/* @(#)k_rem_pio2.c 5.1 93/09/24 */ | |
/* | |
* ==================================================== | |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | |
* | |
* Developed at SunPro, a Sun Microsystems, Inc. business. | |
* Permission to use, copy, modify, and distribute this | |
* software is freely granted, provided that this notice | |
* is preserved. | |
* ==================================================== | |
*/ | |
#include <LibConfig.h> | |
#include <sys/EfiCdefs.h> | |
#if defined(LIBM_SCCS) && !defined(lint) | |
__RCSID("$NetBSD: k_rem_pio2.c,v 1.11 2003/01/04 23:43:03 wiz Exp $"); | |
#endif | |
/* | |
* __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) | |
* double x[],y[]; int e0,nx,prec; int ipio2[]; | |
* | |
* __kernel_rem_pio2 return the last three digits of N with | |
* y = x - N*pi/2 | |
* so that |y| < pi/2. | |
* | |
* The method is to compute the integer (mod 8) and fraction parts of | |
* (2/pi)*x without doing the full multiplication. In general we | |
* skip the part of the product that are known to be a huge integer ( | |
* more accurately, = 0 mod 8 ). Thus the number of operations are | |
* independent of the exponent of the input. | |
* | |
* (2/pi) is represented by an array of 24-bit integers in ipio2[]. | |
* | |
* Input parameters: | |
* x[] The input value (must be positive) is broken into nx | |
* pieces of 24-bit integers in double precision format. | |
* x[i] will be the i-th 24 bit of x. The scaled exponent | |
* of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 | |
* match x's up to 24 bits. | |
* | |
* Example of breaking a double positive z into x[0]+x[1]+x[2]: | |
* e0 = ilogb(z)-23 | |
* z = scalbn(z,-e0) | |
* for i = 0,1,2 | |
* x[i] = floor(z) | |
* z = (z-x[i])*2**24 | |
* | |
* | |
* y[] output result in an array of double precision numbers. | |
* The dimension of y[] is: | |
* 24-bit precision 1 | |
* 53-bit precision 2 | |
* 64-bit precision 2 | |
* 113-bit precision 3 | |
* The actual value is the sum of them. Thus for 113-bit | |
* precison, one may have to do something like: | |
* | |
* long double t,w,r_head, r_tail; | |
* t = (long double)y[2] + (long double)y[1]; | |
* w = (long double)y[0]; | |
* r_head = t+w; | |
* r_tail = w - (r_head - t); | |
* | |
* e0 The exponent of x[0] | |
* | |
* nx dimension of x[] | |
* | |
* prec an integer indicating the precision: | |
* 0 24 bits (single) | |
* 1 53 bits (double) | |
* 2 64 bits (extended) | |
* 3 113 bits (quad) | |
* | |
* ipio2[] | |
* integer array, contains the (24*i)-th to (24*i+23)-th | |
* bit of 2/pi after binary point. The corresponding | |
* floating value is | |
* | |
* ipio2[i] * 2^(-24(i+1)). | |
* | |
* External function: | |
* double scalbn(), floor(); | |
* | |
* | |
* Here is the description of some local variables: | |
* | |
* jk jk+1 is the initial number of terms of ipio2[] needed | |
* in the computation. The recommended value is 2,3,4, | |
* 6 for single, double, extended,and quad. | |
* | |
* jz local integer variable indicating the number of | |
* terms of ipio2[] used. | |
* | |
* jx nx - 1 | |
* | |
* jv index for pointing to the suitable ipio2[] for the | |
* computation. In general, we want | |
* ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 | |
* is an integer. Thus | |
* e0-3-24*jv >= 0 or (e0-3)/24 >= jv | |
* Hence jv = max(0,(e0-3)/24). | |
* | |
* jp jp+1 is the number of terms in PIo2[] needed, jp = jk. | |
* | |
* q[] double array with integral value, representing the | |
* 24-bits chunk of the product of x and 2/pi. | |
* | |
* q0 the corresponding exponent of q[0]. Note that the | |
* exponent for q[i] would be q0-24*i. | |
* | |
* PIo2[] double precision array, obtained by cutting pi/2 | |
* into 24 bits chunks. | |
* | |
* f[] ipio2[] in floating point | |
* | |
* iq[] integer array by breaking up q[] in 24-bits chunk. | |
* | |
* fq[] final product of x*(2/pi) in fq[0],..,fq[jk] | |
* | |
* ih integer. If >0 it indicates q[] is >= 0.5, hence | |
* it also indicates the *sign* of the result. | |
* | |
*/ | |
/* | |
* Constants: | |
* The hexadecimal values are the intended ones for the following | |
* constants. The decimal values may be used, provided that the | |
* compiler will convert from decimal to binary accurately enough | |
* to produce the hexadecimal values shown. | |
*/ | |
#include "math.h" | |
#include "math_private.h" | |
