| /** @file | |
| Implement EFI RealTimeClock runtime services via RTC Lib. | |
| Copyright (c) 2008 - 2010, Apple Inc. All rights reserved.<BR> | |
| Copyright (c) 2011 - 2014, ARM Ltd. All rights reserved.<BR> | |
| This program and the accompanying materials | |
| are licensed and made available under the terms and conditions of the BSD License | |
| which accompanies this distribution. The full text of the license may be found at | |
| http://opensource.org/licenses/bsd-license.php | |
| THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, | |
| WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. | |
| **/ | |
| #include <Uefi.h> | |
| #include <PiDxe.h> | |
| #include <Library/BaseLib.h> | |
| #include <Library/DebugLib.h> | |
| #include <Library/UefiLib.h> | |
| #include <Library/IoLib.h> | |
| #include <Library/RealTimeClockLib.h> | |
| #include <Library/MemoryAllocationLib.h> | |
| #include <Library/PcdLib.h> | |
| #include <Library/ArmPlatformSysConfigLib.h> | |
| #include <Library/DxeServicesTableLib.h> | |
| #include <Library/UefiBootServicesTableLib.h> | |
| #include <Library/UefiRuntimeServicesTableLib.h> | |
| #include <Library/UefiRuntimeLib.h> | |
| #include <Protocol/RealTimeClock.h> | |
| #include <Guid/GlobalVariable.h> | |
| #include <Guid/EventGroup.h> | |
| #include <Drivers/PL031RealTimeClock.h> | |
| #include <ArmPlatform.h> | |
| STATIC CONST CHAR16 mTimeZoneVariableName[] = L"PL031RtcTimeZone"; | |
| STATIC CONST CHAR16 mDaylightVariableName[] = L"PL031RtcDaylight"; | |
| STATIC BOOLEAN mPL031Initialized = FALSE; | |
| STATIC EFI_EVENT mRtcVirtualAddrChangeEvent; | |
| STATIC UINTN mPL031RtcBase; | |
| EFI_STATUS | |
| IdentifyPL031 ( | |
| VOID | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| // Check if this is a PrimeCell Peripheral | |
| if ( (MmioRead8 (mPL031RtcBase + PL031_RTC_PCELL_ID0) != 0x0D) | |
| || (MmioRead8 (mPL031RtcBase + PL031_RTC_PCELL_ID1) != 0xF0) | |
| || (MmioRead8 (mPL031RtcBase + PL031_RTC_PCELL_ID2) != 0x05) | |
| || (MmioRead8 (mPL031RtcBase + PL031_RTC_PCELL_ID3) != 0xB1)) { | |
| Status = EFI_NOT_FOUND; | |
| goto EXIT; | |
| } | |
| // Check if this PrimeCell Peripheral is the PL031 Real Time Clock | |
| if ( (MmioRead8 (mPL031RtcBase + PL031_RTC_PERIPH_ID0) != 0x31) | |
| || (MmioRead8 (mPL031RtcBase + PL031_RTC_PERIPH_ID1) != 0x10) | |
| || ((MmioRead8 (mPL031RtcBase + PL031_RTC_PERIPH_ID2) & 0xF) != 0x04) | |
| || (MmioRead8 (mPL031RtcBase + PL031_RTC_PERIPH_ID3) != 0x00)) { | |
| Status = EFI_NOT_FOUND; | |
| goto EXIT; | |
| } | |
| Status = EFI_SUCCESS; | |
| EXIT: | |
| return Status; | |
| } | |
| EFI_STATUS | |
| InitializePL031 ( | |
| VOID | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| // Prepare the hardware | |
| Status = IdentifyPL031(); | |
| if (EFI_ERROR (Status)) { | |
| goto EXIT; | |
| } | |
| // Ensure interrupts are masked. We do not want RTC interrupts in UEFI | |
| if ((MmioRead32 (mPL031RtcBase + PL031_RTC_IMSC_IRQ_MASK_SET_CLEAR_REGISTER) & PL031_SET_IRQ_MASK) != PL031_SET_IRQ_MASK) { | |
| MmioOr32 (mPL031RtcBase + PL031_RTC_IMSC_IRQ_MASK_SET_CLEAR_REGISTER, PL031_SET_IRQ_MASK); | |
| } | |
| // Clear any existing interrupts | |
| if ((MmioRead32 (mPL031RtcBase + PL031_RTC_RIS_RAW_IRQ_STATUS_REGISTER) & PL031_IRQ_TRIGGERED) == PL031_IRQ_TRIGGERED) { | |
| MmioOr32 (mPL031RtcBase + PL031_RTC_ICR_IRQ_CLEAR_REGISTER, PL031_CLEAR_IRQ); | |
