| /* Copyright 2010 Google Inc. All Rights Reserved. | |
| Distributed under MIT license. | |
| See file LICENSE for detail or copy at https://opensource.org/licenses/MIT | |
| */ | |
| /* Entropy encoding (Huffman) utilities. */ | |
| #include "./entropy_encode.h" | |
| #include <string.h> /* memset */ | |
| #include "../common/constants.h" | |
| #include "../common/types.h" | |
| #include "./port.h" | |
| #if defined(__cplusplus) || defined(c_plusplus) | |
| extern "C" { | |
| #endif | |
| BROTLI_BOOL BrotliSetDepth( | |
| int p0, HuffmanTree* pool, uint8_t* depth, int max_depth) { | |
| int stack[16]; | |
| int level = 0; | |
| int p = p0; | |
| assert(max_depth <= 15); | |
| stack[0] = -1; | |
| while (BROTLI_TRUE) { | |
| if (pool[p].index_left_ >= 0) { | |
| level++; | |
| if (level > max_depth) return BROTLI_FALSE; | |
| stack[level] = pool[p].index_right_or_value_; | |
| p = pool[p].index_left_; | |
| continue; | |
| } else { | |
| depth[pool[p].index_right_or_value_] = (uint8_t)level; | |
| } | |
| while (level >= 0 && stack[level] == -1) level--; | |
| if (level < 0) return BROTLI_TRUE; | |
| p = stack[level]; | |
| stack[level] = -1; | |
| } | |
| } | |
| /* Sort the root nodes, least popular first. */ | |
| static BROTLI_INLINE BROTLI_BOOL SortHuffmanTree( | |
| const HuffmanTree* v0, const HuffmanTree* v1) { | |
| if (v0->total_count_ != v1->total_count_) { | |
| return TO_BROTLI_BOOL(v0->total_count_ < v1->total_count_); | |
| } | |
| return TO_BROTLI_BOOL(v0->index_right_or_value_ > v1->index_right_or_value_); | |
| } | |
| /* This function will create a Huffman tree. | |
| The catch here is that the tree cannot be arbitrarily deep. | |
| Brotli specifies a maximum depth of 15 bits for "code trees" | |
| and 7 bits for "code length code trees." | |
| count_limit is the value that is to be faked as the minimum value | |
| and this minimum value is raised until the tree matches the | |
| maximum length requirement. | |
| This algorithm is not of excellent performance for very long data blocks, | |
| especially when population counts are longer than 2**tree_limit, but | |
| we are not planning to use this with extremely long blocks. | |
| See http://en.wikipedia.org/wiki/Huffman_coding */ | |
| void BrotliCreateHuffmanTree(const uint32_t *data, | |
| const size_t length, | |
| const int tree_limit, | |
| HuffmanTree* tree, | |
| uint8_t *depth) { | |
| uint32_t count_limit; | |
| HuffmanTree sentinel; | |
| InitHuffmanTree(&sentinel, BROTLI_UINT32_MAX, -1, -1); | |
| /* For block sizes below 64 kB, we never need to do a second iteration | |
| of this loop. Probably all of our block sizes will be smaller than | |
| that, so this loop is mostly of academic interest. If we actually | |
| would need this, we would be better off with the Katajainen algorithm. */ | |
| for (count_limit = 1; ; count_limit *= 2) { | |
| size_t n = 0; | |
| size_t i; | |
| size_t j; | |
| size_t k; | |
| for (i = length; i != 0;) { | |
| --i; | |
| if (data[i]) { | |
| const uint32_t count = BROTLI_MAX(uint32_t, data[i], count_limit); | |
| InitHuffmanTree(&tree[n++], count, -1, (int16_t)i); | |
| } | |
| } | |
| if (n == 1) { | |
| depth[tree[0].index_right_or_value_] = 1; /* Only one element. */ | |
| break; | |
| } | |
| SortHuffmanTreeItems(tree, n, SortHuffmanTree); | |
| /* The nodes are: | |
| [0, n): the sorted leaf nodes that we start with. | |
| [n]: we add a sentinel here. | |
| [n + 1, 2n): new parent nodes are added here, starting from | |
| (n+1). These are naturally in ascending order. | |
| [2n]: we add a sentinel at the end as well. | |
| There will be (2n+1) elements at the end. */ | |
| tree[n] = sentinel; | |
| tree[n + 1] = sentinel; | |
