycled; | |
if (IsListEmpty (Head)) { | |
for (Index = 0; Index < NET_MAP_INCREAMENT; Index++) { | |
Item = AllocatePool (sizeof (NET_MAP_ITEM)); | |
if (Item == NULL) { | |
if (Index == 0) { | |
return NULL; | |
} | |
break; | |
} | |
InsertHeadList (Head, &Item->Link); | |
} | |
} | |
Item = NET_LIST_HEAD (Head, NET_MAP_ITEM, Link); | |
NetListRemoveHead (Head); | |
return Item; | |
} | |
/** | |
Allocate an item to save the <Key, Value> pair to the head of the netmap. | |
Allocate an item to save the <Key, Value> pair and add corresponding node entry | |
to the beginning of the Used doubly linked list. The number of the <Key, Value> | |
pairs in the netmap increase by 1. | |
If Map is NULL, then ASSERT(). | |
@param[in, out] Map The netmap to insert into. | |
@param[in] Key The user's key. | |
@param[in] Value The user's value for the key. | |
@retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item. | |
@retval EFI_SUCCESS The item is inserted to the head. | |
**/ | |
EFI_STATUS | |
EFIAPI | |
NetMapInsertHead ( | |
IN OUT NET_MAP *Map, | |
IN VOID *Key, | |
IN VOID *Value OPTIONAL | |
) | |
{ | |
NET_MAP_ITEM *Item; | |
ASSERT (Map != NULL); | |
Item = NetMapAllocItem (Map); | |
if (Item == NULL) { | |
return EFI_OUT_OF_RESOURCES; | |
} | |
Item->Key = Key; | |
Item->Value = Value; | |
InsertHeadList (&Map->Used, &Item->Link); | |
Map->Count++; | |
return EFI_SUCCESS; | |
} | |
/** | |
Allocate an item to save the <Key, Value> pair to the tail of the netmap. | |
Allocate an item to save the <Key, Value> pair and add corresponding node entry | |
to the tail of the Used doubly linked list. The number of the <Key, Value> | |
pairs in the netmap increase by 1. | |
If Map is NULL, then ASSERT(). | |
@param[in, out] Map The netmap to insert into. | |
@param[in] Key The user's key. | |
@param[in] Value The user's value for the key. | |
@retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item. | |
@retval EFI_SUCCESS The item is inserted to the tail. | |
**/ | |
EFI_STATUS | |
EFIAPI | |
NetMapInsertTail ( | |
IN OUT NET_MAP *Map, | |
IN VOID *Key, | |
IN VOID *Value OPTIONAL | |
) | |
{ | |
NET_MAP_ITEM *Item; | |
ASSERT (Map != NULL); | |
Item = NetMapAllocItem (Map); | |
if (Item == NULL) { | |
return EFI_OUT_OF_RESOURCES; | |
} | |
Item->Key = Key; | |
Item->Value = Value; | |
InsertTailList (&Map->Used, &Item->Link); | |
Map->Count++; | |
return EFI_SUCCESS; | |
} | |
/** | |
Check whether the item is in the Map and return TRUE if it is. | |
@param[in] Map The netmap to search within. | |
@param[in] Item The item to search. | |
@return TRUE if the item is in the netmap, otherwise FALSE. | |
**/ | |
BOOLEAN | |
NetItemInMap ( | |
IN NET_MAP *Map, | |
IN NET_MAP_ITEM *Item | |
) | |
{ | |
LIST_ENTRY *ListEntry; | |
NET_LIST_FOR_EACH (ListEntry, &Map->Used) { | |
if (ListEntry == &Item->Link) { | |
return TRUE; | |
} | |
} | |
return FALSE; | |
} | |
/** | |
Find the key in the netmap and returns the point to the item contains the Key. | |
Iterate the Used doubly linked list of the netmap to get every item. Compare the key of every | |
item with the key to search. It returns the point to the item contains the Key if found. | |
If Map is NULL, then ASSERT(). | |
@param[in] Map The netmap to search within. | |
@param[in] Key The key to search. | |
