/************************************************************************ | |
* | |
* Copyright (c) 2013-2015 Intel Corporation. | |
* | |
* This program and the accompanying materials | |
* are licensed and made available under the terms and conditions of the BSD License | |
* which accompanies this distribution. The full text of the license may be found at | |
* http://opensource.org/licenses/bsd-license.php | |
* | |
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, | |
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. | |
* | |
* This file contains all of the Cat Mountain Memory Reference Code (MRC). | |
* | |
* These functions are generic and should work for any Cat Mountain config. | |
* | |
* MRC requires two data structures to be passed in which are initialised by "PreMemInit()". | |
* | |
* The basic flow is as follows: | |
* 01) Check for supported DDR speed configuration | |
* 02) Set up MEMORY_MANAGER buffer as pass-through (POR) | |
* 03) Set Channel Interleaving Mode and Channel Stride to the most aggressive setting possible | |
* 04) Set up the MCU logic | |
* 05) Set up the DDR_PHY logic | |
* 06) Initialise the DRAMs (JEDEC) | |
* 07) Perform the Receive Enable Calibration algorithm | |
* 08) Perform the Write Leveling algorithm | |
* 09) Perform the Read Training algorithm (includes internal Vref) | |
* 10) Perform the Write Training algorithm | |
* 11) Set Channel Interleaving Mode and Channel Stride to the desired settings | |
* | |
* Dunit configuration based on Valleyview MRC. | |
* | |
***************************************************************************/ | |
#include "mrc.h" | |
#include "memory_options.h" | |
#include "meminit.h" | |
#include "meminit_utils.h" | |
#include "hte.h" | |
#include "io.h" | |
// Override ODT to off state if requested | |
#define DRMC_DEFAULT (mrc_params->rd_odt_value==0?BIT12:0) | |
// tRFC values (in picoseconds) per density | |
const uint32_t tRFC[5] = | |
{ | |
90000, // 512Mb | |
110000, // 1Gb | |
160000, // 2Gb | |
300000, // 4Gb | |
350000, // 8Gb | |
}; | |
// tCK clock period in picoseconds per speed index 800, 1066, 1333 | |
const uint32_t tCK[3] = | |
{ | |
2500, | |
1875, | |
1500 | |
}; | |
#ifdef SIM | |
// Select static timings specific to simulation environment | |
#define PLATFORM_ID 0 | |
#else | |
// Select static timings specific to ClantonPeek platform | |
#define PLATFORM_ID 1 | |
#endif | |
// Global variables | |
const uint16_t ddr_wclk[] = | |
{193, 158}; | |
const uint16_t ddr_wctl[] = | |
{ 1, 217}; | |
const uint16_t ddr_wcmd[] = | |
{ 1, 220}; | |
#ifdef BACKUP_RCVN | |
const uint16_t ddr_rcvn[] = | |
{129, 498}; | |
#endif // BACKUP_RCVN | |
#ifdef BACKUP_WDQS | |
const uint16_t ddr_wdqs[] = | |
{ 65, 289}; | |
#endif // BACKUP_WDQS | |
#ifdef BACKUP_RDQS | |
const uint8_t ddr_rdqs[] = | |
{ 32, 24}; | |
#endif // BACKUP_RDQS | |
#ifdef BACKUP_WDQ | |
const uint16_t ddr_wdq[] = | |
{ 32, 257}; | |
#endif // BACKUP_WDQ | |
// Select MEMORY_MANAGER as the source for PRI interface | |
static void select_memory_manager( | |
MRCParams_t *mrc_params) | |
{ | |
RegDCO Dco; | |
ENTERFN(); | |
Dco.raw = isbR32m(MCU, DCO); | |
Dco.field.PMICTL = 0; //0 - PRI owned by MEMORY_MANAGER | |
isbW32m(MCU, DCO, Dco.raw); | |
LEAVEFN(); | |
} | |
// Select HTE as the source for PRI interface | |
void select_hte( | |
MRCParams_t *mrc_params) | |
{ | |
RegDCO Dco; | |
ENTERFN(); | |
Dco.raw = isbR32m(MCU, DCO); | |
Dco.field.PMICTL = 1; //1 - PRI owned by HTE | |
isbW32m(MCU, DCO, Dco.raw); | |
LEAVEFN(); | |
} | |
// Send DRAM command, data should be formated | |
// using DCMD_Xxxx macro or emrsXCommand structure. | |
static void dram_init_command( | |
uint32_t data) | |
{ | |
Wr32(DCMD, 0, data); | |
} | |
// Send DRAM wake command using special MCU side-band WAKE opcode | |
static void dram_wake_command( | |
void) | |
{ | |
ENTERFN(); | |
Wr32(MMIO, PCIADDR(0,0,0,SB_PACKET_REG), | |
(uint32_t) SB_COMMAND(SB_WAKE_CMND_OPCODE, MCU, 0)); | |
LEAVEFN(); | |
} | |
// Stop self refresh driven by MCU | |
static void clear_self_refresh( | |
MRCParams_t *mrc_params) | |
{ | |
ENTERFN(); | |
// clear the PMSTS Channel Self Refresh bits | |
isbM32m(MCU, PMSTS, BIT0, BIT0); | |
LEAVEFN(); | |
} | |
// Configure MCU before jedec init sequence | |
static void prog_decode_before_jedec( | |
MRCParams_t *mrc_params) | |
{ | |
RegDRP Drp; | |
RegDRCF Drfc; | |
RegDCAL Dcal; | |
RegDSCH Dsch; | |
RegDPMC0 Dpmc0; | |
ENTERFN(); | |
// Disable power saving features | |
Dpmc0.raw = isbR32m(MCU, DPMC0); | |
Dpmc0.field.CLKGTDIS = 1; | |
Dpmc0.field.DISPWRDN = 1; | |
Dpmc0.field.DYNSREN = 0; | |
Dpmc0.field.PCLSTO = 0; | |
isbW32m(MCU, DPMC0, Dpmc0.raw); | |
// Disable out of order transactions | |
Dsch.raw = isbR32m(MCU, DSCH); | |
Dsch.field.OOODIS = 1; | |
Dsch.field.NEWBYPDIS = 1; | |
isbW32m(MCU, DSCH, Dsch.raw); | |
// Disable issuing the REF command | |
Drfc.raw = isbR32m(MCU, DRFC); | |
Drfc.field.tREFI = 0; | |
isbW32m(MCU, DRFC, Drfc.raw); | |
// Disable ZQ calibration short | |