| } | |
| // Start the clock counter | |
| if ((MmioRead32 (mPL031RtcBase + PL031_RTC_CR_CONTROL_REGISTER) & PL031_RTC_ENABLED) != PL031_RTC_ENABLED) { | |
| MmioOr32 (mPL031RtcBase + PL031_RTC_CR_CONTROL_REGISTER, PL031_RTC_ENABLED); | |
| } | |
| mPL031Initialized = TRUE; | |
| EXIT: | |
| return Status; | |
| } | |
| /** | |
| Converts Epoch seconds (elapsed since 1970 JANUARY 01, 00:00:00 UTC) to EFI_TIME | |
| **/ | |
| VOID | |
| EpochToEfiTime ( | |
| IN UINTN EpochSeconds, | |
| OUT EFI_TIME *Time | |
| ) | |
| { | |
| UINTN a; | |
| UINTN b; | |
| UINTN c; | |
| UINTN d; | |
| UINTN g; | |
| UINTN j; | |
| UINTN m; | |
| UINTN y; | |
| UINTN da; | |
| UINTN db; | |
| UINTN dc; | |
| UINTN dg; | |
| UINTN hh; | |
| UINTN mm; | |
| UINTN ss; | |
| UINTN J; | |
| J = (EpochSeconds / 86400) + 2440588; | |
| j = J + 32044; | |
| g = j / 146097; | |
| dg = j % 146097; | |
| c = (((dg / 36524) + 1) * 3) / 4; | |
| dc = dg - (c * 36524); | |
| b = dc / 1461; | |
| db = dc % 1461; | |
| a = (((db / 365) + 1) * 3) / 4; | |
| da = db - (a * 365); | |
| y = (g * 400) + (c * 100) + (b * 4) + a; | |
| m = (((da * 5) + 308) / 153) - 2; | |
| d = da - (((m + 4) * 153) / 5) + 122; | |
| Time->Year = y - 4800 + ((m + 2) / 12); | |
| Time->Month = ((m + 2) % 12) + 1; | |
| Time->Day = d + 1; | |
| ss = EpochSeconds % 60; | |
| a = (EpochSeconds - ss) / 60; | |
| mm = a % 60; | |
| b = (a - mm) / 60; | |
| hh = b % 24; | |
| Time->Hour = hh; | |
| Time->Minute = mm; | |
| Time->Second = ss; | |
| Time->Nanosecond = 0; | |
| } | |
| /** | |
| Converts EFI_TIME to Epoch seconds (elapsed since 1970 JANUARY 01, 00:00:00 UTC) | |
| **/ | |
| UINTN | |
| EfiTimeToEpoch ( | |
| IN EFI_TIME *Time | |
| ) | |
| { | |
| UINTN a; | |
| UINTN y; | |
| UINTN m; | |
| UINTN JulianDate; // Absolute Julian Date representation of the supplied Time | |
| UINTN EpochDays; // Number of days elapsed since EPOCH_JULIAN_DAY | |
| UINTN EpochSeconds; | |
| a = (14 - Time->Month) / 12 ; | |
| y = Time->Year + 4800 - a; | |
| m = Time->Month + (12*a) - 3; | |
| JulianDate = Time->Day + ((153*m + 2)/5) + (365*y) + (y/4) - (y/100) + (y/400) - 32045; | |
| ASSERT (JulianDate >= EPOCH_JULIAN_DATE); | |
| EpochDays = JulianDate - EPOCH_JULIAN_DATE; | |
| EpochSeconds = (EpochDays * SEC_PER_DAY) + ((UINTN)Time->Hour * SEC_PER_HOUR) + (Time->Minute * SEC_PER_MIN) + Time->Second; | |
| return EpochSeconds; | |
| } | |
| BOOLEAN | |
| IsLeapYear ( | |
| IN EFI_TIME *Time | |
| ) | |
| { | |
| if (Time->Year % 4 == 0) { | |
| if (Time->Year % 100 == 0) { | |
| if (Time->Year % 400 == 0) { | |
| return TRUE; | |
| } else { | |
| return FALSE; | |
| } | |
| } else { | |
| return TRUE; | |
| } | |
| } else { | |
| return FALSE; | |
| } | |
| } | |
| BOOLEAN | |
| DayValid ( | |
| IN EFI_TIME *Time | |
| ) | |
| { | |
| STATIC CONST INTN DayOfMonth[12] = { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; | |
| if (Time->Day < 1 || | |
| Time->Day > DayOfMonth[Time->Month - 1] || | |
| (Time->Month == 2 && (!IsLeapYear (Time) && Time->Day > 28)) | |
| ) { | |
| return FALSE; | |
| } | |
| return TRUE; | |
| } | |
| /** | |
| Returns the current time and date information, and the time-keeping capabilities | |
| of the hardware platform. | |
| @param Time A pointer to storage to receive a snapshot of the current time. | |
