/************************************************************************ | |
* | |
* Copyright (c) 2013-2015 Intel Corporation. | |
* | |
* This program and the accompanying materials | |
* are licensed and made available under the terms and conditions of the BSD License | |
* which accompanies this distribution. The full text of the license may be found at | |
* http://opensource.org/licenses/bsd-license.php | |
* | |
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, | |
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. | |
* | |
***************************************************************************/ | |
#include "mrc.h" | |
#include "memory_options.h" | |
#include "meminit_utils.h" | |
#include "hte.h" | |
#include "io.h" | |
void select_hte( | |
MRCParams_t *mrc_params); | |
static uint8_t first_run = 0; | |
const uint8_t vref_codes[64] = | |
{ // lowest to highest | |
0x3F, 0x3E, 0x3D, 0x3C, 0x3B, 0x3A, 0x39, 0x38, 0x37, 0x36, 0x35, 0x34, 0x33, 0x32, 0x31, 0x30, // 00 - 15 | |
0x2F, 0x2E, 0x2D, 0x2C, 0x2B, 0x2A, 0x29, 0x28, 0x27, 0x26, 0x25, 0x24, 0x23, 0x22, 0x21, 0x20, // 16 - 31 | |
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, // 32 - 47 | |
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F // 48 - 63 | |
}; | |
#ifdef EMU | |
// Track current post code for debugging purpose | |
uint32_t PostCode; | |
#endif | |
// set_rcvn: | |
// | |
// This function will program the RCVEN delays. | |
// (currently doesn't comprehend rank) | |
void set_rcvn( | |
uint8_t channel, | |
uint8_t rank, | |
uint8_t byte_lane, | |
uint32_t pi_count) | |
{ | |
uint32_t reg; | |
uint32_t msk; | |
uint32_t tempD; | |
ENTERFN(); | |
DPF(D_TRN, "Rcvn ch%d rnk%d ln%d : pi=%03X\n", channel, rank, byte_lane, pi_count); | |
// RDPTR (1/2 MCLK, 64 PIs) | |
// BL0 -> B01PTRCTL0[11:08] (0x0-0xF) | |
// BL1 -> B01PTRCTL0[23:20] (0x0-0xF) | |
reg = B01PTRCTL0 + ((byte_lane >> 1) * DDRIODQ_BL_OFFSET) + (channel * DDRIODQ_CH_OFFSET); | |
msk = (byte_lane & BIT0) ? (BIT23 | BIT22 | BIT21 | BIT20) : (BIT11 | BIT10 | BIT9 | BIT8); | |
tempD = (byte_lane & BIT0) ? ((pi_count / HALF_CLK) << 20) : ((pi_count / HALF_CLK) << 8); | |
isbM32m(DDRPHY, reg, tempD, msk); | |
// Adjust PI_COUNT | |
pi_count -= ((pi_count / HALF_CLK) & 0xF) * HALF_CLK; | |
// PI (1/64 MCLK, 1 PIs) | |
// BL0 -> B0DLLPICODER0[29:24] (0x00-0x3F) | |
// BL1 -> B1DLLPICODER0[29:24] (0x00-0x3F) | |
reg = (byte_lane & BIT0) ? (B1DLLPICODER0) : (B0DLLPICODER0); | |
reg += (((byte_lane >> 1) * DDRIODQ_BL_OFFSET) + (channel * DDRIODQ_CH_OFFSET)); | |
msk = (BIT29 | BIT28 | BIT27 | BIT26 | BIT25 | BIT24); | |
tempD = pi_count << 24; | |
isbM32m(DDRPHY, reg, tempD, msk); | |
// DEADBAND | |
// BL0/1 -> B01DBCTL1[08/11] (+1 select) | |
// BL0/1 -> B01DBCTL1[02/05] (enable) | |
reg = B01DBCTL1 + ((byte_lane >> 1) * DDRIODQ_BL_OFFSET) + (channel * DDRIODQ_CH_OFFSET); | |
msk = 0x00; | |
tempD = 0x00; | |
// enable | |
msk |= (byte_lane & BIT0) ? (BIT5) : (BIT2); | |
if ((pi_count < EARLY_DB) || (pi_count > LATE_DB)) | |
{ | |
tempD |= msk; | |
} | |
// select | |
msk |= (byte_lane & BIT0) ? (BIT11) : (BIT8); | |
if (pi_count < EARLY_DB) | |
{ | |
tempD |= msk; | |
} | |
isbM32m(DDRPHY, reg, tempD, msk); | |
// error check | |
if (pi_count > 0x3F) | |
{ | |
training_message(channel, rank, byte_lane); | |
post_code(0xEE, 0xE0); | |
} | |
LEAVEFN(); | |
return; | |
} | |
// get_rcvn: | |
// | |
// This function will return the current RCVEN delay on the given channel, rank, byte_lane as an absolute PI count. | |
// (currently doesn't comprehend rank) | |
uint32_t get_rcvn( | |
uint8_t channel, | |
uint8_t rank, | |
uint8_t byte_lane) | |
{ | |
uint32_t reg; | |
uint32_t tempD; | |
uint32_t pi_count; | |
ENTERFN(); | |
// RDPTR (1/2 MCLK, 64 PIs) | |
// BL0 -> B01PTRCTL0[11:08] (0x0-0xF) | |
// BL1 -> B01PTRCTL0[23:20] (0x0-0xF) | |
reg = B01PTRCTL0 + ((byte_lane >> 1) * DDRIODQ_BL_OFFSET) + (channel * DDRIODQ_CH_OFFSET); | |
tempD = isbR32m(DDRPHY, reg); | |
tempD >>= (byte_lane & BIT0) ? (20) : (8); | |
tempD &= 0xF; | |
// Adjust PI_COUNT | |
pi_count = tempD * HALF_CLK; | |
// PI (1/64 MCLK, 1 PIs) | |
// BL0 -> B0DLLPICODER0[29:24] (0x00-0x3F) | |
// BL1 -> B1DLLPICODER0[29:24] (0x00-0x3F) | |
reg = (byte_lane & BIT0) ? (B1DLLPICODER0) : (B0DLLPICODER0); | |
reg += (((byte_lane >> 1) * DDRIODQ_BL_OFFSET) + (channel * DDRIODQ_CH_OFFSET)); | |
tempD = isbR32m(DDRPHY, reg); | |
tempD >>= 24; | |
tempD &= 0x3F; | |
// Adjust PI_COUNT | |
pi_count += tempD; | |
LEAVEFN(); | |
return pi_count; | |
} | |
// set_rdqs: | |
// | |
// This function will program the RDQS delays based on an absolute amount of PIs. | |
// (currently doesn't comprehend rank) | |
void set_rdqs( | |
uint8_t channel, | |
uint8_t rank, | |
uint8_t byte_lane, | |
uint32_t pi_count) | |
{ | |
uint32_t reg; | |
uint32_t msk; | |
uint32_t tempD; | |
ENTERFN(); | |
DPF(D_TRN, "Rdqs ch%d rnk%d ln%d : pi=%03X\n", channel, rank, byte_lane, pi_count); | |
// PI (1/128 MCLK) | |
// BL0 -> B0RXDQSPICODE[06:00] (0x00-0x47) | |
// BL1 -> B1RXDQSPICODE[06:00] (0x00-0x47) | |
reg = (byte_lane & BIT0) ? (B1RXDQSPICODE) : (B0RXDQSPICODE); | |
reg += (((byte_lane >> 1) * DDRIODQ_BL_OFFSET) + (channel * DDRIODQ_CH_OFFSET)); | |
msk = (BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0); | |
tempD = pi_count << 0; | |
isbM32m(DDRPHY, reg, tempD, msk); | |
// error check (shouldn't go above 0x3F) | |