Dcal.raw = isbR32m(MCU, DCAL); | |
Dcal.field.ZQCINT = 0; | |
Dcal.field.SRXZQCL = 0; | |
isbW32m(MCU, DCAL, Dcal.raw); | |
// Training performed in address mode 0, rank population has limited impact, however | |
// simulator complains if enabled non-existing rank. | |
Drp.raw = 0; | |
if (mrc_params->rank_enables & 1) | |
Drp.field.rank0Enabled = 1; | |
if (mrc_params->rank_enables & 2) | |
Drp.field.rank1Enabled = 1; | |
isbW32m(MCU, DRP, Drp.raw); | |
LEAVEFN(); | |
} | |
// After Cold Reset, BIOS should set COLDWAKE bit to 1 before | |
// sending the WAKE message to the Dunit. | |
// For Standby Exit, or any other mode in which the DRAM is in | |
// SR, this bit must be set to 0. | |
static void perform_ddr_reset( | |
MRCParams_t *mrc_params) | |
{ | |
ENTERFN(); | |
// Set COLDWAKE bit before sending the WAKE message | |
isbM32m(MCU, DRMC, BIT16, BIT16); | |
// Send wake command to DUNIT (MUST be done before JEDEC) | |
dram_wake_command(); | |
// Set default value | |
isbW32m(MCU, DRMC, DRMC_DEFAULT); | |
LEAVEFN(); | |
} | |
// Dunit Initialisation Complete. | |
// Indicates that initialisation of the Dunit has completed. | |
// Memory accesses are permitted and maintenance operation | |
// begins. Until this bit is set to a 1, the memory controller will | |
// not accept DRAM requests from the MEMORY_MANAGER or HTE. | |
static void set_ddr_init_complete( | |
MRCParams_t *mrc_params) | |
{ | |
RegDCO Dco; | |
ENTERFN(); | |
Dco.raw = isbR32m(MCU, DCO); | |
Dco.field.PMICTL = 0; //0 - PRI owned by MEMORY_MANAGER | |
Dco.field.IC = 1; //1 - initialisation complete | |
isbW32m(MCU, DCO, Dco.raw); | |
LEAVEFN(); | |
} | |
static void prog_page_ctrl( | |
MRCParams_t *mrc_params) | |
{ | |
RegDPMC0 Dpmc0; | |
ENTERFN(); | |
Dpmc0.raw = isbR32m(MCU, DPMC0); | |
Dpmc0.field.PCLSTO = 0x4; | |
Dpmc0.field.PREAPWDEN = 1; | |
isbW32m(MCU, DPMC0, Dpmc0.raw); | |
} | |
// Configure MCU Power Management Control Register | |
// and Scheduler Control Register. | |
static void prog_ddr_control( | |
MRCParams_t *mrc_params) | |
{ | |
RegDSCH Dsch; | |
RegDPMC0 Dpmc0; | |
ENTERFN(); | |
Dpmc0.raw = isbR32m(MCU, DPMC0); | |
Dsch.raw = isbR32m(MCU, DSCH); | |
Dpmc0.field.DISPWRDN = mrc_params->power_down_disable; | |
Dpmc0.field.CLKGTDIS = 0; | |
Dpmc0.field.PCLSTO = 4; | |
Dpmc0.field.PREAPWDEN = 1; | |
Dsch.field.OOODIS = 0; | |
Dsch.field.OOOST3DIS = 0; | |
Dsch.field.NEWBYPDIS = 0; | |
isbW32m(MCU, DSCH, Dsch.raw); | |
isbW32m(MCU, DPMC0, Dpmc0.raw); | |
// CMDTRIST = 2h - CMD/ADDR are tristated when no valid command | |
isbM32m(MCU, DPMC1, 2 << 4, BIT5|BIT4); | |
LEAVEFN(); | |
} | |
// After training complete configure MCU Rank Population Register | |
// specifying: ranks enabled, device width, density, address mode. | |
static void prog_dra_drb( | |
MRCParams_t *mrc_params) | |
{ | |
RegDRP Drp; | |
RegDCO Dco; | |
ENTERFN(); | |
Dco.raw = isbR32m(MCU, DCO); | |
Dco.field.IC = 0; | |
isbW32m(MCU, DCO, Dco.raw); | |
Drp.raw = 0; | |
if (mrc_params->rank_enables & 1) | |
Drp.field.rank0Enabled = 1; | |
if (mrc_params->rank_enables & 2) | |
Drp.field.rank1Enabled = 1; | |
if (mrc_params->dram_width == x16) | |
{ | |
Drp.field.dimm0DevWidth = 1; | |
Drp.field.dimm1DevWidth = 1; | |
} | |
// Density encoding in DRAMParams_t 0=512Mb, 1=Gb, 2=2Gb, 3=4Gb | |
// has to be mapped RANKDENSx encoding (0=1Gb) | |
Drp.field.dimm0DevDensity = mrc_params->params.DENSITY - 1; | |
Drp.field.dimm1DevDensity = mrc_params->params.DENSITY - 1; | |
// Address mode can be overwritten if ECC enabled | |
Drp.field.addressMap = mrc_params->address_mode; | |
isbW32m(MCU, DRP, Drp.raw); | |
Dco.field.PMICTL = 0; //0 - PRI owned by MEMORY_MANAGER | |
Dco.field.IC = 1; //1 - initialisation complete | |
isbW32m(MCU, DCO, Dco.raw); | |
LEAVEFN(); | |
} | |
// Configure refresh rate and short ZQ calibration interval. | |
// Activate dynamic self refresh. | |
static void change_refresh_period( | |
MRCParams_t *mrc_params) | |
{ | |
RegDRCF Drfc; | |
RegDCAL Dcal; | |
RegDPMC0 Dpmc0; | |
ENTERFN(); | |
Drfc.raw = isbR32m(MCU, DRFC); | |
Drfc.field.tREFI = mrc_params->refresh_rate; | |
Drfc.field.REFDBTCLR = 1; | |
isbW32m(MCU, DRFC, Drfc.raw); | |
Dcal.raw = isbR32m(MCU, DCAL); | |
Dcal.field.ZQCINT = 3; // 63ms | |
isbW32m(MCU, DCAL, Dcal.raw); | |
Dpmc0.raw = isbR32m(MCU, DPMC0); | |
Dpmc0.field.ENPHYCLKGATE = 1; | |
Dpmc0.field.DYNSREN = 1; | |
isbW32m(MCU, DPMC0, Dpmc0.raw); | |
LEAVEFN(); | |
} | |
// Send DRAM wake command | |
static void perform_wake( | |
MRCParams_t *mrc_params) | |
{ | |
ENTERFN(); | |
dram_wake_command(); | |
LEAVEFN(); | |
} | |
// prog_ddr_timing_control (aka mcu_init): | |
// POST_CODE[major] == 0x02 | |
// | |
// It will initialise timing registers in the MCU (DTR0..DTR4). | |
static void prog_ddr_timing_control( | |
MRCParams_t *mrc_params) | |
{ | |
uint8_t TCL, WL; | |
uint8_t TRP, TRCD, TRAS, TWR, TWTR, TRRD, TRTP, TFAW; | |
uint32_t TCK; | |
RegDTR0 Dtr0; | |
RegDTR1 Dtr1; | |
RegDTR2 Dtr2; | |
RegDTR3 Dtr3; | |
RegDTR4 Dtr4; | |