@return The point to the item contains the Key, or NULL if Key isn't in the map. | |
**/ | |
NET_MAP_ITEM * | |
EFIAPI | |
NetMapFindKey ( | |
IN NET_MAP *Map, | |
IN VOID *Key | |
) | |
{ | |
LIST_ENTRY *Entry; | |
NET_MAP_ITEM *Item; | |
ASSERT (Map != NULL); | |
NET_LIST_FOR_EACH (Entry, &Map->Used) { | |
Item = NET_LIST_USER_STRUCT (Entry, NET_MAP_ITEM, Link); | |
if (Item->Key == Key) { | |
return Item; | |
} | |
} | |
return NULL; | |
} | |
/** | |
Remove the node entry of the item from the netmap and return the key of the removed item. | |
Remove the node entry of the item from the Used doubly linked list of the netmap. | |
The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node | |
entry of the item to the Recycled doubly linked list of the netmap. If Value is not NULL, | |
Value will point to the value of the item. It returns the key of the removed item. | |
If Map is NULL, then ASSERT(). | |
If Item is NULL, then ASSERT(). | |
if item in not in the netmap, then ASSERT(). | |
@param[in, out] Map The netmap to remove the item from. | |
@param[in, out] Item The item to remove. | |
@param[out] Value The variable to receive the value if not NULL. | |
@return The key of the removed item. | |
**/ | |
VOID * | |
EFIAPI | |
NetMapRemoveItem ( | |
IN OUT NET_MAP *Map, | |
IN OUT NET_MAP_ITEM *Item, | |
OUT VOID **Value OPTIONAL | |
) | |
{ | |
ASSERT ((Map != NULL) && (Item != NULL)); | |
ASSERT (NetItemInMap (Map, Item)); | |
RemoveEntryList (&Item->Link); | |
Map->Count--; | |
InsertHeadList (&Map->Recycled, &Item->Link); | |
if (Value != NULL) { | |
*Value = Item->Value; | |
} | |
return Item->Key; | |
} | |
/** | |
Remove the first node entry on the netmap and return the key of the removed item. | |
Remove the first node entry from the Used doubly linked list of the netmap. | |
The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node | |
entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL, | |
parameter Value will point to the value of the item. It returns the key of the removed item. | |
If Map is NULL, then ASSERT(). | |
If the Used doubly linked list is empty, then ASSERT(). | |
@param[in, out] Map The netmap to remove the head from. | |
@param[out] Value The variable to receive the value if not NULL. | |
@return The key of the item removed. | |
**/ | |
VOID * | |
EFIAPI | |
NetMapRemoveHead ( | |
IN OUT NET_MAP *Map, | |
OUT VOID **Value OPTIONAL | |
) | |
{ | |
NET_MAP_ITEM *Item; | |
// | |
// Often, it indicates a programming error to remove | |
// the first entry in an empty list | |
// | |
ASSERT (Map && !IsListEmpty (&Map->Used)); | |
Item = NET_LIST_HEAD (&Map->Used, NET_MAP_ITEM, Link); | |
RemoveEntryList (&Item->Link); | |
Map->Count--; | |
InsertHeadList (&Map->Recycled, &Item->Link); | |
if (Value != NULL) { | |
*Value = Item->Value; | |
} | |
return Item->Key; | |
} | |
/** | |
Remove the last node entry on the netmap and return the key of the removed item. | |
Remove the last node entry from the Used doubly linked list of the netmap. | |
The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node | |
entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL, | |
parameter Value will point to the value of the item. It returns the key of the removed item. | |
If Map is NULL, then ASSERT(). | |
If the Used doubly linked list is empty, then ASSERT(). | |