if (pi_count > 0x47) | |
{ | |
training_message(channel, rank, byte_lane); | |
post_code(0xEE, 0xE1); | |
} | |
LEAVEFN(); | |
return; | |
} | |
// get_rdqs: | |
// | |
// This function will return the current RDQS delay on the given channel, rank, byte_lane as an absolute PI count. | |
// (currently doesn't comprehend rank) | |
uint32_t get_rdqs( | |
uint8_t channel, | |
uint8_t rank, | |
uint8_t byte_lane) | |
{ | |
uint32_t reg; | |
uint32_t tempD; | |
uint32_t pi_count; | |
ENTERFN(); | |
// PI (1/128 MCLK) | |
// BL0 -> B0RXDQSPICODE[06:00] (0x00-0x47) | |
// BL1 -> B1RXDQSPICODE[06:00] (0x00-0x47) | |
reg = (byte_lane & BIT0) ? (B1RXDQSPICODE) : (B0RXDQSPICODE); | |
reg += (((byte_lane >> 1) * DDRIODQ_BL_OFFSET) + (channel * DDRIODQ_CH_OFFSET)); | |
tempD = isbR32m(DDRPHY, reg); | |
// Adjust PI_COUNT | |
pi_count = tempD & 0x7F; | |
LEAVEFN(); | |
return pi_count; | |
} | |
// set_wdqs: | |
// | |
// This function will program the WDQS delays based on an absolute amount of PIs. | |
// (currently doesn't comprehend rank) | |
void set_wdqs( | |
uint8_t channel, | |
uint8_t rank, | |
uint8_t byte_lane, | |
uint32_t pi_count) | |
{ | |
uint32_t reg; | |
uint32_t msk; | |
uint32_t tempD; | |
ENTERFN(); | |
DPF(D_TRN, "Wdqs ch%d rnk%d ln%d : pi=%03X\n", channel, rank, byte_lane, pi_count); | |
// RDPTR (1/2 MCLK, 64 PIs) | |
// BL0 -> B01PTRCTL0[07:04] (0x0-0xF) | |
// BL1 -> B01PTRCTL0[19:16] (0x0-0xF) | |
reg = B01PTRCTL0 + ((byte_lane >> 1) * DDRIODQ_BL_OFFSET) + (channel * DDRIODQ_CH_OFFSET); | |
msk = (byte_lane & BIT0) ? (BIT19 | BIT18 | BIT17 | BIT16) : (BIT7 | BIT6 | BIT5 | BIT4); | |
tempD = pi_count / HALF_CLK; | |
tempD <<= (byte_lane & BIT0) ? (16) : (4); | |
isbM32m(DDRPHY, reg, tempD, msk); | |
// Adjust PI_COUNT | |
pi_count -= ((pi_count / HALF_CLK) & 0xF) * HALF_CLK; | |
// PI (1/64 MCLK, 1 PIs) | |
// BL0 -> B0DLLPICODER0[21:16] (0x00-0x3F) | |
// BL1 -> B1DLLPICODER0[21:16] (0x00-0x3F) | |
reg = (byte_lane & BIT0) ? (B1DLLPICODER0) : (B0DLLPICODER0); | |
reg += (((byte_lane >> 1) * DDRIODQ_BL_OFFSET) + (channel * DDRIODQ_CH_OFFSET)); | |
msk = (BIT21 | BIT20 | BIT19 | BIT18 | BIT17 | BIT16); | |
tempD = pi_count << 16; | |
isbM32m(DDRPHY, reg, tempD, msk); | |
// DEADBAND | |
// BL0/1 -> B01DBCTL1[07/10] (+1 select) | |
// BL0/1 -> B01DBCTL1[01/04] (enable) | |
reg = B01DBCTL1 + ((byte_lane >> 1) * DDRIODQ_BL_OFFSET) + (channel * DDRIODQ_CH_OFFSET); | |
msk = 0x00; | |
tempD = 0x00; | |
// enable | |
msk |= (byte_lane & BIT0) ? (BIT4) : (BIT1); | |
if ((pi_count < EARLY_DB) || (pi_count > LATE_DB)) | |
{ | |
tempD |= msk; | |
} | |
// select | |
msk |= (byte_lane & BIT0) ? (BIT10) : (BIT7); | |
if (pi_count < EARLY_DB) | |
{ | |
tempD |= msk; | |
} | |
isbM32m(DDRPHY, reg, tempD, msk); | |
// error check | |
if (pi_count > 0x3F) | |
{ | |
training_message(channel, rank, byte_lane); | |
post_code(0xEE, 0xE2); | |
} | |
LEAVEFN(); | |
return; | |
} | |
// get_wdqs: | |
// | |
// This function will return the amount of WDQS delay on the given channel, rank, byte_lane as an absolute PI count. | |
// (currently doesn't comprehend rank) | |
uint32_t get_wdqs( | |
uint8_t channel, | |
uint8_t rank, | |
uint8_t byte_lane) | |
{ | |
uint32_t reg; | |
uint32_t tempD; | |
uint32_t pi_count; | |
ENTERFN(); | |
// RDPTR (1/2 MCLK, 64 PIs) | |
// BL0 -> B01PTRCTL0[07:04] (0x0-0xF) | |
// BL1 -> B01PTRCTL0[19:16] (0x0-0xF) | |
reg = B01PTRCTL0 + ((byte_lane >> 1) * DDRIODQ_BL_OFFSET) + (channel * DDRIODQ_CH_OFFSET); | |
tempD = isbR32m(DDRPHY, reg); | |
tempD >>= (byte_lane & BIT0) ? (16) : (4); | |
tempD &= 0xF; | |
// Adjust PI_COUNT | |
pi_count = (tempD * HALF_CLK); | |
// PI (1/64 MCLK, 1 PIs) | |
// BL0 -> B0DLLPICODER0[21:16] (0x00-0x3F) | |
// BL1 -> B1DLLPICODER0[21:16] (0x00-0x3F) | |
reg = (byte_lane & BIT0) ? (B1DLLPICODER0) : (B0DLLPICODER0); | |
reg += (((byte_lane >> 1) * DDRIODQ_BL_OFFSET) + (channel * DDRIODQ_CH_OFFSET)); | |
tempD = isbR32m(DDRPHY, reg); | |
tempD >>= 16; | |
tempD &= 0x3F; | |
// Adjust PI_COUNT | |
pi_count += tempD; | |
LEAVEFN(); | |
return pi_count; | |
} | |
// set_wdq: | |
// | |
// This function will program the WDQ delays based on an absolute number of PIs. | |
// (currently doesn't comprehend rank) | |
void set_wdq( | |
uint8_t channel, | |
uint8_t rank, | |
uint8_t byte_lane, | |
uint32_t pi_count) | |
{ | |
uint32_t reg; | |
uint32_t msk; | |
uint32_t tempD; | |
ENTERFN(); | |
DPF(D_TRN, "Wdq ch%d rnk%d ln%d : pi=%03X\n", channel, rank, byte_lane, pi_count); | |
// RDPTR (1/2 MCLK, 64 PIs) | |
// BL0 -> B01PTRCTL0[03:00] (0x0-0xF) | |
// BL1 -> B01PTRCTL0[15:12] (0x0-0xF) | |
reg = B01PTRCTL0 + ((byte_lane >> 1) * DDRIODQ_BL_OFFSET) + (channel * DDRIODQ_CH_OFFSET); | |
msk = (byte_lane & BIT0) ? (BIT15 | BIT14 | BIT13 | BIT12) : (BIT3 | BIT2 | BIT1 | BIT0); | |
tempD = pi_count / HALF_CLK; | |
tempD <<= (byte_lane & BIT0) ? (12) : (0); | |
isbM32m(DDRPHY, reg, tempD, msk); | |
// Adjust PI_COUNT | |
pi_count -= ((pi_count / HALF_CLK) & 0xF) * HALF_CLK; | |
// PI (1/64 MCLK, 1 PIs) | |
// BL0 -> B0DLLPICODER0[13:08] (0x00-0x3F) | |
// BL1 -> B1DLLPICODER0[13:08] (0x00-0x3F) | |
reg = (byte_lane & BIT0) ? (B1DLLPICODER0) : (B0DLLPICODER0); | |
reg += (((byte_lane >> 1) * DDRIODQ_BL_OFFSET) + (channel * DDRIODQ_CH_OFFSET)); | |
msk = (BIT13 | BIT12 | BIT11 | BIT10 | BIT9 | BIT8); | |
tempD = pi_count << 8; | |