ENTERFN(); | |
// mcu_init starts | |
post_code(0x02, 0x00); | |
Dtr0.raw = isbR32m(MCU, DTR0); | |
Dtr1.raw = isbR32m(MCU, DTR1); | |
Dtr2.raw = isbR32m(MCU, DTR2); | |
Dtr3.raw = isbR32m(MCU, DTR3); | |
Dtr4.raw = isbR32m(MCU, DTR4); | |
TCK = tCK[mrc_params->ddr_speed]; // Clock in picoseconds | |
TCL = mrc_params->params.tCL; // CAS latency in clocks | |
TRP = TCL; // Per CAT MRC | |
TRCD = TCL; // Per CAT MRC | |
TRAS = MCEIL(mrc_params->params.tRAS, TCK); | |
TWR = MCEIL(15000, TCK); // Per JEDEC: tWR=15000ps DDR2/3 from 800-1600 | |
TWTR = MCEIL(mrc_params->params.tWTR, TCK); | |
TRRD = MCEIL(mrc_params->params.tRRD, TCK); | |
TRTP = 4; // Valid for 800 and 1066, use 5 for 1333 | |
TFAW = MCEIL(mrc_params->params.tFAW, TCK); | |
WL = 5 + mrc_params->ddr_speed; | |
Dtr0.field.dramFrequency = mrc_params->ddr_speed; | |
Dtr0.field.tCL = TCL - 5; //Convert from TCL (DRAM clocks) to VLV indx | |
Dtr0.field.tRP = TRP - 5; //5 bit DRAM Clock | |
Dtr0.field.tRCD = TRCD - 5; //5 bit DRAM Clock | |
Dtr1.field.tWCL = WL - 3; //Convert from WL (DRAM clocks) to VLV indx | |
Dtr1.field.tWTP = WL + 4 + TWR - 14; //Change to tWTP | |
Dtr1.field.tRTP = MMAX(TRTP, 4) - 3; //4 bit DRAM Clock | |
Dtr1.field.tRRD = TRRD - 4; //4 bit DRAM Clock | |
Dtr1.field.tCMD = 1; //2N | |
Dtr1.field.tRAS = TRAS - 14; //6 bit DRAM Clock | |
Dtr1.field.tFAW = ((TFAW + 1) >> 1) - 5; //4 bit DRAM Clock | |
Dtr1.field.tCCD = 0; //Set 4 Clock CAS to CAS delay (multi-burst) | |
Dtr2.field.tRRDR = 1; | |
Dtr2.field.tWWDR = 2; | |
Dtr2.field.tRWDR = 2; | |
Dtr3.field.tWRDR = 2; | |
Dtr3.field.tWRDD = 2; | |
if (mrc_params->ddr_speed == DDRFREQ_800) | |
{ | |
// Extended RW delay (+1) | |
Dtr3.field.tRWSR = TCL - 5 + 1; | |
} | |
else if(mrc_params->ddr_speed == DDRFREQ_1066) | |
{ | |
// Extended RW delay (+1) | |
Dtr3.field.tRWSR = TCL - 5 + 1; | |
} | |
Dtr3.field.tWRSR = 4 + WL + TWTR - 11; | |
if (mrc_params->ddr_speed == DDRFREQ_800) | |
{ | |
Dtr3.field.tXP = MMAX(0, 1 - Dtr1.field.tCMD); | |
} | |
else | |
{ | |
Dtr3.field.tXP = MMAX(0, 2 - Dtr1.field.tCMD); | |
} | |
Dtr4.field.WRODTSTRT = Dtr1.field.tCMD; | |
Dtr4.field.WRODTSTOP = Dtr1.field.tCMD; | |
Dtr4.field.RDODTSTRT = Dtr1.field.tCMD + Dtr0.field.tCL - Dtr1.field.tWCL + 2; //Convert from WL (DRAM clocks) to VLV indx | |
Dtr4.field.RDODTSTOP = Dtr1.field.tCMD + Dtr0.field.tCL - Dtr1.field.tWCL + 2; | |
Dtr4.field.TRGSTRDIS = 0; | |
Dtr4.field.ODTDIS = 0; | |
isbW32m(MCU, DTR0, Dtr0.raw); | |
isbW32m(MCU, DTR1, Dtr1.raw); | |
isbW32m(MCU, DTR2, Dtr2.raw); | |
isbW32m(MCU, DTR3, Dtr3.raw); | |
isbW32m(MCU, DTR4, Dtr4.raw); | |
LEAVEFN(); | |
} | |
// ddrphy_init: | |
// POST_CODE[major] == 0x03 | |
// | |
// This function performs some initialisation on the DDRIO unit. | |
// This function is dependent on BOARD_ID, DDR_SPEED, and CHANNEL_ENABLES. | |
static void ddrphy_init(MRCParams_t *mrc_params) | |
{ | |
uint32_t tempD; // temporary DWORD | |
uint8_t channel_i; // channel counter | |
uint8_t rank_i; // rank counter | |
uint8_t bl_grp_i; // byte lane group counter (2 BLs per module) | |
uint8_t bl_divisor = /*(mrc_params->channel_width==x16)?2:*/1; // byte lane divisor | |
uint8_t speed = mrc_params->ddr_speed & (BIT1|BIT0); // For DDR3 --> 0 == 800, 1 == 1066, 2 == 1333 | |
uint8_t tCAS; | |
uint8_t tCWL; | |
ENTERFN(); | |
tCAS = mrc_params->params.tCL; | |
tCWL = 5 + mrc_params->ddr_speed; | |
// ddrphy_init starts | |
post_code(0x03, 0x00); | |
// HSD#231531 | |
// Make sure IOBUFACT is deasserted before initialising the DDR PHY. | |
// HSD#234845 | |
// Make sure WRPTRENABLE is deasserted before initialising the DDR PHY. | |
for (channel_i=0; channel_i<NUM_CHANNELS; channel_i++) { | |
if (mrc_params->channel_enables & (1<<channel_i)) { | |
// Deassert DDRPHY Initialisation Complete | |
isbM32m(DDRPHY, (CMDPMCONFIG0 + (channel_i * DDRIOCCC_CH_OFFSET)), ~BIT20, BIT20); // SPID_INIT_COMPLETE=0 | |
// Deassert IOBUFACT | |
isbM32m(DDRPHY, (CMDCFGREG0 + (channel_i * DDRIOCCC_CH_OFFSET)), ~BIT2, BIT2); // IOBUFACTRST_N=0 | |
// Disable WRPTR | |
isbM32m(DDRPHY, (CMDPTRREG + (channel_i * DDRIOCCC_CH_OFFSET)), ~BIT0, BIT0); // WRPTRENABLE=0 | |
} // if channel enabled | |
} // channel_i loop | |
// Put PHY in reset | |
isbM32m(DDRPHY, MASTERRSTN, 0, BIT0); // PHYRSTN=0 | |
// Initialise DQ01,DQ23,CMD,CLK-CTL,COMP modules | |
// STEP0: | |
post_code(0x03, 0x10); | |
for (channel_i=0; channel_i<NUM_CHANNELS; channel_i++) { | |
if (mrc_params->channel_enables & (1<<channel_i)) { | |
// DQ01-DQ23 | |
for (bl_grp_i=0; bl_grp_i<((NUM_BYTE_LANES/bl_divisor)/2); bl_grp_i++) { | |
isbM32m(DDRPHY, (DQOBSCKEBBCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), ((bl_grp_i) ? (0x00) : (BIT22)), (BIT22)); // Analog MUX select - IO2xCLKSEL | |
// ODT Strength | |
switch (mrc_params->rd_odt_value) { | |
case 1: tempD = 0x3; break; // 60 ohm | |
case 2: tempD = 0x3; break; // 120 ohm | |
case 3: tempD = 0x3; break; // 180 ohm | |
default: tempD = 0x3; break; // 120 ohm | |
} | |