@param[in, out] Map The netmap to remove the tail from. | |
@param[out] Value The variable to receive the value if not NULL. | |
@return The key of the item removed. | |
**/ | |
VOID * | |
EFIAPI | |
NetMapRemoveTail ( | |
IN OUT NET_MAP *Map, | |
OUT VOID **Value OPTIONAL | |
) | |
{ | |
NET_MAP_ITEM *Item; | |
// | |
// Often, it indicates a programming error to remove | |
// the last entry in an empty list | |
// | |
ASSERT (Map && !IsListEmpty (&Map->Used)); | |
Item = NET_LIST_TAIL (&Map->Used, NET_MAP_ITEM, Link); | |
RemoveEntryList (&Item->Link); | |
Map->Count--; | |
InsertHeadList (&Map->Recycled, &Item->Link); | |
if (Value != NULL) { | |
*Value = Item->Value; | |
} | |
return Item->Key; | |
} | |
/** | |
Iterate through the netmap and call CallBack for each item. | |
It will contiue the traverse if CallBack returns EFI_SUCCESS, otherwise, break | |
from the loop. It returns the CallBack's last return value. This function is | |
delete safe for the current item. | |
If Map is NULL, then ASSERT(). | |
If CallBack is NULL, then ASSERT(). | |
@param[in] Map The Map to iterate through. | |
@param[in] CallBack The callback function to call for each item. | |
@param[in] Arg The opaque parameter to the callback. | |
@retval EFI_SUCCESS There is no item in the netmap or CallBack for each item | |
return EFI_SUCCESS. | |
@retval Others It returns the CallBack's last return value. | |
**/ | |
EFI_STATUS | |
EFIAPI | |
NetMapIterate ( | |
IN NET_MAP *Map, | |
IN NET_MAP_CALLBACK CallBack, | |
IN VOID *Arg | |
) | |
{ | |
LIST_ENTRY *Entry; | |
LIST_ENTRY *Next; | |
LIST_ENTRY *Head; | |
NET_MAP_ITEM *Item; | |
EFI_STATUS Result; | |
ASSERT ((Map != NULL) && (CallBack != NULL)); | |
Head = &Map->Used; | |
if (IsListEmpty (Head)) { | |
return EFI_SUCCESS; | |
} | |
NET_LIST_FOR_EACH_SAFE (Entry, Next, Head) { | |
Item = NET_LIST_USER_STRUCT (Entry, NET_MAP_ITEM, Link); | |
Result = CallBack (Map, Item, Arg); | |
if (EFI_ERROR (Result)) { | |
return Result; | |
} | |
} | |
return EFI_SUCCESS; | |
} | |
/** | |
This is the default unload handle for all the network drivers. | |
Disconnect the driver specified by ImageHandle from all the devices in the handle database. | |
Uninstall all the protocols installed in the driver entry point. | |
@param[in] ImageHandle The drivers' driver image. | |
@retval EFI_SUCCESS The image is unloaded. | |
@retval Others Failed to unload the image. | |
**/ | |
EFI_STATUS | |
EFIAPI | |
NetLibDefaultUnload ( | |
IN EFI_HANDLE ImageHandle | |
) | |
{ | |
EFI_STATUS Status; | |
EFI_HANDLE *DeviceHandleBuffer; | |
UINTN DeviceHandleCount; | |
UINTN Index; | |
EFI_DRIVER_BINDING_PROTOCOL *DriverBinding; | |
EFI_COMPONENT_NAME_PROTOCOL *ComponentName; | |
EFI_COMPONENT_NAME2_PROTOCOL *ComponentName2; | |
// | |
// Get the list of all the handles in the handle database. | |
// If there is an error getting the list, then the unload | |
// operation fails. | |
// | |
Status = gBS->LocateHandleBuffer ( | |
AllHandles, | |
NULL, | |
NULL, | |
&DeviceHandleCount, | |
&DeviceHandleBuffer | |
); | |
if (EFI_ERROR (Status)) { | |
return Status; | |
} | |
// | |
// Disconnect the driver specified by ImageHandle from all | |
// the devices in the handle database. | |
// | |
for (Index = 0; Index < DeviceHandleCount; Index++) { | |
Status = gBS->DisconnectController ( | |
DeviceHandleBuffer[Index], | |