isbM32m(DDRPHY, reg, tempD, msk); | |
// DEADBAND | |
// BL0/1 -> B01DBCTL1[06/09] (+1 select) | |
// BL0/1 -> B01DBCTL1[00/03] (enable) | |
reg = B01DBCTL1 + ((byte_lane >> 1) * DDRIODQ_BL_OFFSET) + (channel * DDRIODQ_CH_OFFSET); | |
msk = 0x00; | |
tempD = 0x00; | |
// enable | |
msk |= (byte_lane & BIT0) ? (BIT3) : (BIT0); | |
if ((pi_count < EARLY_DB) || (pi_count > LATE_DB)) | |
{ | |
tempD |= msk; | |
} | |
// select | |
msk |= (byte_lane & BIT0) ? (BIT9) : (BIT6); | |
if (pi_count < EARLY_DB) | |
{ | |
tempD |= msk; | |
} | |
isbM32m(DDRPHY, reg, tempD, msk); | |
// error check | |
if (pi_count > 0x3F) | |
{ | |
training_message(channel, rank, byte_lane); | |
post_code(0xEE, 0xE3); | |
} | |
LEAVEFN(); | |
return; | |
} | |
// get_wdq: | |
// | |
// This function will return the amount of WDQ delay on the given channel, rank, byte_lane as an absolute PI count. | |
// (currently doesn't comprehend rank) | |
uint32_t get_wdq( | |
uint8_t channel, | |
uint8_t rank, | |
uint8_t byte_lane) | |
{ | |
uint32_t reg; | |
uint32_t tempD; | |
uint32_t pi_count; | |
ENTERFN(); | |
// RDPTR (1/2 MCLK, 64 PIs) | |
// BL0 -> B01PTRCTL0[03:00] (0x0-0xF) | |
// BL1 -> B01PTRCTL0[15:12] (0x0-0xF) | |
reg = B01PTRCTL0 + ((byte_lane >> 1) * DDRIODQ_BL_OFFSET) + (channel * DDRIODQ_CH_OFFSET); | |
tempD = isbR32m(DDRPHY, reg); | |
tempD >>= (byte_lane & BIT0) ? (12) : (0); | |
tempD &= 0xF; | |
// Adjust PI_COUNT | |
pi_count = (tempD * HALF_CLK); | |
// PI (1/64 MCLK, 1 PIs) | |
// BL0 -> B0DLLPICODER0[13:08] (0x00-0x3F) | |
// BL1 -> B1DLLPICODER0[13:08] (0x00-0x3F) | |
reg = (byte_lane & BIT0) ? (B1DLLPICODER0) : (B0DLLPICODER0); | |
reg += (((byte_lane >> 1) * DDRIODQ_BL_OFFSET) + (channel * DDRIODQ_CH_OFFSET)); | |
tempD = isbR32m(DDRPHY, reg); | |
tempD >>= 8; | |
tempD &= 0x3F; | |
// Adjust PI_COUNT | |
pi_count += tempD; | |
LEAVEFN(); | |
return pi_count; | |
} | |
// set_wcmd: | |
// | |
// This function will program the WCMD delays based on an absolute number of PIs. | |
void set_wcmd( | |
uint8_t channel, | |
uint32_t pi_count) | |
{ | |
uint32_t reg; | |
uint32_t msk; | |
uint32_t tempD; | |
ENTERFN(); | |
// RDPTR (1/2 MCLK, 64 PIs) | |
// CMDPTRREG[11:08] (0x0-0xF) | |
reg = CMDPTRREG + (channel * DDRIOCCC_CH_OFFSET); | |
msk = (BIT11 | BIT10 | BIT9 | BIT8); | |
tempD = pi_count / HALF_CLK; | |
tempD <<= 8; | |
isbM32m(DDRPHY, reg, tempD, msk); | |
// Adjust PI_COUNT | |
pi_count -= ((pi_count / HALF_CLK) & 0xF) * HALF_CLK; | |
// PI (1/64 MCLK, 1 PIs) | |
// CMDDLLPICODER0[29:24] -> CMDSLICE R3 (unused) | |
// CMDDLLPICODER0[21:16] -> CMDSLICE L3 (unused) | |
// CMDDLLPICODER0[13:08] -> CMDSLICE R2 (unused) | |
// CMDDLLPICODER0[05:00] -> CMDSLICE L2 (unused) | |
// CMDDLLPICODER1[29:24] -> CMDSLICE R1 (unused) | |
// CMDDLLPICODER1[21:16] -> CMDSLICE L1 (0x00-0x3F) | |
// CMDDLLPICODER1[13:08] -> CMDSLICE R0 (unused) | |
// CMDDLLPICODER1[05:00] -> CMDSLICE L0 (unused) | |
reg = CMDDLLPICODER1 + (channel * DDRIOCCC_CH_OFFSET); | |
msk = (BIT29 | BIT28 | BIT27 | BIT26 | BIT25 | BIT24) | (BIT21 | BIT20 | BIT19 | BIT18 | BIT17 | BIT16) | |
| (BIT13 | BIT12 | BIT11 | BIT10 | BIT9 | BIT8) | (BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0); | |
tempD = (pi_count << 24) | (pi_count << 16) | (pi_count << 8) | (pi_count << 0); | |
isbM32m(DDRPHY, reg, tempD, msk); | |
reg = CMDDLLPICODER0 + (channel * DDRIOCCC_CH_OFFSET); // PO | |
isbM32m(DDRPHY, reg, tempD, msk); | |
// DEADBAND | |
// CMDCFGREG0[17] (+1 select) | |
// CMDCFGREG0[16] (enable) | |
reg = CMDCFGREG0 + (channel * DDRIOCCC_CH_OFFSET); | |
msk = 0x00; | |
tempD = 0x00; | |
// enable | |
msk |= BIT16; | |
if ((pi_count < EARLY_DB) || (pi_count > LATE_DB)) | |
{ | |
tempD |= msk; | |
} | |
// select | |
msk |= BIT17; | |
if (pi_count < EARLY_DB) | |
{ | |
tempD |= msk; | |
} | |
isbM32m(DDRPHY, reg, tempD, msk); | |
// error check | |
if (pi_count > 0x3F) | |
{ | |
post_code(0xEE, 0xE4); | |
} | |
LEAVEFN(); | |
return; | |
} | |
// get_wcmd: | |
// | |
// This function will return the amount of WCMD delay on the given channel as an absolute PI count. | |
uint32_t get_wcmd( | |
uint8_t channel) | |
{ | |
uint32_t reg; | |
uint32_t tempD; | |
uint32_t pi_count; | |
ENTERFN(); | |
// RDPTR (1/2 MCLK, 64 PIs) | |
// CMDPTRREG[11:08] (0x0-0xF) | |
reg = CMDPTRREG + (channel * DDRIOCCC_CH_OFFSET); | |
tempD = isbR32m(DDRPHY, reg); | |
tempD >>= 8; | |
tempD &= 0xF; | |
// Adjust PI_COUNT | |
pi_count = tempD * HALF_CLK; | |
// PI (1/64 MCLK, 1 PIs) | |
// CMDDLLPICODER0[29:24] -> CMDSLICE R3 (unused) | |
// CMDDLLPICODER0[21:16] -> CMDSLICE L3 (unused) | |
// CMDDLLPICODER0[13:08] -> CMDSLICE R2 (unused) | |
// CMDDLLPICODER0[05:00] -> CMDSLICE L2 (unused) | |
// CMDDLLPICODER1[29:24] -> CMDSLICE R1 (unused) | |
// CMDDLLPICODER1[21:16] -> CMDSLICE L1 (0x00-0x3F) | |
// CMDDLLPICODER1[13:08] -> CMDSLICE R0 (unused) | |
// CMDDLLPICODER1[05:00] -> CMDSLICE L0 (unused) | |
reg = CMDDLLPICODER1 + (channel * DDRIOCCC_CH_OFFSET); | |
tempD = isbR32m(DDRPHY, reg); | |
tempD >>= 16; | |
tempD &= 0x3F; | |
// Adjust PI_COUNT | |
pi_count += tempD; | |
LEAVEFN(); | |
return pi_count; | |
} | |
// set_wclk: | |
// | |
// This function will program the WCLK delays based on an absolute number of PIs. | |
void set_wclk( | |
uint8_t channel, | |
uint8_t rank, | |
uint32_t pi_count) | |
{ | |
uint32_t reg; | |
uint32_t msk; | |
uint32_t tempD; | |