isbM32m(DDRPHY, (B0RXIOBUFCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (tempD<<5), (BIT6|BIT5)); // ODT strength | |
isbM32m(DDRPHY, (B1RXIOBUFCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (tempD<<5), (BIT6|BIT5)); // ODT strength | |
// Dynamic ODT/DIFFAMP | |
tempD = (((tCAS)<<24)|((tCAS)<<16)|((tCAS)<<8)|((tCAS)<<0)); | |
switch (speed) { | |
case 0: tempD -= 0x01010101; break; // 800 | |
case 1: tempD -= 0x02020202; break; // 1066 | |
case 2: tempD -= 0x03030303; break; // 1333 | |
case 3: tempD -= 0x04040404; break; // 1600 | |
} | |
isbM32m(DDRPHY, (B01LATCTL1 + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), tempD, ((BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT4|BIT3|BIT2|BIT1|BIT0))); // Launch Time: ODT, DIFFAMP, ODT, DIFFAMP | |
switch (speed) { | |
// HSD#234715 | |
case 0: tempD = ((0x06<<16)|(0x07<<8)); break; // 800 | |
case 1: tempD = ((0x07<<16)|(0x08<<8)); break; // 1066 | |
case 2: tempD = ((0x09<<16)|(0x0A<<8)); break; // 1333 | |
case 3: tempD = ((0x0A<<16)|(0x0B<<8)); break; // 1600 | |
} | |
isbM32m(DDRPHY, (B0ONDURCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), tempD, ((BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT13|BIT12|BIT11|BIT10|BIT9|BIT8))); // On Duration: ODT, DIFFAMP | |
isbM32m(DDRPHY, (B1ONDURCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), tempD, ((BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT13|BIT12|BIT11|BIT10|BIT9|BIT8))); // On Duration: ODT, DIFFAMP | |
switch (mrc_params->rd_odt_value) { | |
case 0: tempD = ((0x3F<<16)|(0x3f<<10)); break; // override DIFFAMP=on, ODT=off | |
default: tempD = ((0x3F<<16)|(0x2A<<10)); break; // override DIFFAMP=on, ODT=on | |
} | |
isbM32m(DDRPHY, (B0OVRCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), tempD, ((BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12|BIT11|BIT10))); // Override: DIFFAMP, ODT | |
isbM32m(DDRPHY, (B1OVRCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), tempD, ((BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12|BIT11|BIT10))); // Override: DIFFAMP, ODT | |
// DLL Setup | |
// 1xCLK Domain Timings: tEDP,RCVEN,WDQS (PO) | |
isbM32m(DDRPHY, (B0LATCTL0 + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (((tCAS+7)<<16)|((tCAS-4)<<8)|((tCWL-2)<<0)), ((BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT4|BIT3|BIT2|BIT1|BIT0))); // 1xCLK: tEDP, RCVEN, WDQS | |
isbM32m(DDRPHY, (B1LATCTL0 + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (((tCAS+7)<<16)|((tCAS-4)<<8)|((tCWL-2)<<0)), ((BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT4|BIT3|BIT2|BIT1|BIT0))); // 1xCLK: tEDP, RCVEN, WDQS | |
// RCVEN Bypass (PO) | |
isbM32m(DDRPHY, (B0RXIOBUFCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), ((0x0<<7)|(0x0<<0)), (BIT7|BIT0)); // AFE Bypass, RCVEN DIFFAMP | |
isbM32m(DDRPHY, (B1RXIOBUFCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), ((0x0<<7)|(0x0<<0)), (BIT7|BIT0)); // AFE Bypass, RCVEN DIFFAMP | |
// TX | |
isbM32m(DDRPHY, (DQCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (BIT16), (BIT16)); // 0 means driving DQ during DQS-preamble | |
isbM32m(DDRPHY, (B01PTRCTL1 + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (BIT8), (BIT8)); // WR_LVL mode disable | |
// RX (PO) | |
isbM32m(DDRPHY, (B0VREFCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), ((0x03<<2)|(0x0<<1)|(0x0<<0)), ((BIT7|BIT6|BIT5|BIT4|BIT3|BIT2)|BIT1|BIT0)); // Internal Vref Code, Enable#, Ext_or_Int (1=Ext) | |
isbM32m(DDRPHY, (B1VREFCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), ((0x03<<2)|(0x0<<1)|(0x0<<0)), ((BIT7|BIT6|BIT5|BIT4|BIT3|BIT2)|BIT1|BIT0)); // Internal Vref Code, Enable#, Ext_or_Int (1=Ext) | |
isbM32m(DDRPHY, (B0RXIOBUFCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (0), (BIT4)); // Per-Bit De-Skew Enable | |
isbM32m(DDRPHY, (B1RXIOBUFCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (0), (BIT4)); // Per-Bit De-Skew Enable | |
} | |
// CLKEBB | |
isbM32m(DDRPHY, (CMDOBSCKEBBCTL + (channel_i * DDRIOCCC_CH_OFFSET)), 0, (BIT23)); | |
// Enable tristate control of cmd/address bus | |
isbM32m(DDRPHY, (CMDCFGREG0 + (channel_i * DDRIOCCC_CH_OFFSET)), 0, (BIT1|BIT0)); | |
// ODT RCOMP | |
isbM32m(DDRPHY, (CMDRCOMPODT + (channel_i * DDRIOCCC_CH_OFFSET)), ((0x03<<5)|(0x03<<0)), ((BIT9|BIT8|BIT7|BIT6|BIT5)|(BIT4|BIT3|BIT2|BIT1|BIT0))); | |
// CMDPM* registers must be programmed in this order... | |
isbM32m(DDRPHY, (CMDPMDLYREG4 + (channel_i * DDRIOCCC_CH_OFFSET)), ((0xFFFFU<<16)|(0xFFFF<<0)), ((BIT31|BIT30|BIT29|BIT28|BIT27|BIT26|BIT25|BIT24|BIT23|BIT22|BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12|BIT11|BIT10|BIT9|BIT8|BIT7|BIT6|BIT5|BIT4|BIT3|BIT2|BIT1|BIT0))); // Turn On Delays: SFR (regulator), MPLL | |
isbM32m(DDRPHY, (CMDPMDLYREG3 + (channel_i * DDRIOCCC_CH_OFFSET)), ((0xFU<<28)|(0xFFF<<16)|(0xF<<12)|(0x616<<0)), ((BIT31|BIT30|BIT29|BIT28)|(BIT27|BIT26|BIT25|BIT24|BIT23|BIT22|BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12)|(BIT11|BIT10|BIT9|BIT8|BIT7|BIT6|BIT5|BIT4|BIT3|BIT2|BIT1|BIT0))); // Delays: ASSERT_IOBUFACT_to_ALLON0_for_PM_MSG_3, VREG (MDLL) Turn On, ALLON0_to_DEASSERT_IOBUFACT_for_PM_MSG_gt0, MDLL Turn On | |