| @param Capabilities An optional pointer to a buffer to receive the real time clock | |
| device's capabilities. | |
| @retval EFI_SUCCESS The operation completed successfully. | |
| @retval EFI_INVALID_PARAMETER Time is NULL. | |
| @retval EFI_DEVICE_ERROR The time could not be retrieved due to hardware error. | |
| @retval EFI_SECURITY_VIOLATION The time could not be retrieved due to an authentication failure. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| LibGetTime ( | |
| OUT EFI_TIME *Time, | |
| OUT EFI_TIME_CAPABILITIES *Capabilities | |
| ) | |
| { | |
| EFI_STATUS Status = EFI_SUCCESS; | |
| UINT32 EpochSeconds; | |
| INT16 TimeZone; | |
| UINT8 Daylight; | |
| UINTN Size; | |
| // Initialize the hardware if not already done | |
| if (!mPL031Initialized) { | |
| Status = InitializePL031 (); | |
| if (EFI_ERROR (Status)) { | |
| goto EXIT; | |
| } | |
| } | |
| // Snapshot the time as early in the function call as possible | |
| // On some platforms we may have access to a battery backed up hardware clock. | |
| // If such RTC exists try to use it first. | |
| Status = ArmPlatformSysConfigGet (SYS_CFG_RTC, &EpochSeconds); | |
| if (Status == EFI_UNSUPPORTED) { | |
| // Battery backed up hardware RTC does not exist, revert to PL031 | |
| EpochSeconds = MmioRead32 (mPL031RtcBase + PL031_RTC_DR_DATA_REGISTER); | |
| Status = EFI_SUCCESS; | |
| } else if (EFI_ERROR (Status)) { | |
| // Battery backed up hardware RTC exists but could not be read due to error. Abort. | |
| goto EXIT; | |
| } else { | |
| // Battery backed up hardware RTC exists and we read the time correctly from it. | |
| // Now sync the PL031 to the new time. | |
| MmioWrite32 (mPL031RtcBase + PL031_RTC_LR_LOAD_REGISTER, EpochSeconds); | |
| } | |
| // Ensure Time is a valid pointer | |
| if (Time == NULL) { | |
| Status = EFI_INVALID_PARAMETER; | |
| goto EXIT; | |
| } | |
| // Get the current time zone information from non-volatile storage | |
| Size = sizeof (TimeZone); | |
| Status = EfiGetVariable ( | |
| (CHAR16 *)mTimeZoneVariableName, | |
| &gEfiCallerIdGuid, | |
| NULL, | |
| &Size, | |
| (VOID *)&TimeZone | |
| ); | |
| if (EFI_ERROR (Status)) { | |
| ASSERT(Status != EFI_INVALID_PARAMETER); | |
| ASSERT(Status != EFI_BUFFER_TOO_SMALL); | |
| if (Status != EFI_NOT_FOUND) | |
| goto EXIT; | |
| // The time zone variable does not exist in non-volatile storage, so create it. | |
| Time->TimeZone = EFI_UNSPECIFIED_TIMEZONE; | |
| // Store it | |
| Status = EfiSetVariable ( | |
| (CHAR16 *)mTimeZoneVariableName, | |
| &gEfiCallerIdGuid, | |
| EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS, | |
| Size, | |
| (VOID *)&(Time->TimeZone) | |
| ); | |
| if (EFI_ERROR (Status)) { | |
| DEBUG (( | |
| EFI_D_ERROR, | |
| "LibGetTime: Failed to save %s variable to non-volatile storage, Status = %r\n", | |
| mTimeZoneVariableName, | |
| Status | |
| )); | |
| goto EXIT; | |
| } | |
| } else { | |
| // Got the time zone | |
| Time->TimeZone = TimeZone; | |
| // Check TimeZone bounds: -1440 to 1440 or 2047 | |
| if (((Time->TimeZone < -1440) || (Time->TimeZone > 1440)) | |
| && (Time->TimeZone != EFI_UNSPECIFIED_TIMEZONE)) { | |
| Time->TimeZone = EFI_UNSPECIFIED_TIMEZONE; | |
| } | |
| // Adjust for the correct time zone | |
| if (Time->TimeZone != EFI_UNSPECIFIED_TIMEZONE) { | |
| EpochSeconds += Time->TimeZone * SEC_PER_MIN; | |
| } | |
| } | |