ENTERFN(); | |
// RDPTR (1/2 MCLK, 64 PIs) | |
// CCPTRREG[15:12] -> CLK1 (0x0-0xF) | |
// CCPTRREG[11:08] -> CLK0 (0x0-0xF) | |
reg = CCPTRREG + (channel * DDRIOCCC_CH_OFFSET); | |
msk = (BIT15 | BIT14 | BIT13 | BIT12) | (BIT11 | BIT10 | BIT9 | BIT8); | |
tempD = ((pi_count / HALF_CLK) << 12) | ((pi_count / HALF_CLK) << 8); | |
isbM32m(DDRPHY, reg, tempD, msk); | |
// Adjust PI_COUNT | |
pi_count -= ((pi_count / HALF_CLK) & 0xF) * HALF_CLK; | |
// PI (1/64 MCLK, 1 PIs) | |
// ECCB1DLLPICODER0[13:08] -> CLK0 (0x00-0x3F) | |
// ECCB1DLLPICODER0[21:16] -> CLK1 (0x00-0x3F) | |
reg = (rank) ? (ECCB1DLLPICODER0) : (ECCB1DLLPICODER0); | |
reg += (channel * DDRIOCCC_CH_OFFSET); | |
msk = (BIT21 | BIT20 | BIT19 | BIT18 | BIT17 | BIT16) | (BIT13 | BIT12 | BIT11 | BIT10 | BIT9 | BIT8); | |
tempD = (pi_count << 16) | (pi_count << 8); | |
isbM32m(DDRPHY, reg, tempD, msk); | |
reg = (rank) ? (ECCB1DLLPICODER1) : (ECCB1DLLPICODER1); | |
reg += (channel * DDRIOCCC_CH_OFFSET); | |
isbM32m(DDRPHY, reg, tempD, msk); | |
reg = (rank) ? (ECCB1DLLPICODER2) : (ECCB1DLLPICODER2); | |
reg += (channel * DDRIOCCC_CH_OFFSET); | |
isbM32m(DDRPHY, reg, tempD, msk); | |
reg = (rank) ? (ECCB1DLLPICODER3) : (ECCB1DLLPICODER3); | |
reg += (channel * DDRIOCCC_CH_OFFSET); | |
isbM32m(DDRPHY, reg, tempD, msk); | |
// DEADBAND | |
// CCCFGREG1[11:08] (+1 select) | |
// CCCFGREG1[03:00] (enable) | |
reg = CCCFGREG1 + (channel * DDRIOCCC_CH_OFFSET); | |
msk = 0x00; | |
tempD = 0x00; | |
// enable | |
msk |= (BIT3 | BIT2 | BIT1 | BIT0); // only ??? matters | |
if ((pi_count < EARLY_DB) || (pi_count > LATE_DB)) | |
{ | |
tempD |= msk; | |
} | |
// select | |
msk |= (BIT11 | BIT10 | BIT9 | BIT8); // only ??? matters | |
if (pi_count < EARLY_DB) | |
{ | |
tempD |= msk; | |
} | |
isbM32m(DDRPHY, reg, tempD, msk); | |
// error check | |
if (pi_count > 0x3F) | |
{ | |
post_code(0xEE, 0xE5); | |
} | |
LEAVEFN(); | |
return; | |
} | |
// get_wclk: | |
// | |
// This function will return the amout of WCLK delay on the given channel, rank as an absolute PI count. | |
uint32_t get_wclk( | |
uint8_t channel, | |
uint8_t rank) | |
{ | |
uint32_t reg; | |
uint32_t tempD; | |
uint32_t pi_count; | |
ENTERFN(); | |
// RDPTR (1/2 MCLK, 64 PIs) | |
// CCPTRREG[15:12] -> CLK1 (0x0-0xF) | |
// CCPTRREG[11:08] -> CLK0 (0x0-0xF) | |
reg = CCPTRREG + (channel * DDRIOCCC_CH_OFFSET); | |
tempD = isbR32m(DDRPHY, reg); | |
tempD >>= (rank) ? (12) : (8); | |
tempD &= 0xF; | |
// Adjust PI_COUNT | |
pi_count = tempD * HALF_CLK; | |
// PI (1/64 MCLK, 1 PIs) | |
// ECCB1DLLPICODER0[13:08] -> CLK0 (0x00-0x3F) | |
// ECCB1DLLPICODER0[21:16] -> CLK1 (0x00-0x3F) | |
reg = (rank) ? (ECCB1DLLPICODER0) : (ECCB1DLLPICODER0); | |
reg += (channel * DDRIOCCC_CH_OFFSET); | |
tempD = isbR32m(DDRPHY, reg); | |
tempD >>= (rank) ? (16) : (8); | |
tempD &= 0x3F; | |
pi_count += tempD; | |
LEAVEFN(); | |
return pi_count; | |
} | |
// set_wctl: | |
// | |
// This function will program the WCTL delays based on an absolute number of PIs. | |
// (currently doesn't comprehend rank) | |
void set_wctl( | |
uint8_t channel, | |
uint8_t rank, | |
uint32_t pi_count) | |
{ | |
uint32_t reg; | |
uint32_t msk; | |
uint32_t tempD; | |
ENTERFN(); | |
// RDPTR (1/2 MCLK, 64 PIs) | |
// CCPTRREG[31:28] (0x0-0xF) | |
// CCPTRREG[27:24] (0x0-0xF) | |
reg = CCPTRREG + (channel * DDRIOCCC_CH_OFFSET); | |
msk = (BIT31 | BIT30 | BIT29 | BIT28) | (BIT27 | BIT26 | BIT25 | BIT24); | |
tempD = ((pi_count / HALF_CLK) << 28) | ((pi_count / HALF_CLK) << 24); | |
isbM32m(DDRPHY, reg, tempD, msk); | |
// Adjust PI_COUNT | |
pi_count -= ((pi_count / HALF_CLK) & 0xF) * HALF_CLK; | |
// PI (1/64 MCLK, 1 PIs) | |
// ECCB1DLLPICODER?[29:24] (0x00-0x3F) | |
// ECCB1DLLPICODER?[29:24] (0x00-0x3F) | |
reg = ECCB1DLLPICODER0 + (channel * DDRIOCCC_CH_OFFSET); | |
msk = (BIT29 | BIT28 | BIT27 | BIT26 | BIT25 | BIT24); | |
tempD = (pi_count << 24); | |
isbM32m(DDRPHY, reg, tempD, msk); | |
reg = ECCB1DLLPICODER1 + (channel * DDRIOCCC_CH_OFFSET); | |
isbM32m(DDRPHY, reg, tempD, msk); | |
reg = ECCB1DLLPICODER2 + (channel * DDRIOCCC_CH_OFFSET); | |
isbM32m(DDRPHY, reg, tempD, msk); | |
reg = ECCB1DLLPICODER3 + (channel * DDRIOCCC_CH_OFFSET); | |
isbM32m(DDRPHY, reg, tempD, msk); | |
// DEADBAND | |
// CCCFGREG1[13:12] (+1 select) | |
// CCCFGREG1[05:04] (enable) | |
reg = CCCFGREG1 + (channel * DDRIOCCC_CH_OFFSET); | |
msk = 0x00; | |
tempD = 0x00; | |
// enable | |
msk |= (BIT5 | BIT4); // only ??? matters | |
if ((pi_count < EARLY_DB) || (pi_count > LATE_DB)) | |
{ | |
tempD |= msk; | |
} | |
// select | |
msk |= (BIT13 | BIT12); // only ??? matters | |
if (pi_count < EARLY_DB) | |
{ | |
tempD |= msk; | |
} | |
isbM32m(DDRPHY, reg, tempD, msk); | |
// error check | |
if (pi_count > 0x3F) | |
{ | |
post_code(0xEE, 0xE6); | |
} | |
LEAVEFN(); | |
return; | |
} | |
// get_wctl: | |
// | |
// This function will return the amount of WCTL delay on the given channel, rank as an absolute PI count. | |
// (currently doesn't comprehend rank) | |
uint32_t get_wctl( | |
uint8_t channel, | |
uint8_t rank) | |
{ | |
uint32_t reg; | |
uint32_t tempD; | |
uint32_t pi_count; | |
ENTERFN(); | |
// RDPTR (1/2 MCLK, 64 PIs) | |
// CCPTRREG[31:28] (0x0-0xF) | |
// CCPTRREG[27:24] (0x0-0xF) | |
reg = CCPTRREG + (channel * DDRIOCCC_CH_OFFSET); | |
tempD = isbR32m(DDRPHY, reg); | |
tempD >>= 24; | |
tempD &= 0xF; | |
// Adjust PI_COUNT | |