isbM32m(DDRPHY, (CMDPMDLYREG2 + (channel_i * DDRIOCCC_CH_OFFSET)), ((0xFFU<<24)|(0xFF<<16)|(0xFF<<8)|(0xFF<<0)), ((BIT31|BIT30|BIT29|BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT23|BIT22|BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4|BIT3|BIT2|BIT1|BIT0))); // MPLL Divider Reset Delays | |
isbM32m(DDRPHY, (CMDPMDLYREG1 + (channel_i * DDRIOCCC_CH_OFFSET)), ((0xFFU<<24)|(0xFF<<16)|(0xFF<<8)|(0xFF<<0)), ((BIT31|BIT30|BIT29|BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT23|BIT22|BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4|BIT3|BIT2|BIT1|BIT0))); // Turn Off Delays: VREG, Staggered MDLL, MDLL, PI | |
isbM32m(DDRPHY, (CMDPMDLYREG0 + (channel_i * DDRIOCCC_CH_OFFSET)), ((0xFFU<<24)|(0xFF<<16)|(0xFF<<8)|(0xFF<<0)), ((BIT31|BIT30|BIT29|BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT23|BIT22|BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4|BIT3|BIT2|BIT1|BIT0))); // Turn On Delays: MPLL, Staggered MDLL, PI, IOBUFACT | |
isbM32m(DDRPHY, (CMDPMCONFIG0 + (channel_i * DDRIOCCC_CH_OFFSET)), ((0x6<<8)|BIT6|(0x4<<0)), (BIT31|BIT30|BIT29|BIT28|BIT27|BIT26|BIT25|BIT24|BIT23|BIT22|BIT21|(BIT11|BIT10|BIT9|BIT8)|BIT6|(BIT3|BIT2|BIT1|BIT0))); // Allow PUnit signals | |
isbM32m(DDRPHY, (CMDMDLLCTL + (channel_i * DDRIOCCC_CH_OFFSET)), ((0x3<<4)|(0x7<<0)), ((BIT6|BIT5|BIT4)|(BIT3|BIT2|BIT1|BIT0))); // DLL_VREG Bias Trim, VREF Tuning for DLL_VREG | |
// CLK-CTL | |
isbM32m(DDRPHY, (CCOBSCKEBBCTL + (channel_i * DDRIOCCC_CH_OFFSET)), 0, (BIT24)); // CLKEBB | |
isbM32m(DDRPHY, (CCCFGREG0 + (channel_i * DDRIOCCC_CH_OFFSET)), ((0x0<<16)|(0x0<<12)|(0x0<<8)|(0xF<<4)|BIT0), ((BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12)|(BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4)|BIT0)); // Buffer Enable: CS,CKE,ODT,CLK | |
isbM32m(DDRPHY, (CCRCOMPODT + (channel_i * DDRIOCCC_CH_OFFSET)), ((0x03<<8)|(0x03<<0)), ((BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT4|BIT3|BIT2|BIT1|BIT0))); // ODT RCOMP | |
isbM32m(DDRPHY, (CCMDLLCTL + (channel_i * DDRIOCCC_CH_OFFSET)), ((0x3<<4)|(0x7<<0)), ((BIT6|BIT5|BIT4)|(BIT3|BIT2|BIT1|BIT0))); // DLL_VREG Bias Trim, VREF Tuning for DLL_VREG | |
// COMP (RON channel specific) | |
// - DQ/DQS/DM RON: 32 Ohm | |
// - CTRL/CMD RON: 27 Ohm | |
// - CLK RON: 26 Ohm | |
isbM32m(DDRPHY, (DQVREFCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x08<<24)|(0x03<<16)), ((BIT29|BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT21|BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP Vref PU/PD | |
isbM32m(DDRPHY, (CMDVREFCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x0C<<24)|(0x03<<16)), ((BIT29|BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT21|BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP Vref PU/PD | |
isbM32m(DDRPHY, (CLKVREFCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x0F<<24)|(0x03<<16)), ((BIT29|BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT21|BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP Vref PU/PD | |
isbM32m(DDRPHY, (DQSVREFCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x08<<24)|(0x03<<16)), ((BIT29|BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT21|BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP Vref PU/PD | |
isbM32m(DDRPHY, (CTLVREFCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x0C<<24)|(0x03<<16)), ((BIT29|BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT21|BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP Vref PU/PD | |
// DQS Swapped Input Enable | |
isbM32m(DDRPHY, (COMPEN1CH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT19|BIT17), ((BIT31|BIT30)|BIT19|BIT17|(BIT15|BIT14))); | |
// ODT VREF = 1.5 x 274/360+274 = 0.65V (code of ~50) | |
isbM32m(DDRPHY, (DQVREFCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x32<<8)|(0x03<<0)), ((BIT13|BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT5|BIT4|BIT3|BIT2|BIT1|BIT0))); // ODT Vref PU/PD | |
isbM32m(DDRPHY, (DQSVREFCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x32<<8)|(0x03<<0)), ((BIT13|BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT5|BIT4|BIT3|BIT2|BIT1|BIT0))); // ODT Vref PU/PD | |
isbM32m(DDRPHY, (CLKVREFCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x0E<<8)|(0x05<<0)), ((BIT13|BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT5|BIT4|BIT3|BIT2|BIT1|BIT0))); // ODT Vref PU/PD | |
// Slew rate settings are frequency specific, numbers below are for 800Mhz (speed == 0) | |
// - DQ/DQS/DM/CLK SR: 4V/ns, | |
// - CTRL/CMD SR: 1.5V/ns | |
tempD = (0x0E<<16)|(0x0E<<12)|(0x08<<8)|(0x0B<<4)|(0x0B<<0); | |
isbM32m(DDRPHY, (DLYSELCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (tempD), ((BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12)|(BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4)|(BIT3|BIT2|BIT1|BIT0))); // DCOMP Delay Select: CTL,CMD,CLK,DQS,DQ | |