| // Get the current daylight information from non-volatile storage | |
| Size = sizeof (Daylight); | |
| Status = EfiGetVariable ( | |
| (CHAR16 *)mDaylightVariableName, | |
| &gEfiCallerIdGuid, | |
| NULL, | |
| &Size, | |
| (VOID *)&Daylight | |
| ); | |
| if (EFI_ERROR (Status)) { | |
| ASSERT(Status != EFI_INVALID_PARAMETER); | |
| ASSERT(Status != EFI_BUFFER_TOO_SMALL); | |
| if (Status != EFI_NOT_FOUND) | |
| goto EXIT; | |
| // The daylight variable does not exist in non-volatile storage, so create it. | |
| Time->Daylight = 0; | |
| // Store it | |
| Status = EfiSetVariable ( | |
| (CHAR16 *)mDaylightVariableName, | |
| &gEfiCallerIdGuid, | |
| EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS, | |
| Size, | |
| (VOID *)&(Time->Daylight) | |
| ); | |
| if (EFI_ERROR (Status)) { | |
| DEBUG (( | |
| EFI_D_ERROR, | |
| "LibGetTime: Failed to save %s variable to non-volatile storage, Status = %r\n", | |
| mDaylightVariableName, | |
| Status | |
| )); | |
| goto EXIT; | |
| } | |
| } else { | |
| // Got the daylight information | |
| Time->Daylight = Daylight; | |
| // Adjust for the correct period | |
| if ((Time->Daylight & EFI_TIME_IN_DAYLIGHT) == EFI_TIME_IN_DAYLIGHT) { | |
| // Convert to adjusted time, i.e. spring forwards one hour | |
| EpochSeconds += SEC_PER_HOUR; | |
| } | |
| } | |
| // Convert from internal 32-bit time to UEFI time | |
| EpochToEfiTime (EpochSeconds, Time); | |
| // Update the Capabilities info | |
| if (Capabilities != NULL) { | |
| // PL031 runs at frequency 1Hz | |
| Capabilities->Resolution = PL031_COUNTS_PER_SECOND; | |
| // Accuracy in ppm multiplied by 1,000,000, e.g. for 50ppm set 50,000,000 | |
| Capabilities->Accuracy = (UINT32)PcdGet32 (PcdPL031RtcPpmAccuracy); | |
| // FALSE: Setting the time does not clear the values below the resolution level | |
| Capabilities->SetsToZero = FALSE; | |
| } | |
| EXIT: | |
| return Status; | |
| } | |
| /** | |
| Sets the current local time and date information. | |
| @param Time A pointer to the current time. | |
| @retval EFI_SUCCESS The operation completed successfully. | |
| @retval EFI_INVALID_PARAMETER A time field is out of range. | |
| @retval EFI_DEVICE_ERROR The time could not be set due due to hardware error. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| LibSetTime ( | |
| IN EFI_TIME *Time | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| UINTN EpochSeconds; | |
| // Check the input parameters are within the range specified by UEFI | |
| if ((Time->Year < 1900) || | |
| (Time->Year > 9999) || | |
| (Time->Month < 1 ) || | |
| (Time->Month > 12 ) || | |
| (!DayValid (Time) ) || | |
| (Time->Hour > 23 ) || | |
| (Time->Minute > 59 ) || | |
| (Time->Second > 59 ) || | |
| (Time->Nanosecond > 999999999) || | |
| (!((Time->TimeZone == EFI_UNSPECIFIED_TIMEZONE) || ((Time->TimeZone >= -1440) && (Time->TimeZone <= 1440)))) || | |
| (Time->Daylight & (~(EFI_TIME_ADJUST_DAYLIGHT | EFI_TIME_IN_DAYLIGHT))) | |
| ) { | |
| Status = EFI_INVALID_PARAMETER; | |
| goto EXIT; | |
| } | |
| // Because the PL031 is a 32-bit counter counting seconds, | |
| // the maximum time span is just over 136 years. | |
| // Time is stored in Unix Epoch format, so it starts in 1970, | |
| // Therefore it can not exceed the year 2106. | |
| if ((Time->Year < 1970) || (Time->Year >= 2106)) { | |
| Status = EFI_UNSUPPORTED; | |
| goto EXIT; | |