| i = 0; /* Points to the next leaf node. */ | |
| j = n + 1; /* Points to the next non-leaf node. */ | |
| for (k = n - 1; k != 0; --k) { | |
| size_t left, right; | |
| if (tree[i].total_count_ <= tree[j].total_count_) { | |
| left = i; | |
| ++i; | |
| } else { | |
| left = j; | |
| ++j; | |
| } | |
| if (tree[i].total_count_ <= tree[j].total_count_) { | |
| right = i; | |
| ++i; | |
| } else { | |
| right = j; | |
| ++j; | |
| } | |
| { | |
| /* The sentinel node becomes the parent node. */ | |
| size_t j_end = 2 * n - k; | |
| tree[j_end].total_count_ = | |
| tree[left].total_count_ + tree[right].total_count_; | |
| tree[j_end].index_left_ = (int16_t)left; | |
| tree[j_end].index_right_or_value_ = (int16_t)right; | |
| /* Add back the last sentinel node. */ | |
| tree[j_end + 1] = sentinel; | |
| } | |
| } | |
| if (BrotliSetDepth((int)(2 * n - 1), &tree[0], depth, tree_limit)) { | |
| /* We need to pack the Huffman tree in tree_limit bits. If this was not | |
| successful, add fake entities to the lowest values and retry. */ | |
| break; | |
| } | |
| } | |
| } | |
| static void Reverse(uint8_t* v, size_t start, size_t end) { | |
| --end; | |
| while (start < end) { | |
| uint8_t tmp = v[start]; | |
| v[start] = v[end]; | |
| v[end] = tmp; | |
| ++start; | |
| --end; | |
| } | |
| } | |
| static void BrotliWriteHuffmanTreeRepetitions( | |
| const uint8_t previous_value, | |
| const uint8_t value, | |
| size_t repetitions, | |
| size_t* tree_size, | |
| uint8_t* tree, | |
| uint8_t* extra_bits_data) { | |
| assert(repetitions > 0); | |
| if (previous_value != value) { | |
| tree[*tree_size] = value; | |
| extra_bits_data[*tree_size] = 0; | |
| ++(*tree_size); | |
| --repetitions; | |
| } | |
| if (repetitions == 7) { | |
| tree[*tree_size] = value; | |
| extra_bits_data[*tree_size] = 0; | |
| ++(*tree_size); | |
| --repetitions; | |
| } | |
| if (repetitions < 3) { | |
| size_t i; | |
| for (i = 0; i < repetitions; ++i) { | |
| tree[*tree_size] = value; | |
| extra_bits_data[*tree_size] = 0; | |
| ++(*tree_size); | |
| } | |
| } else { | |
| size_t start = *tree_size; | |
| repetitions -= 3; | |
| while (BROTLI_TRUE) { | |
| tree[*tree_size] = BROTLI_REPEAT_PREVIOUS_CODE_LENGTH; | |
| extra_bits_data[*tree_size] = repetitions & 0x3; | |
| ++(*tree_size); | |
| repetitions >>= 2; | |
| if (repetitions == 0) { | |
| break; | |
| } | |
| --repetitions; | |
| } | |
| Reverse(tree, start, *tree_size); | |
| Reverse(extra_bits_data, start, *tree_size); | |
| } | |
| } | |
| static void BrotliWriteHuffmanTreeRepetitionsZeros( | |
| size_t repetitions, | |
| size_t* tree_size, | |
| uint8_t* tree, | |
| uint8_t* extra_bits_data) { | |
| if (repetitions == 11) { | |
| tree[*tree_size] = 0; | |
| extra_bits_data[*tree_size] = 0; | |
| ++(*tree_size); | |
| --repetitions; | |
| } | |
| if (repetitions < 3) { | |
| size_t i; | |
| for (i = 0; i < repetitions; ++i) { | |
| tree[*tree_size] = 0; | |
| extra_bits_data[*tree_size] = 0; | |
| ++(*tree_size); | |
| } | |
| } else { | |
| size_t start = *tree_size; | |
| repetitions -= 3; | |
| while (BROTLI_TRUE) { | |
| tree[*tree_size] = BROTLI_REPEAT_ZERO_CODE_LENGTH; | |
| extra_bits_data[*tree_size] = repetitions & 0x7; | |
| ++(*tree_size); | |
| repetitions >>= 3; | |
| if (repetitions == 0) { | |
| break; | |
| } | |
| --repetitions; | |
| } | |
| Reverse(tree, start, *tree_size); | |
| Reverse(extra_bits_data, start, *tree_size); | |
| } | |
| } | |
| void BrotliOptimizeHuffmanCountsForRle(size_t length, uint32_t* counts, | |
| uint8_t* good_for_rle) { | |
| size_t nonzero_count = 0; | |
| size_t stride; | |
| size_t limit; | |
| size_t sum; | |
| const size_t streak_limit = 1240; | |