isbM32m(DDRPHY, (TCOVREFCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x05<<16)|(0x05<<8)|(0x05<<0)), ((BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT13|BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT5|BIT4|BIT3|BIT2|BIT1|BIT0))); // TCO Vref CLK,DQS,DQ | |
isbM32m(DDRPHY, (CCBUFODTCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x03<<8)|(0x03<<0)), ((BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT4|BIT3|BIT2|BIT1|BIT0))); // ODTCOMP CMD/CTL PU/PD | |
isbM32m(DDRPHY, (COMPEN0CH0 + (channel_i * DDRCOMP_CH_OFFSET)), (0), ((BIT31|BIT30)|BIT8)); // COMP | |
#ifdef BACKUP_COMPS | |
// DQ COMP Overrides | |
isbM32m(DDRPHY, (DQDRVPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0A<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PU | |
isbM32m(DDRPHY, (DQDRVPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0A<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PD | |
isbM32m(DDRPHY, (DQDLYPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x10<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PU | |
isbM32m(DDRPHY, (DQDLYPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x10<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PD | |
isbM32m(DDRPHY, (DQODTPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0B<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // ODTCOMP PU | |
isbM32m(DDRPHY, (DQODTPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0B<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // ODTCOMP PD | |
isbM32m(DDRPHY, (DQTCOPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31), (BIT31)); // TCOCOMP PU | |
isbM32m(DDRPHY, (DQTCOPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31), (BIT31)); // TCOCOMP PD | |
// DQS COMP Overrides | |
isbM32m(DDRPHY, (DQSDRVPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0A<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PU | |
isbM32m(DDRPHY, (DQSDRVPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0A<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PD | |
isbM32m(DDRPHY, (DQSDLYPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x10<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PU | |
isbM32m(DDRPHY, (DQSDLYPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x10<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PD | |
isbM32m(DDRPHY, (DQSODTPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0B<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // ODTCOMP PU | |
isbM32m(DDRPHY, (DQSODTPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0B<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // ODTCOMP PD | |
isbM32m(DDRPHY, (DQSTCOPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31), (BIT31)); // TCOCOMP PU | |
isbM32m(DDRPHY, (DQSTCOPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31), (BIT31)); // TCOCOMP PD | |
// CLK COMP Overrides | |
isbM32m(DDRPHY, (CLKDRVPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0C<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PU | |
isbM32m(DDRPHY, (CLKDRVPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0C<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PD | |
isbM32m(DDRPHY, (CLKDLYPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x07<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PU | |
isbM32m(DDRPHY, (CLKDLYPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x07<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PD | |
isbM32m(DDRPHY, (CLKODTPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0B<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // ODTCOMP PU | |
isbM32m(DDRPHY, (CLKODTPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0B<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // ODTCOMP PD | |
isbM32m(DDRPHY, (CLKTCOPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31), (BIT31)); // TCOCOMP PU | |
isbM32m(DDRPHY, (CLKTCOPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31), (BIT31)); // TCOCOMP PD | |
// CMD COMP Overrides | |
isbM32m(DDRPHY, (CMDDRVPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0D<<16)), (BIT31|(BIT21|BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PU | |
isbM32m(DDRPHY, (CMDDRVPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0D<<16)), (BIT31|(BIT21|BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PD | |
isbM32m(DDRPHY, (CMDDLYPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0A<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PU | |
isbM32m(DDRPHY, (CMDDLYPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0A<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PD | |
// CTL COMP Overrides | |
isbM32m(DDRPHY, (CTLDRVPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0D<<16)), (BIT31|(BIT21|BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PU | |
isbM32m(DDRPHY, (CTLDRVPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0D<<16)), (BIT31|(BIT21|BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PD | |
isbM32m(DDRPHY, (CTLDLYPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0A<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PU | |
isbM32m(DDRPHY, (CTLDLYPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0A<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PD | |