pi_count = tempD * HALF_CLK; | |
// PI (1/64 MCLK, 1 PIs) | |
// ECCB1DLLPICODER?[29:24] (0x00-0x3F) | |
// ECCB1DLLPICODER?[29:24] (0x00-0x3F) | |
reg = ECCB1DLLPICODER0 + (channel * DDRIOCCC_CH_OFFSET); | |
tempD = isbR32m(DDRPHY, reg); | |
tempD >>= 24; | |
tempD &= 0x3F; | |
// Adjust PI_COUNT | |
pi_count += tempD; | |
LEAVEFN(); | |
return pi_count; | |
} | |
// set_vref: | |
// | |
// This function will program the internal Vref setting in a given byte lane in a given channel. | |
void set_vref( | |
uint8_t channel, | |
uint8_t byte_lane, | |
uint32_t setting) | |
{ | |
uint32_t reg = (byte_lane & 0x1) ? (B1VREFCTL) : (B0VREFCTL); | |
ENTERFN(); | |
DPF(D_TRN, "Vref ch%d ln%d : val=%03X\n", channel, byte_lane, setting); | |
isbM32m(DDRPHY, (reg + (channel * DDRIODQ_CH_OFFSET) + ((byte_lane >> 1) * DDRIODQ_BL_OFFSET)), | |
(vref_codes[setting] << 2), (BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2)); | |
//isbM32m(DDRPHY, (reg + (channel * DDRIODQ_CH_OFFSET) + ((byte_lane >> 1) * DDRIODQ_BL_OFFSET)), (setting<<2), (BIT7|BIT6|BIT5|BIT4|BIT3|BIT2)); | |
// need to wait ~300ns for Vref to settle (check that this is necessary) | |
delay_n(300); | |
// ??? may need to clear pointers ??? | |
LEAVEFN(); | |
return; | |
} | |
// get_vref: | |
// | |
// This function will return the internal Vref setting for the given channel, byte_lane; | |
uint32_t get_vref( | |
uint8_t channel, | |
uint8_t byte_lane) | |
{ | |
uint8_t j; | |
uint32_t ret_val = sizeof(vref_codes) / 2; | |
uint32_t reg = (byte_lane & 0x1) ? (B1VREFCTL) : (B0VREFCTL); | |
uint32_t tempD; | |
ENTERFN(); | |
tempD = isbR32m(DDRPHY, (reg + (channel * DDRIODQ_CH_OFFSET) + ((byte_lane >> 1) * DDRIODQ_BL_OFFSET))); | |
tempD >>= 2; | |
tempD &= 0x3F; | |
for (j = 0; j < sizeof(vref_codes); j++) | |
{ | |
if (vref_codes[j] == tempD) | |
{ | |
ret_val = j; | |
break; | |
} | |
} | |
LEAVEFN(); | |
return ret_val; | |
} | |
// clear_pointers: | |
// | |
// This function will be used to clear the pointers in a given byte lane in a given channel. | |
void clear_pointers( | |
void) | |
{ | |
uint8_t channel_i; | |
uint8_t bl_i; | |
ENTERFN(); | |
for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++) | |
{ | |
for (bl_i = 0; bl_i < NUM_BYTE_LANES; bl_i++) | |
{ | |
isbM32m(DDRPHY, (B01PTRCTL1 + (channel_i * DDRIODQ_CH_OFFSET) + ((bl_i >> 1) * DDRIODQ_BL_OFFSET)), ~(BIT8), | |
(BIT8)); | |
//delay_m(1); // DEBUG | |
isbM32m(DDRPHY, (B01PTRCTL1 + (channel_i * DDRIODQ_CH_OFFSET) + ((bl_i >> 1) * DDRIODQ_BL_OFFSET)), (BIT8), | |
(BIT8)); | |
} | |
} | |
LEAVEFN(); | |
return; | |
} | |
// void enable_cache: | |
void enable_cache( | |
void) | |
{ | |
// Cache control not used in Quark MRC | |
return; | |
} | |
// void disable_cache: | |
void disable_cache( | |
void) | |
{ | |
// Cache control not used in Quark MRC | |
return; | |
} | |
// Send DRAM command, data should be formated | |
// using DCMD_Xxxx macro or emrsXCommand structure. | |
static void dram_init_command( | |
uint32_t data) | |
{ | |
Wr32(DCMD, 0, data); | |
} | |
// find_rising_edge: | |
// | |
// This function will find the rising edge transition on RCVN or WDQS. | |
void find_rising_edge( | |
MRCParams_t *mrc_params, | |
uint32_t delay[], | |
uint8_t channel, | |
uint8_t rank, | |
bool rcvn) | |
{ | |
#define SAMPLE_CNT 3 // number of sample points | |
#define SAMPLE_DLY 26 // number of PIs to increment per sample | |
#define FORWARD true // indicates to increase delays when looking for edge | |
#define BACKWARD false // indicates to decrease delays when looking for edge | |
bool all_edges_found; // determines stop condition | |
bool direction[NUM_BYTE_LANES]; // direction indicator | |
uint8_t sample_i; // sample counter | |
uint8_t bl_i; // byte lane counter | |
uint8_t bl_divisor = (mrc_params->channel_width == x16) ? 2 : 1; // byte lane divisor | |
uint32_t sample_result[SAMPLE_CNT]; // results of "sample_dqs()" | |
uint32_t tempD; // temporary DWORD | |
uint32_t transition_pattern; | |
ENTERFN(); | |
// select hte and request initial configuration | |
select_hte(mrc_params); | |
first_run = 1; | |
// Take 3 sample points (T1,T2,T3) to obtain a transition pattern. | |
for (sample_i = 0; sample_i < SAMPLE_CNT; sample_i++) | |
{ | |
// program the desired delays for sample | |
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) | |
{ | |
// increase sample delay by 26 PI (0.2 CLK) | |
if (rcvn) | |
{ | |
set_rcvn(channel, rank, bl_i, delay[bl_i] + (sample_i * SAMPLE_DLY)); | |
} | |
else | |
{ | |
set_wdqs(channel, rank, bl_i, delay[bl_i] + (sample_i * SAMPLE_DLY)); | |
} | |
} // bl_i loop | |
// take samples (Tsample_i) | |
sample_result[sample_i] = sample_dqs(mrc_params, channel, rank, rcvn); | |
DPF(D_TRN, "Find rising edge %s ch%d rnk%d: #%d dly=%d dqs=%02X\n", | |
(rcvn ? "RCVN" : "WDQS"), channel, rank, | |
sample_i, sample_i * SAMPLE_DLY, sample_result[sample_i]); | |
} // sample_i loop | |
// This pattern will help determine where we landed and ultimately how to place RCVEN/WDQS. | |
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) | |
{ | |
// build "transition_pattern" (MSB is 1st sample) | |
transition_pattern = 0x00; | |
for (sample_i = 0; sample_i < SAMPLE_CNT; sample_i++) | |
{ | |
transition_pattern |= ((sample_result[sample_i] & (1 << bl_i)) >> bl_i) << (SAMPLE_CNT - 1 - sample_i); | |
} // sample_i loop | |