ImageHandle, | |
NULL | |
); | |
} | |
// | |
// Uninstall all the protocols installed in the driver entry point | |
// | |
for (Index = 0; Index < DeviceHandleCount; Index++) { | |
Status = gBS->HandleProtocol ( | |
DeviceHandleBuffer[Index], | |
&gEfiDriverBindingProtocolGuid, | |
(VOID **) &DriverBinding | |
); | |
if (EFI_ERROR (Status)) { | |
continue; | |
} | |
if (DriverBinding->ImageHandle != ImageHandle) { | |
continue; | |
} | |
gBS->UninstallProtocolInterface ( | |
ImageHandle, | |
&gEfiDriverBindingProtocolGuid, | |
DriverBinding | |
); | |
Status = gBS->HandleProtocol ( | |
DeviceHandleBuffer[Index], | |
&gEfiComponentNameProtocolGuid, | |
(VOID **) &ComponentName | |
); | |
if (!EFI_ERROR (Status)) { | |
gBS->UninstallProtocolInterface ( | |
ImageHandle, | |
&gEfiComponentNameProtocolGuid, | |
ComponentName | |
); | |
} | |
Status = gBS->HandleProtocol ( | |
DeviceHandleBuffer[Index], | |
&gEfiComponentName2ProtocolGuid, | |
(VOID **) &ComponentName2 | |
); | |
if (!EFI_ERROR (Status)) { | |
gBS->UninstallProtocolInterface ( | |
ImageHandle, | |
&gEfiComponentName2ProtocolGuid, | |
ComponentName2 | |
); | |
} | |
} | |
// | |
// Free the buffer containing the list of handles from the handle database | |
// | |
if (DeviceHandleBuffer != NULL) { | |
gBS->FreePool (DeviceHandleBuffer); | |
} | |
return EFI_SUCCESS; | |
} | |
/** | |
Create a child of the service that is identified by ServiceBindingGuid. | |
Get the ServiceBinding Protocol first, then use it to create a child. | |
If ServiceBindingGuid is NULL, then ASSERT(). | |
If ChildHandle is NULL, then ASSERT(). | |
@param[in] Controller The controller which has the service installed. | |
@param[in] Image The image handle used to open service. | |
@param[in] ServiceBindingGuid The service's Guid. | |
@param[in, out] ChildHandle The handle to receive the create child. | |
@retval EFI_SUCCESS The child is successfully created. | |
@retval Others Failed to create the child. | |
**/ | |
EFI_STATUS | |
EFIAPI | |
NetLibCreateServiceChild ( | |
IN EFI_HANDLE Controller, | |
IN EFI_HANDLE Image, | |
IN EFI_GUID *ServiceBindingGuid, | |
IN OUT EFI_HANDLE *ChildHandle | |
) | |
{ | |
EFI_STATUS Status; | |
EFI_SERVICE_BINDING_PROTOCOL *Service; | |
ASSERT ((ServiceBindingGuid != NULL) && (ChildHandle != NULL)); | |
// | |
// Get the ServiceBinding Protocol | |
// | |
Status = gBS->OpenProtocol ( | |
Controller, | |
ServiceBindingGuid, | |
(VOID **) &Service, | |
Image, | |
Controller, | |
EFI_OPEN_PROTOCOL_GET_PROTOCOL | |
); | |
if (EFI_ERROR (Status)) { | |
return Status; | |
} | |
// | |
// Create a child | |
// | |
Status = Service->CreateChild (Service, ChildHandle); | |
return Status; | |
} | |
/** | |
Destory a child of the service that is identified by ServiceBindingGuid. | |
Get the ServiceBinding Protocol first, then use it to destroy a child. | |
If ServiceBindingGuid is NULL, then ASSERT(). | |
@param[in] Controller The controller which has the service installed. | |
@param[in] Image The image handle used to open service. | |
@param[in] ServiceBindingGuid The service's Guid. | |
@param[in] ChildHandle The child to destory. | |
@retval EFI_SUCCESS The child is successfully destoried. | |
@retval Others Failed to destory the child. | |
**/ | |
EFI_STATUS | |
EFIAPI | |
NetLibDestroyServiceChild ( | |