#else | |
// DQ TCOCOMP Overrides | |
isbM32m(DDRPHY, (DQTCOPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x1F<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // TCOCOMP PU | |
isbM32m(DDRPHY, (DQTCOPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x1F<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // TCOCOMP PD | |
// DQS TCOCOMP Overrides | |
isbM32m(DDRPHY, (DQSTCOPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x1F<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // TCOCOMP PU | |
isbM32m(DDRPHY, (DQSTCOPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x1F<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // TCOCOMP PD | |
// CLK TCOCOMP Overrides | |
isbM32m(DDRPHY, (CLKTCOPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x1F<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // TCOCOMP PU | |
isbM32m(DDRPHY, (CLKTCOPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x1F<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // TCOCOMP PD | |
#endif // BACKUP_COMPS | |
// program STATIC delays | |
#ifdef BACKUP_WCMD | |
set_wcmd(channel_i, ddr_wcmd[PLATFORM_ID]); | |
#else | |
set_wcmd(channel_i, ddr_wclk[PLATFORM_ID] + HALF_CLK); | |
#endif // BACKUP_WCMD | |
for (rank_i=0; rank_i<NUM_RANKS; rank_i++) { | |
if (mrc_params->rank_enables & (1<<rank_i)) { | |
set_wclk(channel_i, rank_i, ddr_wclk[PLATFORM_ID]); | |
#ifdef BACKUP_WCTL | |
set_wctl(channel_i, rank_i, ddr_wctl[PLATFORM_ID]); | |
#else | |
set_wctl(channel_i, rank_i, ddr_wclk[PLATFORM_ID] + HALF_CLK); | |
#endif // BACKUP_WCTL | |
} | |
} | |
} | |
} | |
// COMP (non channel specific) | |
//isbM32m(DDRPHY, (), (), ()); | |
isbM32m(DDRPHY, (DQANADRVPUCTL), (BIT30), (BIT30)); // RCOMP: Dither PU Enable | |
isbM32m(DDRPHY, (DQANADRVPDCTL), (BIT30), (BIT30)); // RCOMP: Dither PD Enable | |
isbM32m(DDRPHY, (CMDANADRVPUCTL), (BIT30), (BIT30)); // RCOMP: Dither PU Enable | |
isbM32m(DDRPHY, (CMDANADRVPDCTL), (BIT30), (BIT30)); // RCOMP: Dither PD Enable | |
isbM32m(DDRPHY, (CLKANADRVPUCTL), (BIT30), (BIT30)); // RCOMP: Dither PU Enable | |
isbM32m(DDRPHY, (CLKANADRVPDCTL), (BIT30), (BIT30)); // RCOMP: Dither PD Enable | |
isbM32m(DDRPHY, (DQSANADRVPUCTL), (BIT30), (BIT30)); // RCOMP: Dither PU Enable | |
isbM32m(DDRPHY, (DQSANADRVPDCTL), (BIT30), (BIT30)); // RCOMP: Dither PD Enable | |
isbM32m(DDRPHY, (CTLANADRVPUCTL), (BIT30), (BIT30)); // RCOMP: Dither PU Enable | |
isbM32m(DDRPHY, (CTLANADRVPDCTL), (BIT30), (BIT30)); // RCOMP: Dither PD Enable | |
isbM32m(DDRPHY, (DQANAODTPUCTL), (BIT30), (BIT30)); // ODT: Dither PU Enable | |
isbM32m(DDRPHY, (DQANAODTPDCTL), (BIT30), (BIT30)); // ODT: Dither PD Enable | |
isbM32m(DDRPHY, (CLKANAODTPUCTL), (BIT30), (BIT30)); // ODT: Dither PU Enable | |
isbM32m(DDRPHY, (CLKANAODTPDCTL), (BIT30), (BIT30)); // ODT: Dither PD Enable | |
isbM32m(DDRPHY, (DQSANAODTPUCTL), (BIT30), (BIT30)); // ODT: Dither PU Enable | |
isbM32m(DDRPHY, (DQSANAODTPDCTL), (BIT30), (BIT30)); // ODT: Dither PD Enable | |
isbM32m(DDRPHY, (DQANADLYPUCTL), (BIT30), (BIT30)); // DCOMP: Dither PU Enable | |
isbM32m(DDRPHY, (DQANADLYPDCTL), (BIT30), (BIT30)); // DCOMP: Dither PD Enable | |
isbM32m(DDRPHY, (CMDANADLYPUCTL), (BIT30), (BIT30)); // DCOMP: Dither PU Enable | |
isbM32m(DDRPHY, (CMDANADLYPDCTL), (BIT30), (BIT30)); // DCOMP: Dither PD Enable | |
isbM32m(DDRPHY, (CLKANADLYPUCTL), (BIT30), (BIT30)); // DCOMP: Dither PU Enable | |
isbM32m(DDRPHY, (CLKANADLYPDCTL), (BIT30), (BIT30)); // DCOMP: Dither PD Enable | |
isbM32m(DDRPHY, (DQSANADLYPUCTL), (BIT30), (BIT30)); // DCOMP: Dither PU Enable | |
isbM32m(DDRPHY, (DQSANADLYPDCTL), (BIT30), (BIT30)); // DCOMP: Dither PD Enable | |
isbM32m(DDRPHY, (CTLANADLYPUCTL), (BIT30), (BIT30)); // DCOMP: Dither PU Enable | |
isbM32m(DDRPHY, (CTLANADLYPDCTL), (BIT30), (BIT30)); // DCOMP: Dither PD Enable | |
isbM32m(DDRPHY, (DQANATCOPUCTL), (BIT30), (BIT30)); // TCO: Dither PU Enable | |
isbM32m(DDRPHY, (DQANATCOPDCTL), (BIT30), (BIT30)); // TCO: Dither PD Enable | |
isbM32m(DDRPHY, (CLKANATCOPUCTL), (BIT30), (BIT30)); // TCO: Dither PU Enable | |
isbM32m(DDRPHY, (CLKANATCOPDCTL), (BIT30), (BIT30)); // TCO: Dither PD Enable | |
isbM32m(DDRPHY, (DQSANATCOPUCTL), (BIT30), (BIT30)); // TCO: Dither PU Enable | |
isbM32m(DDRPHY, (DQSANATCOPDCTL), (BIT30), (BIT30)); // TCO: Dither PD Enable | |
isbM32m(DDRPHY, (TCOCNTCTRL), (0x1<<0), (BIT1|BIT0)); // TCOCOMP: Pulse Count | |
isbM32m(DDRPHY, (CHNLBUFSTATIC), ((0x03<<24)|(0x03<<16)), ((BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT20|BIT19|BIT18|BIT17|BIT16))); // ODT: CMD/CTL PD/PU | |
isbM32m(DDRPHY, (MSCNTR), (0x64<<0), (BIT7|BIT6|BIT5|BIT4|BIT3|BIT2|BIT1|BIT0)); // Set 1us counter | |
isbM32m(DDRPHY, (LATCH1CTL), (0x1<<28), (BIT30|BIT29|BIT28)); // ??? | |
// Release PHY from reset | |
isbM32m(DDRPHY, MASTERRSTN, BIT0, BIT0); // PHYRSTN=1 | |
// STEP1: | |
post_code(0x03, 0x11); | |
for (channel_i=0; channel_i<NUM_CHANNELS; channel_i++) { | |
if (mrc_params->channel_enables & (1<<channel_i)) { | |
