/* @(#)s_atan.c 5.1 93/09/24 */ | |
/* | |
* ==================================================== | |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | |
* | |
* Developed at SunPro, a Sun Microsystems, Inc. business. | |
* Permission to use, copy, modify, and distribute this | |
* software is freely granted, provided that this notice | |
* is preserved. | |
* ==================================================== | |
*/ | |
#include <LibConfig.h> | |
#include <sys/EfiCdefs.h> | |
#if defined(LIBM_SCCS) && !defined(lint) | |
__RCSID("$NetBSD: s_atan.c,v 1.11 2002/05/26 22:01:54 wiz Exp $"); | |
#endif | |
/* atan(x) | |
* Method | |
* 1. Reduce x to positive by atan(x) = -atan(-x). | |
* 2. According to the integer k=4t+0.25 chopped, t=x, the argument | |
* is further reduced to one of the following intervals and the | |
* arctangent of t is evaluated by the corresponding formula: | |
* | |
* [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) | |
* [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) | |
* [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) | |
* [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) | |
* [39/16,INF] atan(x) = atan(INF) + atan( -1/t ) | |
* | |
* Constants: | |
* The hexadecimal values are the intended ones for the following | |
* constants. The decimal values may be used, provided that the | |
* compiler will convert from decimal to binary accurately enough | |
* to produce the hexadecimal values shown. | |
*/ | |
#include "math.h" | |
#include "math_private.h" | |
static const double atanhi[] = { | |
4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */ | |
7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */ | |
9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */ | |
1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */ | |
}; | |
static const double atanlo[] = { | |
2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */ | |
3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */ | |
1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */ | |
6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */ | |
}; | |
static const double aT[] = { | |
3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */ | |
-1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */ | |
1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */ | |
-1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */ | |
9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */ | |
-7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */ | |
6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */ | |
-5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */ | |
4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */ | |
-3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */ | |
1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */ | |
}; | |
static const double | |
one = 1.0, | |
huge = 1.0e300; | |
double | |
atan(double x) | |
{ | |
double w,s1,s2,z; | |
int32_t ix,hx,id; | |
GET_HIGH_WORD(hx,x); | |
ix = hx&0x7fffffff; | |
if(ix>=0x44100000) { /* if |x| >= 2^66 */ | |
u_int32_t low; | |
GET_LOW_WORD(low,x); | |
if(ix>0x7ff00000|| | |
(ix==0x7ff00000&&(low!=0))) | |
return x+x; /* NaN */ | |
if(hx>0) return atanhi[3]+atanlo[3]; | |
else return -atanhi[3]-atanlo[3]; | |
} if (ix < 0x3fdc0000) { /* |x| < 0.4375 */ | |
if (ix < 0x3e200000) { /* |x| < 2^-29 */ | |
if(huge+x>one) return x; /* raise inexact */ | |
} | |
id = -1; | |
} else { | |
x = fabs(x); | |
if (ix < 0x3ff30000) { /* |x| < 1.1875 */ | |
if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */ | |
id = 0; x = (2.0*x-one)/(2.0+x); | |
} else { /* 11/16<=|x|< 19/16 */ | |
id = 1; x = (x-one)/(x+one); | |
} | |
} else { | |
if (ix < 0x40038000) { /* |x| < 2.4375 */ | |
id = 2; x = (x-1.5)/(one+1.5*x); | |
} else { /* 2.4375 <= |x| < 2^66 */ | |
id = 3; x = -1.0/x; | |
} | |
}} | |
/* end of argument reduction */ | |
z = x*x; | |
w = z*z; | |
/* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */ | |
s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10]))))); | |
s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9])))); | |
if (id<0) return x - x*(s1+s2); | |
else { | |
z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x); | |
return (hx<0)? -z:z; | |
} | |
} |