IN EFI_HANDLE Controller, | |
IN EFI_HANDLE Image, | |
IN EFI_GUID *ServiceBindingGuid, | |
IN EFI_HANDLE ChildHandle | |
) | |
{ | |
EFI_STATUS Status; | |
EFI_SERVICE_BINDING_PROTOCOL *Service; | |
ASSERT (ServiceBindingGuid != NULL); | |
// | |
// Get the ServiceBinding Protocol | |
// | |
Status = gBS->OpenProtocol ( | |
Controller, | |
ServiceBindingGuid, | |
(VOID **) &Service, | |
Image, | |
Controller, | |
EFI_OPEN_PROTOCOL_GET_PROTOCOL | |
); | |
if (EFI_ERROR (Status)) { | |
return Status; | |
} | |
// | |
// destory the child | |
// | |
Status = Service->DestroyChild (Service, ChildHandle); | |
return Status; | |
} | |
/** | |
Get handle with Simple Network Protocol installed on it. | |
There should be MNP Service Binding Protocol installed on the input ServiceHandle. | |
If Simple Network Protocol is already installed on the ServiceHandle, the | |
ServiceHandle will be returned. If SNP is not installed on the ServiceHandle, | |
try to find its parent handle with SNP installed. | |
@param[in] ServiceHandle The handle where network service binding protocols are | |
installed on. | |
@param[out] Snp The pointer to store the address of the SNP instance. | |
This is an optional parameter that may be NULL. | |
@return The SNP handle, or NULL if not found. | |
**/ | |
EFI_HANDLE | |
EFIAPI | |
NetLibGetSnpHandle ( | |
IN EFI_HANDLE ServiceHandle, | |
OUT EFI_SIMPLE_NETWORK_PROTOCOL **Snp OPTIONAL | |
) | |
{ | |
EFI_STATUS Status; | |
EFI_SIMPLE_NETWORK_PROTOCOL *SnpInstance; | |
EFI_DEVICE_PATH_PROTOCOL *DevicePath; | |
EFI_HANDLE SnpHandle; | |
// | |
// Try to open SNP from ServiceHandle | |
// | |
SnpInstance = NULL; | |
Status = gBS->HandleProtocol (ServiceHandle, &gEfiSimpleNetworkProtocolGuid, (VOID **) &SnpInstance); | |
if (!EFI_ERROR (Status)) { | |
if (Snp != NULL) { | |
*Snp = SnpInstance; | |
} | |
return ServiceHandle; | |
} | |
// | |
// Failed to open SNP, try to get SNP handle by LocateDevicePath() | |
// | |
DevicePath = DevicePathFromHandle (ServiceHandle); | |
if (DevicePath == NULL) { | |
return NULL; | |
} | |
SnpHandle = NULL; | |
Status = gBS->LocateDevicePath (&gEfiSimpleNetworkProtocolGuid, &DevicePath, &SnpHandle); | |
if (EFI_ERROR (Status)) { | |
// | |
// Failed to find SNP handle | |
// | |
return NULL; | |
} | |
Status = gBS->HandleProtocol (SnpHandle, &gEfiSimpleNetworkProtocolGuid, (VOID **) &SnpInstance); | |
if (!EFI_ERROR (Status)) { | |
if (Snp != NULL) { | |
*Snp = SnpInstance; | |
} | |
return SnpHandle; | |
} | |
return NULL; | |
} | |
/** | |
Get MAC address associated with the network service handle. | |
There should be MNP Service Binding Protocol installed on the input ServiceHandle. | |
If SNP is installed on the ServiceHandle or its parent handle, MAC address will | |
be retrieved from SNP. If no SNP found, try to get SNP mode data use MNP. | |
@param[in] ServiceHandle The handle where network service binding protocols are | |
installed on. | |
@param[out] MacAddress The pointer to store the returned MAC address. | |
@param[out] AddressSize The length of returned MAC address. | |
@retval EFI_SUCCESS MAC address is returned successfully. | |
@retval Others Failed to get SNP mode data. | |
**/ | |
EFI_STATUS | |
EFIAPI | |
NetLibGetMacAddress ( | |
IN EFI_HANDLE ServiceHandle, | |
OUT EFI_MAC_ADDRESS *MacAddress, | |