| /* Let's make the Huffman code more compatible with rle encoding. */ | |
| size_t i; | |
| for (i = 0; i < length; i++) { | |
| if (counts[i]) { | |
| ++nonzero_count; | |
| } | |
| } | |
| if (nonzero_count < 16) { | |
| return; | |
| } | |
| while (length != 0 && counts[length - 1] == 0) { | |
| --length; | |
| } | |
| if (length == 0) { | |
| return; /* All zeros. */ | |
| } | |
| /* Now counts[0..length - 1] does not have trailing zeros. */ | |
| { | |
| size_t nonzeros = 0; | |
| uint32_t smallest_nonzero = 1 << 30; | |
| for (i = 0; i < length; ++i) { | |
| if (counts[i] != 0) { | |
| ++nonzeros; | |
| if (smallest_nonzero > counts[i]) { | |
| smallest_nonzero = counts[i]; | |
| } | |
| } | |
| } | |
| if (nonzeros < 5) { | |
| /* Small histogram will model it well. */ | |
| return; | |
| } | |
| if (smallest_nonzero < 4) { | |
| size_t zeros = length - nonzeros; | |
| if (zeros < 6) { | |
| for (i = 1; i < length - 1; ++i) { | |
| if (counts[i - 1] != 0 && counts[i] == 0 && counts[i + 1] != 0) { | |
| counts[i] = 1; | |
| } | |
| } | |
| } | |
| } | |
| if (nonzeros < 28) { | |
| return; | |
| } | |
| } | |
| /* 2) Let's mark all population counts that already can be encoded | |
| with an rle code. */ | |
| memset(good_for_rle, 0, length); | |
| { | |
| /* Let's not spoil any of the existing good rle codes. | |
| Mark any seq of 0's that is longer as 5 as a good_for_rle. | |
| Mark any seq of non-0's that is longer as 7 as a good_for_rle. */ | |
| uint32_t symbol = counts[0]; | |
| size_t step = 0; | |
| for (i = 0; i <= length; ++i) { | |
| if (i == length || counts[i] != symbol) { | |
| if ((symbol == 0 && step >= 5) || | |
| (symbol != 0 && step >= 7)) { | |
| size_t k; | |
| for (k = 0; k < step; ++k) { | |
| good_for_rle[i - k - 1] = 1; | |
| } | |
| } | |
| step = 1; | |
| if (i != length) { | |
| symbol = counts[i]; | |
| } | |
| } else { | |
| ++step; | |
| } | |
| } | |
| } | |
| /* 3) Let's replace those population counts that lead to more rle codes. | |
| Math here is in 24.8 fixed point representation. */ | |
| stride = 0; | |
| limit = 256 * (counts[0] + counts[1] + counts[2]) / 3 + 420; | |
| sum = 0; | |
| for (i = 0; i <= length; ++i) { | |
| if (i == length || good_for_rle[i] || | |
| (i != 0 && good_for_rle[i - 1]) || | |
| (256 * counts[i] - limit + streak_limit) >= 2 * streak_limit) { | |
| if (stride >= 4 || (stride >= 3 && sum == 0)) { | |
| size_t k; | |
| /* The stride must end, collapse what we have, if we have enough (4). */ | |
| size_t count = (sum + stride / 2) / stride; | |
| if (count == 0) { | |
| count = 1; | |
| } | |
| if (sum == 0) { | |
| /* Don't make an all zeros stride to be upgraded to ones. */ | |
| count = 0; | |
| } | |
| for (k = 0; k < stride; ++k) { | |
| /* We don't want to change value at counts[i], | |
| that is already belonging to the next stride. Thus - 1. */ | |
| counts[i - k - 1] = (uint32_t)count; | |
| } | |
| } | |
| stride = 0; | |
| sum = 0; | |
| if (i < length - 2) { | |
| /* All interesting strides have a count of at least 4, */ | |
| /* at least when non-zeros. */ | |
| limit = 256 * (counts[i] + counts[i + 1] + counts[i + 2]) / 3 + 420; | |
| } else if (i < length) { | |
| limit = 256 * counts[i]; | |
| } else { | |
| limit = 0; | |
| } | |
| } | |
| ++stride; | |
| if (i != length) { | |
| sum += counts[i]; | |
| if (stride >= 4) { | |
| limit = (256 * sum + stride / 2) / stride; | |
| } | |
| if (stride == 4) { | |
| limit += 120; | |
| } | |
| } | |
| } | |
| } | |
| static void DecideOverRleUse(const uint8_t* depth, const size_t length, | |
| BROTLI_BOOL *use_rle_for_non_zero, | |
| BROTLI_BOOL *use_rle_for_zero) { | |
| size_t total_reps_zero = 0; | |