static const int init_jk[] = {2,3,4,6}; /* initial value for jk */ | |
static const double PIo2[] = { | |
1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ | |
7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ | |
5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ | |
3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ | |
1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ | |
1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ | |
2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ | |
2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ | |
}; | |
static const double | |
zero = 0.0, | |
one = 1.0, | |
two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ | |
twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ | |
int | |
__kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2) | |
{ | |
int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih; | |
double z,fw,f[20],fq[20],q[20]; | |
/* initialize jk*/ | |
jk = init_jk[prec]; | |
jp = jk; | |
/* determine jx,jv,q0, note that 3>q0 */ | |
jx = nx-1; | |
jv = (e0-3)/24; if(jv<0) jv=0; | |
q0 = e0-24*(jv+1); | |
/* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ | |
j = jv-jx; m = jx+jk; | |
for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j]; | |
/* compute q[0],q[1],...q[jk] */ | |
for (i=0;i<=jk;i++) { | |
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; | |
q[i] = fw; | |
} | |
jz = jk; | |
recompute: | |
/* distill q[] into iq[] reversingly */ | |
for(i=0,j=jz,z=q[jz];j>0;i++,j--) { | |
fw = (double)((int32_t)(twon24* z)); | |
iq[i] = (int32_t)(z-two24*fw); | |
z = q[j-1]+fw; | |
} | |
/* compute n */ | |
z = scalbn(z,q0); /* actual value of z */ | |
z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */ | |
n = (int32_t) z; | |
z -= (double)n; | |
ih = 0; | |
if(q0>0) { /* need iq[jz-1] to determine n */ | |
i = (iq[jz-1]>>(24-q0)); n += i; | |
iq[jz-1] -= i<<(24-q0); | |
ih = iq[jz-1]>>(23-q0); | |
} | |
else if(q0==0) ih = iq[jz-1]>>23; | |
else if(z>=0.5) ih=2; | |
if(ih>0) { /* q > 0.5 */ | |
n += 1; carry = 0; | |
for(i=0;i<jz ;i++) { /* compute 1-q */ | |
j = iq[i]; | |
if(carry==0) { | |
if(j!=0) { | |
carry = 1; iq[i] = 0x1000000- j; | |
} | |
} else iq[i] = 0xffffff - j; | |
} | |
if(q0>0) { /* rare case: chance is 1 in 12 */ | |
switch(q0) { | |
case 1: | |
iq[jz-1] &= 0x7fffff; break; | |
case 2: | |
iq[jz-1] &= 0x3fffff; break; | |
} | |
} | |
if(ih==2) { | |
z = one - z; | |
if(carry!=0) z -= scalbn(one,q0); | |
} | |
} | |
/* check if recomputation is needed */ | |
if(z==zero) { | |
j = 0; | |
for (i=jz-1;i>=jk;i--) j |= iq[i]; | |
if(j==0) { /* need recomputation */ | |
for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */ | |
for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */ | |
f[jx+i] = (double) ipio2[jv+i]; | |
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; | |
q[i] = fw; | |
} | |
jz += k; | |
goto recompute; | |
} | |
} | |
/* chop off zero terms */ | |
if(z==0.0) { | |
jz -= 1; q0 -= 24; | |
while(iq[jz]==0) { jz--; q0-=24;} | |
} else { /* break z into 24-bit if necessary */ | |
z = scalbn(z,-q0); | |
if(z>=two24) { | |
fw = (double)((int32_t)(twon24*z)); | |
iq[jz] = (int32_t)(z-two24*fw); | |
jz += 1; q0 += 24; | |
iq[jz] = (int32_t) fw; | |
} else iq[jz] = (int32_t) z ; | |
} | |
/* convert integer "bit" chunk to floating-point value */ | |
fw = scalbn(one,q0); | |
for(i=jz;i>=0;i--) { | |
q[i] = fw*(double)iq[i]; fw*=twon24; | |
} | |
/* compute PIo2[0,...,jp]*q[jz,...,0] */ | |
for(i=jz;i>=0;i--) { | |
for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k]; | |
fq[jz-i] = fw; | |
} | |
/* compress fq[] into y[] */ | |
switch(prec) { | |
case 0: | |
fw = 0.0; | |
for (i=jz;i>=0;i--) fw += fq[i]; | |
y[0] = (ih==0)? fw: -fw; | |
break; | |
case 1: | |
case 2: | |
fw = 0.0; | |
for (i=jz;i>=0;i--) fw += fq[i]; | |
y[0] = (ih==0)? fw: -fw; | |
fw = fq[0]-fw; | |
for (i=1;i<=jz;i++) fw += fq[i]; | |
y[1] = (ih==0)? fw: -fw; | |
break; | |
case 3: /* painful */ | |
for (i=jz;i>0;i--) { | |
fw = fq[i-1]+fq[i]; | |
fq[i] += fq[i-1]-fw; | |
fq[i-1] = fw; | |
} | |
for (i=jz;i>1;i--) { | |
fw = fq[i-1]+fq[i]; | |
fq[i] += fq[i-1]-fw; | |
fq[i-1] = fw; | |
} | |
for (fw=0.0,i=jz;i>=2;i--) fw += fq[i]; | |
if(ih==0) { | |
y[0] = fq[0]; y[1] = fq[1]; y[2] = fw; | |
} else { | |
y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; | |
} | |
} | |
return n&7; | |
} |