OUT UINTN *AddressSize | |
) | |
{ | |
EFI_STATUS Status; | |
EFI_SIMPLE_NETWORK_PROTOCOL *Snp; | |
EFI_SIMPLE_NETWORK_MODE *SnpMode; | |
EFI_SIMPLE_NETWORK_MODE SnpModeData; | |
EFI_MANAGED_NETWORK_PROTOCOL *Mnp; | |
EFI_SERVICE_BINDING_PROTOCOL *MnpSb; | |
EFI_HANDLE *SnpHandle; | |
EFI_HANDLE MnpChildHandle; | |
ASSERT (MacAddress != NULL); | |
ASSERT (AddressSize != NULL); | |
// | |
// Try to get SNP handle | |
// | |
Snp = NULL; | |
SnpHandle = NetLibGetSnpHandle (ServiceHandle, &Snp); | |
if (SnpHandle != NULL) { | |
// | |
// SNP found, use it directly | |
// | |
SnpMode = Snp->Mode; | |
} else { | |
// | |
// Failed to get SNP handle, try to get MAC address from MNP | |
// | |
MnpChildHandle = NULL; | |
Status = gBS->HandleProtocol ( | |
ServiceHandle, | |
&gEfiManagedNetworkServiceBindingProtocolGuid, | |
(VOID **) &MnpSb | |
); | |
if (EFI_ERROR (Status)) { | |
return Status; | |
} | |
// | |
// Create a MNP child | |
// | |
Status = MnpSb->CreateChild (MnpSb, &MnpChildHandle); | |
if (EFI_ERROR (Status)) { | |
return Status; | |
} | |
// | |
// Open MNP protocol | |
// | |
Status = gBS->HandleProtocol ( | |
MnpChildHandle, | |
&gEfiManagedNetworkProtocolGuid, | |
(VOID **) &Mnp | |
); | |
if (EFI_ERROR (Status)) { | |
return Status; | |
} | |
// | |
// Try to get SNP mode from MNP | |
// | |
Status = Mnp->GetModeData (Mnp, NULL, &SnpModeData); | |
if (EFI_ERROR (Status)) { | |
return Status; | |
} | |
SnpMode = &SnpModeData; | |
// | |
// Destroy the MNP child | |
// | |
MnpSb->DestroyChild (MnpSb, MnpChildHandle); | |
} | |
*AddressSize = SnpMode->HwAddressSize; | |
CopyMem (MacAddress->Addr, SnpMode->CurrentAddress.Addr, SnpMode->HwAddressSize); | |
return EFI_SUCCESS; | |
} | |
/** | |
Convert the mac address of the simple network protocol installed on | |
SnpHandle to a unicode string. Callers are responsible for freeing the | |
string storage. | |
Get the mac address of the Simple Network protocol from the SnpHandle. Then convert | |
the mac address into a unicode string. It takes 2 unicode characters to represent | |
a 1 byte binary buffer. Plus one unicode character for the null-terminator. | |
@param[in] SnpHandle The handle where the simple network protocol is | |
installed on. | |
@param[in] ImageHandle The image handle used to act as the agent handle to | |
get the simple network protocol. | |
@param[out] MacString The pointer to store the address of the string | |
representation of the mac address. | |
@retval EFI_SUCCESS Convert the mac address a unicode string successfully. | |
@retval EFI_OUT_OF_RESOURCES There are not enough memory resource. | |
@retval Others Failed to open the simple network protocol. | |
**/ | |
EFI_STATUS | |
EFIAPI | |
NetLibGetMacString ( | |
IN EFI_HANDLE SnpHandle, | |
IN EFI_HANDLE ImageHandle, | |
OUT CHAR16 **MacString | |
) | |
{ | |
EFI_STATUS Status; | |
EFI_SIMPLE_NETWORK_PROTOCOL *Snp; | |
EFI_SIMPLE_NETWORK_MODE *Mode; | |
CHAR16 *MacAddress; | |
UINTN Index; | |
*MacString = NULL; | |
// | |
// Get the Simple Network protocol from the SnpHandle. | |
// | |
Status = gBS->OpenProtocol ( | |
SnpHandle, | |
&gEfiSimpleNetworkProtocolGuid, | |
(VOID **) &Snp, | |
ImageHandle, | |
SnpHandle, | |
EFI_OPEN_PROTOCOL_GET_PROTOCOL | |
); | |
if (EFI_ERROR (Status)) { | |
return Status; | |
} | |
Mode = Snp->Mode; | |
// | |