DPF(D_TRN, "=== transition pattern %d\n", transition_pattern); | |
// set up to look for rising edge based on "transition_pattern" | |
switch (transition_pattern) | |
{ | |
case 0x00: // sampled 0->0->0 | |
// move forward from T3 looking for 0->1 | |
delay[bl_i] += 2 * SAMPLE_DLY; | |
direction[bl_i] = FORWARD; | |
break; | |
case 0x01: // sampled 0->0->1 | |
case 0x05: // sampled 1->0->1 (bad duty cycle) *HSD#237503* | |
// move forward from T2 looking for 0->1 | |
delay[bl_i] += 1 * SAMPLE_DLY; | |
direction[bl_i] = FORWARD; | |
break; | |
// HSD#237503 | |
// case 0x02: // sampled 0->1->0 (bad duty cycle) | |
// training_message(channel, rank, bl_i); | |
// post_code(0xEE, 0xE8); | |
// break; | |
case 0x02: // sampled 0->1->0 (bad duty cycle) *HSD#237503* | |
case 0x03: // sampled 0->1->1 | |
// move forward from T1 looking for 0->1 | |
delay[bl_i] += 0 * SAMPLE_DLY; | |
direction[bl_i] = FORWARD; | |
break; | |
case 0x04: // sampled 1->0->0 (assumes BL8, HSD#234975) | |
// move forward from T3 looking for 0->1 | |
delay[bl_i] += 2 * SAMPLE_DLY; | |
direction[bl_i] = FORWARD; | |
break; | |
// HSD#237503 | |
// case 0x05: // sampled 1->0->1 (bad duty cycle) | |
// training_message(channel, rank, bl_i); | |
// post_code(0xEE, 0xE9); | |
// break; | |
case 0x06: // sampled 1->1->0 | |
case 0x07: // sampled 1->1->1 | |
// move backward from T1 looking for 1->0 | |
delay[bl_i] += 0 * SAMPLE_DLY; | |
direction[bl_i] = BACKWARD; | |
break; | |
default: | |
post_code(0xEE, 0xEE); | |
break; | |
} // transition_pattern switch | |
// program delays | |
if (rcvn) | |
{ | |
set_rcvn(channel, rank, bl_i, delay[bl_i]); | |
} | |
else | |
{ | |
set_wdqs(channel, rank, bl_i, delay[bl_i]); | |
} | |
} // bl_i loop | |
// Based on the observed transition pattern on the byte lane, | |
// begin looking for a rising edge with single PI granularity. | |
do | |
{ | |
all_edges_found = true; // assume all byte lanes passed | |
tempD = sample_dqs(mrc_params, channel, rank, rcvn); // take a sample | |
// check all each byte lane for proper edge | |
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) | |
{ | |
if (tempD & (1 << bl_i)) | |
{ | |
// sampled "1" | |
if (direction[bl_i] == BACKWARD) | |
{ | |
// keep looking for edge on this byte lane | |
all_edges_found = false; | |
delay[bl_i] -= 1; | |
if (rcvn) | |
{ | |
set_rcvn(channel, rank, bl_i, delay[bl_i]); | |
} | |
else | |
{ | |
set_wdqs(channel, rank, bl_i, delay[bl_i]); | |
} | |
} | |
} | |
else | |
{ | |
// sampled "0" | |
if (direction[bl_i] == FORWARD) | |
{ | |
// keep looking for edge on this byte lane | |
all_edges_found = false; | |
delay[bl_i] += 1; | |
if (rcvn) | |
{ | |
set_rcvn(channel, rank, bl_i, delay[bl_i]); | |
} | |
else | |
{ | |
set_wdqs(channel, rank, bl_i, delay[bl_i]); | |
} | |
} | |
} | |
} // bl_i loop | |
} while (!all_edges_found); | |
// restore DDR idle state | |
dram_init_command(DCMD_PREA(rank)); | |
DPF(D_TRN, "Delay %03X %03X %03X %03X\n", | |
delay[0], delay[1], delay[2], delay[3]); | |
LEAVEFN(); | |
return; | |
} | |
// sample_dqs: | |
// | |
// This function will sample the DQTRAINSTS registers in the given channel/rank SAMPLE_SIZE times looking for a valid '0' or '1'. | |
// It will return an encoded DWORD in which each bit corresponds to the sampled value on the byte lane. | |
uint32_t sample_dqs( | |
MRCParams_t *mrc_params, | |
uint8_t channel, | |
uint8_t rank, | |
bool rcvn) | |
{ | |
uint8_t j; // just a counter | |
uint8_t bl_i; // which BL in the module (always 2 per module) | |
uint8_t bl_grp; // which BL module | |
uint8_t bl_divisor = (mrc_params->channel_width == x16) ? 2 : 1; // byte lane divisor | |
uint32_t msk[2]; // BLx in module | |
uint32_t sampled_val[SAMPLE_SIZE]; // DQTRAINSTS register contents for each sample | |
uint32_t num_0s; // tracks the number of '0' samples | |
uint32_t num_1s; // tracks the number of '1' samples | |
uint32_t ret_val = 0x00; // assume all '0' samples | |
uint32_t address = get_addr(mrc_params, channel, rank); | |
// initialise "msk[]" | |
msk[0] = (rcvn) ? (BIT1) : (BIT9); // BL0 | |
msk[1] = (rcvn) ? (BIT0) : (BIT8); // BL1 | |
// cycle through each byte lane group | |
for (bl_grp = 0; bl_grp < (NUM_BYTE_LANES / bl_divisor) / 2; bl_grp++) | |
{ | |
// take SAMPLE_SIZE samples | |
for (j = 0; j < SAMPLE_SIZE; j++) | |
{ | |
HteMemOp(address, first_run, rcvn?0:1); | |
first_run = 0; | |
// record the contents of the proper DQTRAINSTS register | |
sampled_val[j] = isbR32m(DDRPHY, (DQTRAINSTS + (bl_grp * DDRIODQ_BL_OFFSET) + (channel * DDRIODQ_CH_OFFSET))); | |
} | |
// look for a majority value ( (SAMPLE_SIZE/2)+1 ) on the byte lane | |
// and set that value in the corresponding "ret_val" bit | |
for (bl_i = 0; bl_i < 2; bl_i++) | |
{ | |
num_0s = 0x00; // reset '0' tracker for byte lane | |
num_1s = 0x00; // reset '1' tracker for byte lane | |
for (j = 0; j < SAMPLE_SIZE; j++) | |
{ | |
if (sampled_val[j] & msk[bl_i]) | |
{ | |
num_1s++; | |
} | |
else | |
{ | |
num_0s++; | |
} | |
} | |
if (num_1s > num_0s) | |
{ | |
ret_val |= (1 << (bl_i + (bl_grp * 2))); | |
} | |
} | |
} | |
// "ret_val.0" contains the status of BL0 | |
// "ret_val.1" contains the status of BL1 | |
// "ret_val.2" contains the status of BL2 | |
// etc. | |
return ret_val; | |
} | |
// get_addr: | |
// | |
// This function will return a 32 bit address in the desired channel and rank. | |
uint32_t get_addr( | |