| } | |
| // Initialize the hardware if not already done | |
| if (!mPL031Initialized) { | |
| Status = InitializePL031 (); | |
| if (EFI_ERROR (Status)) { | |
| goto EXIT; | |
| } | |
| } | |
| EpochSeconds = EfiTimeToEpoch (Time); | |
| // Adjust for the correct time zone, i.e. convert to UTC time zone | |
| if (Time->TimeZone != EFI_UNSPECIFIED_TIMEZONE) { | |
| EpochSeconds -= Time->TimeZone * SEC_PER_MIN; | |
| } | |
| // TODO: Automatic Daylight activation | |
| // Adjust for the correct period | |
| if ((Time->Daylight & EFI_TIME_IN_DAYLIGHT) == EFI_TIME_IN_DAYLIGHT) { | |
| // Convert to un-adjusted time, i.e. fall back one hour | |
| EpochSeconds -= SEC_PER_HOUR; | |
| } | |
| // On some platforms we may have access to a battery backed up hardware clock. | |
| // | |
| // If such RTC exists then it must be updated first, before the PL031, | |
| // to minimise any time drift. This is important because the battery backed-up | |
| // RTC maintains the master time for the platform across reboots. | |
| // | |
| // If such RTC does not exist then the following function returns UNSUPPORTED. | |
| Status = ArmPlatformSysConfigSet (SYS_CFG_RTC, EpochSeconds); | |
| if ((EFI_ERROR (Status)) && (Status != EFI_UNSUPPORTED)){ | |
| // Any status message except SUCCESS and UNSUPPORTED indicates a hardware failure. | |
| goto EXIT; | |
| } | |
| // Set the PL031 | |
| MmioWrite32 (mPL031RtcBase + PL031_RTC_LR_LOAD_REGISTER, EpochSeconds); | |
| // The accesses to Variable Services can be very slow, because we may be writing to Flash. | |
| // Do this after having set the RTC. | |
| // Save the current time zone information into non-volatile storage | |
| Status = EfiSetVariable ( | |
| (CHAR16 *)mTimeZoneVariableName, | |
| &gEfiCallerIdGuid, | |
| EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS, | |
| sizeof (Time->TimeZone), | |
| (VOID *)&(Time->TimeZone) | |
| ); | |
| if (EFI_ERROR (Status)) { | |
| DEBUG (( | |
| EFI_D_ERROR, | |
| "LibSetTime: Failed to save %s variable to non-volatile storage, Status = %r\n", | |
| mTimeZoneVariableName, | |
| Status | |
| )); | |
| goto EXIT; | |
| } | |
| // Save the current daylight information into non-volatile storage | |
| Status = EfiSetVariable ( | |
| (CHAR16 *)mDaylightVariableName, | |
| &gEfiCallerIdGuid, | |
| EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS, | |
| sizeof(Time->Daylight), | |
| (VOID *)&(Time->Daylight) | |
| ); | |
| if (EFI_ERROR (Status)) { | |
| DEBUG (( | |
| EFI_D_ERROR, | |
| "LibSetTime: Failed to save %s variable to non-volatile storage, Status = %r\n", | |
| mDaylightVariableName, | |
| Status | |
| )); | |
| goto EXIT; | |
| } | |
| EXIT: | |
| return Status; | |
| } | |
| /** | |
| Returns the current wakeup alarm clock setting. | |
| @param Enabled Indicates if the alarm is currently enabled or disabled. | |
| @param Pending Indicates if the alarm signal is pending and requires acknowledgement. | |
| @param Time The current alarm setting. | |
| @retval EFI_SUCCESS The alarm settings were returned. | |
| @retval EFI_INVALID_PARAMETER Any parameter is NULL. | |
| @retval EFI_DEVICE_ERROR The wakeup time could not be retrieved due to a hardware error. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| LibGetWakeupTime ( | |
| OUT BOOLEAN *Enabled, | |
| OUT BOOLEAN *Pending, | |
| OUT EFI_TIME *Time | |
| ) | |
| { | |