// It takes 2 unicode characters to represent a 1 byte binary buffer. | |
// Plus one unicode character for the null-terminator. | |
// | |
MacAddress = AllocatePool ((2 * Mode->HwAddressSize + 1) * sizeof (CHAR16)); | |
if (MacAddress == NULL) { | |
return EFI_OUT_OF_RESOURCES; | |
} | |
// | |
// Convert the mac address into a unicode string. | |
// | |
for (Index = 0; Index < Mode->HwAddressSize; Index++) { | |
MacAddress[Index * 2] = (CHAR16) mNetLibHexStr[(Mode->CurrentAddress.Addr[Index] >> 4) & 0x0F]; | |
MacAddress[Index * 2 + 1] = (CHAR16) mNetLibHexStr[Mode->CurrentAddress.Addr[Index] & 0x0F]; | |
} | |
MacAddress[Mode->HwAddressSize * 2] = L'\0'; | |
*MacString = MacAddress; | |
return EFI_SUCCESS; | |
} | |
/** | |
Check the default address used by the IPv4 driver is static or dynamic (acquired | |
from DHCP). | |
If the controller handle does not have the NIC Ip4 Config Protocol installed, the | |
default address is static. If the EFI variable to save the configuration is not found, | |
the default address is static. Otherwise, get the result from the EFI variable which | |
saving the configuration. | |
@param[in] Controller The controller handle which has the NIC Ip4 Config Protocol | |
relative with the default address to judge. | |
@retval TRUE If the default address is static. | |
@retval FALSE If the default address is acquired from DHCP. | |
**/ | |
BOOLEAN | |
NetLibDefaultAddressIsStatic ( | |
IN EFI_HANDLE Controller | |
) | |
{ | |
EFI_STATUS Status; | |
EFI_HII_CONFIG_ROUTING_PROTOCOL *HiiConfigRouting; | |
UINTN Len; | |
NIC_IP4_CONFIG_INFO *ConfigInfo; | |
BOOLEAN IsStatic; | |
EFI_STRING ConfigHdr; | |
EFI_STRING ConfigResp; | |
EFI_STRING AccessProgress; | |
EFI_STRING AccessResults; | |
EFI_STRING String; | |
ConfigInfo = NULL; | |
ConfigHdr = NULL; | |
ConfigResp = NULL; | |
AccessProgress = NULL; | |
AccessResults = NULL; | |
IsStatic = TRUE; | |
Status = gBS->LocateProtocol ( | |
&gEfiHiiConfigRoutingProtocolGuid, | |
NULL, | |
(VOID **) &HiiConfigRouting | |
); | |
if (EFI_ERROR (Status)) { | |
return TRUE; | |
} | |
// | |
// Construct config request string header | |
// | |
ConfigHdr = HiiConstructConfigHdr (&gEfiNicIp4ConfigVariableGuid, EFI_NIC_IP4_CONFIG_VARIABLE, Controller); | |
if (ConfigHdr == NULL) { | |
return TRUE; | |
} | |
Len = StrLen (ConfigHdr); | |
ConfigResp = AllocateZeroPool ((Len + NIC_ITEM_CONFIG_SIZE * 2 + 100) * sizeof (CHAR16)); | |
if (ConfigResp == NULL) { | |
goto ON_EXIT; | |
} | |
StrCpy (ConfigResp, ConfigHdr); | |
String = ConfigResp + Len; | |
UnicodeSPrint ( | |
String, | |
(8 + 4 + 7 + 4 + 1) * sizeof (CHAR16), | |
L"&OFFSET=%04X&WIDTH=%04X", | |
OFFSET_OF (NIC_IP4_CONFIG_INFO, Source), | |
sizeof (UINT32) | |
); | |
Status = HiiConfigRouting->ExtractConfig ( | |
HiiConfigRouting, | |
ConfigResp, | |
&AccessProgress, | |
&AccessResults | |
); | |
if (EFI_ERROR (Status)) { | |
goto ON_EXIT; | |
} | |
ConfigInfo = AllocateZeroPool (sizeof (NIC_ITEM_CONFIG_SIZE)); | |
if (ConfigInfo == NULL) { | |
goto ON_EXIT; | |
} | |
ConfigInfo->Source = IP4_CONFIG_SOURCE_STATIC; | |
Len = NIC_ITEM_CONFIG_SIZE; | |
Status = HiiConfigRouting->ConfigToBlock ( | |
HiiConfigRouting, | |
AccessResults, | |
(UINT8 *) ConfigInfo, | |
&Len, | |
&AccessProgress | |
); | |
if (EFI_ERROR (Status)) { | |
goto ON_EXIT; | |
} | |
