/* @(#)e_exp.c 5.1 93/09/24 */ | |
/* | |
* ==================================================== | |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | |
* | |
* Developed at SunPro, a Sun Microsystems, Inc. business. | |
* Permission to use, copy, modify, and distribute this | |
* software is freely granted, provided that this notice | |
* is preserved. | |
* ==================================================== | |
*/ | |
#include <LibConfig.h> | |
#include <sys/EfiCdefs.h> | |
#if defined(LIBM_SCCS) && !defined(lint) | |
__RCSID("$NetBSD: e_exp.c,v 1.11 2002/05/26 22:01:49 wiz Exp $"); | |
#endif | |
#if defined(_MSC_VER) /* Handle Microsoft VC++ compiler specifics. */ | |
// C4756: overflow in constant arithmetic | |
#pragma warning ( disable : 4756 ) | |
#endif | |
/* __ieee754_exp(x) | |
* Returns the exponential of x. | |
* | |
* Method | |
* 1. Argument reduction: | |
* Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. | |
* Given x, find r and integer k such that | |
* | |
* x = k*ln2 + r, |r| <= 0.5*ln2. | |
* | |
* Here r will be represented as r = hi-lo for better | |
* accuracy. | |
* | |
* 2. Approximation of exp(r) by a special rational function on | |
* the interval [0,0.34658]: | |
* Write | |
* R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... | |
* We use a special Reme algorithm on [0,0.34658] to generate | |
* a polynomial of degree 5 to approximate R. The maximum error | |
* of this polynomial approximation is bounded by 2**-59. In | |
* other words, | |
* R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 | |
* (where z=r*r, and the values of P1 to P5 are listed below) | |
* and | |
* | 5 | -59 | |
* | 2.0+P1*z+...+P5*z - R(z) | <= 2 | |
* | | | |
* The computation of exp(r) thus becomes | |
* 2*r | |
* exp(r) = 1 + ------- | |
* R - r | |
* r*R1(r) | |
* = 1 + r + ----------- (for better accuracy) | |
* 2 - R1(r) | |
* where | |
* 2 4 10 | |
* R1(r) = r - (P1*r + P2*r + ... + P5*r ). | |
* | |
* 3. Scale back to obtain exp(x): | |
* From step 1, we have | |
* exp(x) = 2^k * exp(r) | |
* | |
* Special cases: | |
* exp(INF) is INF, exp(NaN) is NaN; | |
* exp(-INF) is 0, and | |
* for finite argument, only exp(0)=1 is exact. | |
* | |
* Accuracy: | |
* according to an error analysis, the error is always less than | |
* 1 ulp (unit in the last place). | |
* | |
* Misc. info. | |
* For IEEE double | |
* if x > 7.09782712893383973096e+02 then exp(x) overflow | |
* if x < -7.45133219101941108420e+02 then exp(x) underflow | |
* | |
* Constants: | |
* The hexadecimal values are the intended ones for the following | |
* constants. The decimal values may be used, provided that the | |
* compiler will convert from decimal to binary accurately enough | |
* to produce the hexadecimal values shown. | |
*/ | |
#include "math.h" | |
#include "math_private.h" | |
static const double | |
one = 1.0, | |
halF[2] = {0.5,-0.5,}, | |
huge = 1.0e+300, | |
twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/ | |
o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */ | |
u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */ | |
ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ | |
-6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */ | |
ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */ | |
-1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */ | |
invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */ | |
P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ | |
P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ | |
P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ | |
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ | |
P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ | |
double | |
__ieee754_exp(double x) /* default IEEE double exp */ | |
{ | |
double y,hi,lo,c,t; | |
int32_t k,xsb; | |
u_int32_t hx; | |
hi = lo = 0; | |
k = 0; | |
GET_HIGH_WORD(hx,x); | |
xsb = (hx>>31)&1; /* sign bit of x */ | |
hx &= 0x7fffffff; /* high word of |x| */ | |
/* filter out non-finite argument */ | |
if(hx >= 0x40862E42) { /* if |x|>=709.78... */ | |
if(hx>=0x7ff00000) { | |
u_int32_t lx; | |
GET_LOW_WORD(lx,x); | |
if(((hx&0xfffff)|lx)!=0) | |
return x+x; /* NaN */ | |
else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */ | |
} | |
if(x > o_threshold) return huge*huge; /* overflow */ | |
if(x < u_threshold) return twom1000*twom1000; /* underflow */ | |
} | |
/* argument reduction */ | |
if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ | |
if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ | |
hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb; | |
} else { | |
k = (int32_t)(invln2*x+halF[xsb]); | |
t = k; | |
hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */ | |
lo = t*ln2LO[0]; | |
} | |
x = hi - lo; | |
} | |
else if(hx < 0x3e300000) { /* when |x|<2**-28 */ | |
if(huge+x>one) return one+x;/* trigger inexact */ | |
} | |
else k = 0; | |
/* x is now in primary range */ | |
t = x*x; | |
c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); | |
if(k==0) return one-((x*c)/(c-2.0)-x); | |
else y = one-((lo-(x*c)/(2.0-c))-hi); | |
if(k >= -1021) { | |
u_int32_t hy; | |
GET_HIGH_WORD(hy,y); | |
SET_HIGH_WORD(y,hy+(k<<20)); /* add k to y's exponent */ | |
return y; | |
} else { | |
u_int32_t hy; | |
GET_HIGH_WORD(hy,y); | |
SET_HIGH_WORD(y,hy+((k+1000)<<20)); /* add k to y's exponent */ | |
return y*twom1000; | |
} | |
} |