MRCParams_t *mrc_params, | |
uint8_t channel, | |
uint8_t rank) | |
{ | |
uint32_t offset = 0x02000000; // 32MB | |
// Begin product specific code | |
if (channel > 0) | |
{ | |
DPF(D_ERROR, "ILLEGAL CHANNEL\n"); | |
DEAD_LOOP(); | |
} | |
if (rank > 1) | |
{ | |
DPF(D_ERROR, "ILLEGAL RANK\n"); | |
DEAD_LOOP(); | |
} | |
// use 256MB lowest density as per DRP == 0x0003 | |
offset += rank * (256 * 1024 * 1024); | |
return offset; | |
} | |
// byte_lane_mask: | |
// | |
// This function will return a 32 bit mask that will be used to check for byte lane failures. | |
uint32_t byte_lane_mask( | |
MRCParams_t *mrc_params) | |
{ | |
uint32_t j; | |
uint32_t ret_val = 0x00; | |
// set "ret_val" based on NUM_BYTE_LANES such that you will check only BL0 in "result" | |
// (each bit in "result" represents a byte lane) | |
for (j = 0; j < MAX_BYTE_LANES; j += NUM_BYTE_LANES) | |
{ | |
ret_val |= (1 << ((j / NUM_BYTE_LANES) * NUM_BYTE_LANES)); | |
} | |
// HSD#235037 | |
// need to adjust the mask for 16-bit mode | |
if (mrc_params->channel_width == x16) | |
{ | |
ret_val |= (ret_val << 2); | |
} | |
return ret_val; | |
} | |
// read_tsc: | |
// | |
// This function will do some assembly to return TSC register contents as a uint64_t. | |
uint64_t read_tsc( | |
void) | |
{ | |
volatile uint64_t tsc; // EDX:EAX | |
#if defined (SIM) || defined (GCC) | |
volatile uint32_t tscH; // EDX | |
volatile uint32_t tscL;// EAX | |
asm("rdtsc":"=a"(tscL),"=d"(tscH)); | |
tsc = tscH; | |
tsc = (tsc<<32)|tscL; | |
#else | |
tsc = __rdtsc(); | |
#endif | |
return tsc; | |
} | |
// get_tsc_freq: | |
// | |
// This function returns the TSC frequency in MHz | |
uint32_t get_tsc_freq( | |
void) | |
{ | |
static uint32_t freq[] = | |
{ 533, 400, 200, 100 }; | |
uint32_t fuse; | |
#if 0 | |
fuse = (isbR32m(FUSE, 0) >> 12) & (BIT1|BIT0); | |
#else | |
// todo!!! Fixed 533MHz for emulation or debugging | |
fuse = 0; | |
#endif | |
return freq[fuse]; | |
} | |
#ifndef SIM | |
// delay_n: | |
// | |
// This is a simple delay function. | |
// It takes "nanoseconds" as a parameter. | |
void delay_n( | |
uint32_t nanoseconds) | |
{ | |
// 1000 MHz clock has 1ns period --> no conversion required | |
uint64_t final_tsc = read_tsc(); | |
final_tsc += ((get_tsc_freq() * (nanoseconds)) / 1000); | |
while (read_tsc() < final_tsc) | |
; | |
return; | |
} | |
#endif | |
// delay_u: | |
// | |
// This is a simple delay function. | |
// It takes "microseconds as a parameter. | |
void delay_u( | |
uint32_t microseconds) | |
{ | |
// 64 bit math is not an option, just use loops | |
while (microseconds--) | |
{ | |
delay_n(1000); | |
} | |
return; | |
} | |
// delay_m: | |
// | |
// This is a simple delay function. | |
// It takes "milliseconds" as a parameter. | |
void delay_m( | |
uint32_t milliseconds) | |
{ | |
// 64 bit math is not an option, just use loops | |
while (milliseconds--) | |
{ | |
delay_u(1000); | |
} | |
return; | |
} | |
// delay_s: | |
// | |
// This is a simple delay function. | |
// It takes "seconds" as a parameter. | |
void delay_s( | |
uint32_t seconds) | |
{ | |
// 64 bit math is not an option, just use loops | |
while (seconds--) | |
{ | |
delay_m(1000); | |
} | |
return; | |
} | |
// post_code: | |
// | |
// This function will output the POST CODE to the four 7-Segment LED displays. | |
void post_code( | |
uint8_t major, | |
uint8_t minor) | |
{ | |
#ifdef EMU | |
// Update global variable for execution tracking in debug env | |
PostCode = ((major << 8) | minor); | |
#endif | |
// send message to UART | |
DPF(D_INFO, "POST: 0x%01X%02X\n", major, minor); | |
// error check: | |
if (major == 0xEE) | |
{ | |
// todo!!! Consider updating error status and exit MRC | |
#ifdef SIM | |
// enable Ctrl-C handling | |
for(;;) delay_n(100); | |
#else | |
DEAD_LOOP(); | |
#endif | |
} | |
} | |
void training_message( | |
uint8_t channel, | |
uint8_t rank, | |
uint8_t byte_lane) | |
{ | |
// send message to UART | |
DPF(D_INFO, "CH%01X RK%01X BL%01X\n", channel, rank, byte_lane); | |
return; | |
} | |
void print_timings( | |
MRCParams_t *mrc_params) | |
{ | |
uint8_t algo_i; | |
uint8_t channel_i; | |
uint8_t rank_i; | |
uint8_t bl_i; | |
uint8_t bl_divisor = (mrc_params->channel_width == x16) ? 2 : 1; | |
DPF(D_INFO, "\n---------------------------"); | |
DPF(D_INFO, "\nALGO[CH:RK] BL0 BL1 BL2 BL3"); | |
DPF(D_INFO, "\n==========================="); | |
for (algo_i = 0; algo_i < eMAX_ALGOS; algo_i++) | |
{ | |
for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++) | |
{ | |
if (mrc_params->channel_enables & (1 << channel_i)) | |
{ | |
for (rank_i = 0; rank_i < NUM_RANKS; rank_i++) | |
{ | |
if (mrc_params->rank_enables & (1 << rank_i)) | |
{ | |
switch (algo_i) | |
{ | |
case eRCVN: | |
DPF(D_INFO, "\nRCVN[%02d:%02d]", channel_i, rank_i); | |
break; | |
case eWDQS: | |
DPF(D_INFO, "\nWDQS[%02d:%02d]", channel_i, rank_i); | |
break; | |
case eWDQx: | |
DPF(D_INFO, "\nWDQx[%02d:%02d]", channel_i, rank_i); | |
break; | |
case eRDQS: | |
DPF(D_INFO, "\nRDQS[%02d:%02d]", channel_i, rank_i); | |
break; | |
case eVREF: | |
DPF(D_INFO, "\nVREF[%02d:%02d]", channel_i, rank_i); | |
break; | |
case eWCMD: | |
DPF(D_INFO, "\nWCMD[%02d:%02d]", channel_i, rank_i); | |
break; | |
case eWCTL: | |
DPF(D_INFO, "\nWCTL[%02d:%02d]", channel_i, rank_i); | |
break; | |
case eWCLK: | |
DPF(D_INFO, "\nWCLK[%02d:%02d]", channel_i, rank_i); | |
break; | |