| // Not a required feature | |
| return EFI_UNSUPPORTED; | |
| } | |
| /** | |
| Sets the system wakeup alarm clock time. | |
| @param Enabled Enable or disable the wakeup alarm. | |
| @param Time If Enable is TRUE, the time to set the wakeup alarm for. | |
| @retval EFI_SUCCESS If Enable is TRUE, then the wakeup alarm was enabled. If | |
| Enable is FALSE, then the wakeup alarm was disabled. | |
| @retval EFI_INVALID_PARAMETER A time field is out of range. | |
| @retval EFI_DEVICE_ERROR The wakeup time could not be set due to a hardware error. | |
| @retval EFI_UNSUPPORTED A wakeup timer is not supported on this platform. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| LibSetWakeupTime ( | |
| IN BOOLEAN Enabled, | |
| OUT EFI_TIME *Time | |
| ) | |
| { | |
| // Not a required feature | |
| return EFI_UNSUPPORTED; | |
| } | |
| /** | |
| Fixup internal data so that EFI can be call in virtual mode. | |
| Call the passed in Child Notify event and convert any pointers in | |
| lib to virtual mode. | |
| @param[in] Event The Event that is being processed | |
| @param[in] Context Event Context | |
| **/ | |
| VOID | |
| EFIAPI | |
| LibRtcVirtualNotifyEvent ( | |
| IN EFI_EVENT Event, | |
| IN VOID *Context | |
| ) | |
| { | |
| // | |
| // Only needed if you are going to support the OS calling RTC functions in virtual mode. | |
| // You will need to call EfiConvertPointer (). To convert any stored physical addresses | |
| // to virtual address. After the OS transitions to calling in virtual mode, all future | |
| // runtime calls will be made in virtual mode. | |
| // | |
| EfiConvertPointer (0x0, (VOID**)&mPL031RtcBase); | |
| return; | |
| } | |
| /** | |
| This is the declaration of an EFI image entry point. This can be the entry point to an application | |
| written to this specification, an EFI boot service driver, or an EFI runtime driver. | |
| @param ImageHandle Handle that identifies the loaded image. | |
| @param SystemTable System Table for this image. | |
| @retval EFI_SUCCESS The operation completed successfully. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| LibRtcInitialize ( | |
| IN EFI_HANDLE ImageHandle, | |
| IN EFI_SYSTEM_TABLE *SystemTable | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| EFI_HANDLE Handle; | |
| // Initialize RTC Base Address | |
| mPL031RtcBase = PcdGet32 (PcdPL031RtcBase); | |
| // Declare the controller as EFI_MEMORY_RUNTIME | |
| Status = gDS->AddMemorySpace ( | |
| EfiGcdMemoryTypeMemoryMappedIo, | |
| mPL031RtcBase, SIZE_4KB, | |
| EFI_MEMORY_UC | EFI_MEMORY_RUNTIME | |
| ); | |
| if (EFI_ERROR (Status)) { | |
| return Status; | |
| } | |
| Status = gDS->SetMemorySpaceAttributes (mPL031RtcBase, SIZE_4KB, EFI_MEMORY_UC | EFI_MEMORY_RUNTIME); | |
| if (EFI_ERROR (Status)) { | |
| return Status; | |
| } | |
| // Install the protocol | |
| Handle = NULL; | |
| Status = gBS->InstallMultipleProtocolInterfaces ( | |
| &Handle, | |
| &gEfiRealTimeClockArchProtocolGuid, NULL, | |
| NULL | |
| ); | |
| ASSERT_EFI_ERROR (Status); | |
| // | |
| // Register for the virtual address change event | |
| // | |
| Status = gBS->CreateEventEx ( | |
| EVT_NOTIFY_SIGNAL, | |
| TPL_NOTIFY, | |
| LibRtcVirtualNotifyEvent, | |
| NULL, | |
| &gEfiEventVirtualAddressChangeGuid, | |
| &mRtcVirtualAddrChangeEvent | |
| ); | |
| ASSERT_EFI_ERROR (Status); | |
| return Status; | |
| } |