IsStatic = (BOOLEAN) (ConfigInfo->Source == IP4_CONFIG_SOURCE_STATIC); | |
ON_EXIT: | |
if (AccessResults != NULL) { | |
FreePool (AccessResults); | |
} | |
if (ConfigInfo != NULL) { | |
FreePool (ConfigInfo); | |
} | |
if (ConfigResp != NULL) { | |
FreePool (ConfigResp); | |
} | |
if (ConfigHdr != NULL) { | |
FreePool (ConfigHdr); | |
} | |
return IsStatic; | |
} | |
/** | |
Create an IPv4 device path node. | |
The header type of IPv4 device path node is MESSAGING_DEVICE_PATH. | |
The header subtype of IPv4 device path node is MSG_IPv4_DP. | |
The length of the IPv4 device path node in bytes is 19. | |
Get other info from parameters to make up the whole IPv4 device path node. | |
@param[in, out] Node Pointer to the IPv4 device path node. | |
@param[in] Controller The handle where the NIC IP4 config protocol resides. | |
@param[in] LocalIp The local IPv4 address. | |
@param[in] LocalPort The local port. | |
@param[in] RemoteIp The remote IPv4 address. | |
@param[in] RemotePort The remote port. | |
@param[in] Protocol The protocol type in the IP header. | |
@param[in] UseDefaultAddress Whether this instance is using default address or not. | |
**/ | |
VOID | |
EFIAPI | |
NetLibCreateIPv4DPathNode ( | |
IN OUT IPv4_DEVICE_PATH *Node, | |
IN EFI_HANDLE Controller, | |
IN IP4_ADDR LocalIp, | |
IN UINT16 LocalPort, | |
IN IP4_ADDR RemoteIp, | |
IN UINT16 RemotePort, | |
IN UINT16 Protocol, | |
IN BOOLEAN UseDefaultAddress | |
) | |
{ | |
Node->Header.Type = MESSAGING_DEVICE_PATH; | |
Node->Header.SubType = MSG_IPv4_DP; | |
SetDevicePathNodeLength (&Node->Header, 19); | |
CopyMem (&Node->LocalIpAddress, &LocalIp, sizeof (EFI_IPv4_ADDRESS)); | |
CopyMem (&Node->RemoteIpAddress, &RemoteIp, sizeof (EFI_IPv4_ADDRESS)); | |
Node->LocalPort = LocalPort; | |
Node->RemotePort = RemotePort; | |
Node->Protocol = Protocol; | |
if (!UseDefaultAddress) { | |
Node->StaticIpAddress = TRUE; | |
} else { | |
Node->StaticIpAddress = NetLibDefaultAddressIsStatic (Controller); | |
} | |
} | |
/** | |
Find the UNDI/SNP handle from controller and protocol GUID. | |
For example, IP will open a MNP child to transmit/receive | |
packets, when MNP is stopped, IP should also be stopped. IP | |
needs to find its own private data which is related the IP's | |
service binding instance that is install on UNDI/SNP handle. | |
Now, the controller is either a MNP or ARP child handle. But | |
IP opens these handle BY_DRIVER, use that info, we can get the | |
UNDI/SNP handle. | |
@param[in] Controller Then protocol handle to check. | |
@param[in] ProtocolGuid The protocol that is related with the handle. | |
@return The UNDI/SNP handle or NULL for errors. | |
**/ | |
EFI_HANDLE | |
EFIAPI | |
NetLibGetNicHandle ( | |
IN EFI_HANDLE Controller, | |
IN EFI_GUID *ProtocolGuid | |
) | |
{ | |
EFI_OPEN_PROTOCOL_INFORMATION_ENTRY *OpenBuffer; | |
EFI_HANDLE Handle; | |
EFI_STATUS Status; | |
UINTN OpenCount; | |
UINTN Index; | |
Status = gBS->OpenProtocolInformation ( | |
Controller, | |
ProtocolGuid, | |
&OpenBuffer, | |
&OpenCount | |
); | |
if (EFI_ERROR (Status)) { | |
return NULL; | |
} | |
Handle = NULL; | |
for (Index = 0; Index < OpenCount; Index++) { | |
if (OpenBuffer[Index].Attributes & EFI_OPEN_PROTOCOL_BY_DRIVER) { | |
Handle = OpenBuffer[Index].ControllerHandle; | |
break; | |
} | |
} | |
gBS->FreePool (OpenBuffer); | |
return Handle; | |
} |