| size_t total_reps_non_zero = 0; | |
| size_t count_reps_zero = 1; | |
| size_t count_reps_non_zero = 1; | |
| size_t i; | |
| for (i = 0; i < length;) { | |
| const uint8_t value = depth[i]; | |
| size_t reps = 1; | |
| size_t k; | |
| for (k = i + 1; k < length && depth[k] == value; ++k) { | |
| ++reps; | |
| } | |
| if (reps >= 3 && value == 0) { | |
| total_reps_zero += reps; | |
| ++count_reps_zero; | |
| } | |
| if (reps >= 4 && value != 0) { | |
| total_reps_non_zero += reps; | |
| ++count_reps_non_zero; | |
| } | |
| i += reps; | |
| } | |
| *use_rle_for_non_zero = | |
| TO_BROTLI_BOOL(total_reps_non_zero > count_reps_non_zero * 2); | |
| *use_rle_for_zero = TO_BROTLI_BOOL(total_reps_zero > count_reps_zero * 2); | |
| } | |
| void BrotliWriteHuffmanTree(const uint8_t* depth, | |
| size_t length, | |
| size_t* tree_size, | |
| uint8_t* tree, | |
| uint8_t* extra_bits_data) { | |
| uint8_t previous_value = BROTLI_INITIAL_REPEATED_CODE_LENGTH; | |
| size_t i; | |
| BROTLI_BOOL use_rle_for_non_zero = BROTLI_FALSE; | |
| BROTLI_BOOL use_rle_for_zero = BROTLI_FALSE; | |
| /* Throw away trailing zeros. */ | |
| size_t new_length = length; | |
| for (i = 0; i < length; ++i) { | |
| if (depth[length - i - 1] == 0) { | |
| --new_length; | |
| } else { | |
| break; | |
| } | |
| } | |
| /* First gather statistics on if it is a good idea to do rle. */ | |
| if (length > 50) { | |
| /* Find rle coding for longer codes. | |
| Shorter codes seem not to benefit from rle. */ | |
| DecideOverRleUse(depth, new_length, | |
| &use_rle_for_non_zero, &use_rle_for_zero); | |
| } | |
| /* Actual rle coding. */ | |
| for (i = 0; i < new_length;) { | |
| const uint8_t value = depth[i]; | |
| size_t reps = 1; | |
| if ((value != 0 && use_rle_for_non_zero) || | |
| (value == 0 && use_rle_for_zero)) { | |
| size_t k; | |
| for (k = i + 1; k < new_length && depth[k] == value; ++k) { | |
| ++reps; | |
| } | |
| } | |
| if (value == 0) { | |
| BrotliWriteHuffmanTreeRepetitionsZeros( | |
| reps, tree_size, tree, extra_bits_data); | |
| } else { | |
| BrotliWriteHuffmanTreeRepetitions(previous_value, | |
| value, reps, tree_size, | |
| tree, extra_bits_data); | |
| previous_value = value; | |
| } | |
| i += reps; | |
| } | |
| } | |
| static uint16_t BrotliReverseBits(size_t num_bits, uint16_t bits) { | |
| static const size_t kLut[16] = { /* Pre-reversed 4-bit values. */ | |
| 0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe, | |
| 0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf | |
| }; | |
| size_t retval = kLut[bits & 0xf]; | |
| size_t i; | |
| for (i = 4; i < num_bits; i += 4) { | |
| retval <<= 4; | |
| bits = (uint16_t)(bits >> 4); | |
| retval |= kLut[bits & 0xf]; | |
| } | |
| retval >>= ((0 - num_bits) & 0x3); | |
| return (uint16_t)retval; | |
| } | |
| /* 0..15 are values for bits */ | |
| #define MAX_HUFFMAN_BITS 16 | |
| void BrotliConvertBitDepthsToSymbols(const uint8_t *depth, | |
| size_t len, | |
| uint16_t *bits) { | |
| /* In Brotli, all bit depths are [1..15] | |
| 0 bit depth means that the symbol does not exist. */ | |
| uint16_t bl_count[MAX_HUFFMAN_BITS] = { 0 }; | |
| uint16_t next_code[MAX_HUFFMAN_BITS]; | |
| size_t i; | |
| int code = 0; | |
| for (i = 0; i < len; ++i) { | |
| ++bl_count[depth[i]]; | |
| } | |
| bl_count[0] = 0; | |
| next_code[0] = 0; | |
| for (i = 1; i < MAX_HUFFMAN_BITS; ++i) { | |
| code = (code + bl_count[i - 1]) << 1; | |
| next_code[i] = (uint16_t)code; | |
| } | |
| for (i = 0; i < len; ++i) { | |
| if (depth[i]) { | |
| bits[i] = BrotliReverseBits(depth[i], next_code[depth[i]]++); | |
| } | |
| } | |
| } | |
| #if defined(__cplusplus) || defined(c_plusplus) | |
| } /* extern "C" */ | |
| #endif |