default: | |
break; | |
} // algo_i switch | |
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) | |
{ | |
switch (algo_i) | |
{ | |
case eRCVN: | |
DPF(D_INFO, " %03d", get_rcvn(channel_i, rank_i, bl_i)); | |
break; | |
case eWDQS: | |
DPF(D_INFO, " %03d", get_wdqs(channel_i, rank_i, bl_i)); | |
break; | |
case eWDQx: | |
DPF(D_INFO, " %03d", get_wdq(channel_i, rank_i, bl_i)); | |
break; | |
case eRDQS: | |
DPF(D_INFO, " %03d", get_rdqs(channel_i, rank_i, bl_i)); | |
break; | |
case eVREF: | |
DPF(D_INFO, " %03d", get_vref(channel_i, bl_i)); | |
break; | |
case eWCMD: | |
DPF(D_INFO, " %03d", get_wcmd(channel_i)); | |
break; | |
case eWCTL: | |
DPF(D_INFO, " %03d", get_wctl(channel_i, rank_i)); | |
break; | |
case eWCLK: | |
DPF(D_INFO, " %03d", get_wclk(channel_i, rank_i)); | |
break; | |
default: | |
break; | |
} // algo_i switch | |
} // bl_i loop | |
} // if rank_i enabled | |
} // rank_i loop | |
} // if channel_i enabled | |
} // channel_i loop | |
} // algo_i loop | |
DPF(D_INFO, "\n---------------------------"); | |
DPF(D_INFO, "\n"); | |
return; | |
} | |
// 32 bit LFSR with characteristic polynomial: X^32 + X^22 +X^2 + X^1 | |
// The function takes pointer to previous 32 bit value and modifies it to next value. | |
void lfsr32( | |
uint32_t *lfsr_ptr) | |
{ | |
uint32_t bit; | |
uint32_t lfsr; | |
uint32_t i; | |
lfsr = *lfsr_ptr; | |
for (i = 0; i < 32; i++) | |
{ | |
bit = 1 ^ (lfsr & BIT0); | |
bit = bit ^ ((lfsr & BIT1) >> 1); | |
bit = bit ^ ((lfsr & BIT2) >> 2); | |
bit = bit ^ ((lfsr & BIT22) >> 22); | |
lfsr = ((lfsr >> 1) | (bit << 31)); | |
} | |
*lfsr_ptr = lfsr; | |
return; | |
} | |
// The purpose of this function is to ensure the SEC comes out of reset | |
// and IA initiates the SEC enabling Memory Scrambling. | |
void enable_scrambling( | |
MRCParams_t *mrc_params) | |
{ | |
uint32_t lfsr = 0; | |
uint8_t i; | |
if (mrc_params->scrambling_enables == 0) | |
return; | |
ENTERFN(); | |
// 32 bit seed is always stored in BIOS NVM. | |
lfsr = mrc_params->timings.scrambler_seed; | |
if (mrc_params->boot_mode == bmCold) | |
{ | |
// factory value is 0 and in first boot, a clock based seed is loaded. | |
if (lfsr == 0) | |
{ | |
lfsr = read_tsc() & 0x0FFFFFFF; // get seed from system clock and make sure it is not all 1's | |
} | |
// need to replace scrambler | |
// get next 32bit LFSR 16 times which is the last part of the previous scrambler vector. | |
else | |
{ | |
for (i = 0; i < 16; i++) | |
{ | |
lfsr32(&lfsr); | |
} | |
} | |
mrc_params->timings.scrambler_seed = lfsr; // save new seed. | |
} // if (cold_boot) | |
// In warm boot or S3 exit, we have the previous seed. | |
// In cold boot, we have the last 32bit LFSR which is the new seed. | |
lfsr32(&lfsr); // shift to next value | |
isbW32m(MCU, SCRMSEED, (lfsr & 0x0003FFFF)); | |
for (i = 0; i < 2; i++) | |
{ | |
isbW32m(MCU, SCRMLO + i, (lfsr & 0xAAAAAAAA)); | |
} | |
LEAVEFN(); | |
return; | |
} | |
// This function will store relevant timing data | |
// This data will be used on subsequent boots to speed up boot times | |
// and is required for Suspend To RAM capabilities. | |
void store_timings( | |
MRCParams_t *mrc_params) | |
{ | |
uint8_t ch, rk, bl; | |
MrcTimings_t *mt = &mrc_params->timings; | |
for (ch = 0; ch < NUM_CHANNELS; ch++) | |
{ | |
for (rk = 0; rk < NUM_RANKS; rk++) | |
{ | |
for (bl = 0; bl < NUM_BYTE_LANES; bl++) | |
{ | |
mt->rcvn[ch][rk][bl] = get_rcvn(ch, rk, bl); // RCVN | |
mt->rdqs[ch][rk][bl] = get_rdqs(ch, rk, bl); // RDQS | |
mt->wdqs[ch][rk][bl] = get_wdqs(ch, rk, bl); // WDQS | |
mt->wdq[ch][rk][bl] = get_wdq(ch, rk, bl); // WDQ | |
if (rk == 0) | |
{ | |
mt->vref[ch][bl] = get_vref(ch, bl); // VREF (RANK0 only) | |
} | |
} | |
mt->wctl[ch][rk] = get_wctl(ch, rk); // WCTL | |
} | |
mt->wcmd[ch] = get_wcmd(ch); // WCMD | |
} | |
// need to save for a case of changing frequency after warm reset | |
mt->ddr_speed = mrc_params->ddr_speed; | |
return; | |
} | |
// This function will retrieve relevant timing data | |
// This data will be used on subsequent boots to speed up boot times | |
// and is required for Suspend To RAM capabilities. | |
void restore_timings( | |
MRCParams_t *mrc_params) | |
{ | |
uint8_t ch, rk, bl; | |
const MrcTimings_t *mt = &mrc_params->timings; | |
for (ch = 0; ch < NUM_CHANNELS; ch++) | |
{ | |
for (rk = 0; rk < NUM_RANKS; rk++) | |
{ | |
for (bl = 0; bl < NUM_BYTE_LANES; bl++) | |
{ | |
set_rcvn(ch, rk, bl, mt->rcvn[ch][rk][bl]); // RCVN | |
set_rdqs(ch, rk, bl, mt->rdqs[ch][rk][bl]); // RDQS | |
set_wdqs(ch, rk, bl, mt->wdqs[ch][rk][bl]); // WDQS | |
set_wdq(ch, rk, bl, mt->wdq[ch][rk][bl]); // WDQ | |
if (rk == 0) | |
{ | |
set_vref(ch, bl, mt->vref[ch][bl]); // VREF (RANK0 only) | |
} | |
} | |
set_wctl(ch, rk, mt->wctl[ch][rk]); // WCTL | |
} | |
set_wcmd(ch, mt->wcmd[ch]); // WCMD | |
} | |
return; | |
} | |
// Configure default settings normally set as part of read training | |
// Some defaults have to be set earlier as they may affect earlier | |
// training steps. | |
void default_timings( | |
MRCParams_t *mrc_params) | |
{ | |
uint8_t ch, rk, bl; | |
for (ch = 0; ch < NUM_CHANNELS; ch++) | |
{ | |
for (rk = 0; rk < NUM_RANKS; rk++) | |
{ | |
for (bl = 0; bl < NUM_BYTE_LANES; bl++) | |
{ | |
set_rdqs(ch, rk, bl, 24); // RDQS | |
if (rk == 0) | |
{ | |
set_vref(ch, bl, 32); // VREF (RANK0 only) | |
} | |
} | |
} | |
} | |
return; | |
} | |