// DQ01-DQ23 | |
for (bl_grp_i=0; bl_grp_i<((NUM_BYTE_LANES/bl_divisor)/2); bl_grp_i++) { | |
isbM32m(DDRPHY, (DQMDLLCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (BIT13), (BIT13)); // Enable VREG | |
delay_n(3); | |
} | |
// ECC | |
isbM32m(DDRPHY, (ECCMDLLCTL), (BIT13), (BIT13)); // Enable VREG | |
delay_n(3); | |
// CMD | |
isbM32m(DDRPHY, (CMDMDLLCTL + (channel_i * DDRIOCCC_CH_OFFSET)), (BIT13), (BIT13)); // Enable VREG | |
delay_n(3); | |
// CLK-CTL | |
isbM32m(DDRPHY, (CCMDLLCTL + (channel_i * DDRIOCCC_CH_OFFSET)), (BIT13), (BIT13)); // Enable VREG | |
delay_n(3); | |
} | |
} | |
// STEP2: | |
post_code(0x03, 0x12); | |
delay_n(200); | |
for (channel_i=0; channel_i<NUM_CHANNELS; channel_i++) { | |
if (mrc_params->channel_enables & (1<<channel_i)) { | |
// DQ01-DQ23 | |
for (bl_grp_i=0; bl_grp_i<((NUM_BYTE_LANES/bl_divisor)/2); bl_grp_i++) { | |
isbM32m(DDRPHY, (DQMDLLCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (BIT17), (BIT17)); // Enable MCDLL | |
delay_n(50); | |
} | |
// ECC | |
isbM32m(DDRPHY, (ECCMDLLCTL), (BIT17), (BIT17)); // Enable MCDLL | |
delay_n(50); | |
// CMD | |
isbM32m(DDRPHY, (CMDMDLLCTL + (channel_i * DDRIOCCC_CH_OFFSET)), (BIT18), (BIT18)); // Enable MCDLL | |
delay_n(50); | |
// CLK-CTL | |
isbM32m(DDRPHY, (CCMDLLCTL + (channel_i * DDRIOCCC_CH_OFFSET)), (BIT18), (BIT18)); // Enable MCDLL | |
delay_n(50); | |
} | |
} | |
// STEP3: | |
post_code(0x03, 0x13); | |
delay_n(100); | |
for (channel_i=0; channel_i<NUM_CHANNELS; channel_i++) { | |
if (mrc_params->channel_enables & (1<<channel_i)) { | |
// DQ01-DQ23 | |
for (bl_grp_i=0; bl_grp_i<((NUM_BYTE_LANES/bl_divisor)/2); bl_grp_i++) { | |
#ifdef FORCE_16BIT_DDRIO | |
tempD = ((bl_grp_i) && (mrc_params->channel_width == x16)) ? ((0x1<<12)|(0x1<<8)|(0xF<<4)|(0xF<<0)) : ((0xF<<12)|(0xF<<8)|(0xF<<4)|(0xF<<0)); | |
#else | |
tempD = ((0xF<<12)|(0xF<<8)|(0xF<<4)|(0xF<<0)); | |
#endif | |
isbM32m(DDRPHY, (DQDLLTXCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (tempD), ((BIT15|BIT14|BIT13|BIT12)|(BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4)|(BIT3|BIT2|BIT1|BIT0))); // Enable TXDLL | |
delay_n(3); | |
isbM32m(DDRPHY, (DQDLLRXCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (BIT3|BIT2|BIT1|BIT0), (BIT3|BIT2|BIT1|BIT0)); // Enable RXDLL | |
delay_n(3); | |
isbM32m(DDRPHY, (B0OVRCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (BIT3|BIT2|BIT1|BIT0), (BIT3|BIT2|BIT1|BIT0)); // Enable RXDLL Overrides BL0 | |
} | |
// ECC | |
tempD = ((0xF<<12)|(0xF<<8)|(0xF<<4)|(0xF<<0)); | |
isbM32m(DDRPHY, (ECCDLLTXCTL), (tempD), ((BIT15|BIT14|BIT13|BIT12)|(BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4)|(BIT3|BIT2|BIT1|BIT0))); // Enable TXDLL | |
delay_n(3); | |
// CMD (PO) | |
isbM32m(DDRPHY, (CMDDLLTXCTL + (channel_i * DDRIOCCC_CH_OFFSET)), ((0xF<<12)|(0xF<<8)|(0xF<<4)|(0xF<<0)), ((BIT15|BIT14|BIT13|BIT12)|(BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4)|(BIT3|BIT2|BIT1|BIT0))); // Enable TXDLL | |
delay_n(3); | |
} | |
} | |
// STEP4: | |
post_code(0x03, 0x14); | |
for (channel_i=0; channel_i<NUM_CHANNELS; channel_i++) { | |
if (mrc_params->channel_enables & (1<<channel_i)) { | |
// Host To Memory Clock Alignment (HMC) for 800/1066 | |
for (bl_grp_i=0; bl_grp_i<((NUM_BYTE_LANES/bl_divisor)/2); bl_grp_i++) { | |
isbM32m(DDRPHY, (DQCLKALIGNREG2 + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), ((bl_grp_i)?(0x3):(0x1)), (BIT3|BIT2|BIT1|BIT0)); // CLK_ALIGN_MOD_ID | |
} | |
isbM32m(DDRPHY, (ECCCLKALIGNREG2 + (channel_i * DDRIODQ_CH_OFFSET)), 0x2, (BIT3|BIT2|BIT1|BIT0)); // CLK_ALIGN_MOD_ID | |
isbM32m(DDRPHY, (CMDCLKALIGNREG2 + (channel_i * DDRIODQ_CH_OFFSET)), 0x0, (BIT3|BIT2|BIT1|BIT0)); // CLK_ALIGN_MOD_ID | |
isbM32m(DDRPHY, (CCCLKALIGNREG2 + (channel_i * DDRIODQ_CH_OFFSET)), 0x2, (BIT3|BIT2|BIT1|BIT0)); // CLK_ALIGN_MOD_ID | |
isbM32m(DDRPHY, (CMDCLKALIGNREG0 + (channel_i * DDRIOCCC_CH_OFFSET)), (0x2<<4), (BIT5|BIT4)); // CLK_ALIGN_MODE | |
isbM32m(DDRPHY, (CMDCLKALIGNREG1 + (channel_i * DDRIOCCC_CH_OFFSET)), ((0x18<<16)|(0x10<<8)|(0x8<<2)|(0x1<<0)), ((BIT22|BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT14|BIT13|BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4|BIT3|BIT2)|(BIT1|BIT0))); // NUM_SAMPLES, MAX_SAMPLES, MACRO_PI_STEP, MICRO_PI_STEP | |
isbM32m(DDRPHY, (CMDCLKALIGNREG2 + (channel_i * DDRIOCCC_CH_OFFSET)), ((0x10<<16)|(0x4<<8)|(0x2<<4)), ((BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4))); // ???, TOTAL_NUM_MODULES, FIRST_U_PARTITION | |
#ifdef HMC_TEST | |
isbM32m(DDRPHY, (CMDCLKALIGNREG0 + (channel_i * DDRIOCCC_CH_OFFSET)), BIT24, BIT24); // START_CLK_ALIGN=1 | |
while (isbR32m(DDRPHY, (CMDCLKALIGNREG0 + (channel_i * DDRIOCCC_CH_OFFSET))) & BIT24); // wait for START_CLK_ALIGN=0 | |
#endif // HMC_TEST | |
// Set RD/WR Pointer Seperation & COUNTEN & FIFOPTREN | |
isbM32m(DDRPHY, (CMDPTRREG + (channel_i * DDRIOCCC_CH_OFFSET)), BIT0, BIT0); // WRPTRENABLE=1 | |
#ifdef SIM | |
// comp is not working on simulator | |
#else | |
// COMP initial | |
isbM32m(DDRPHY, (COMPEN0CH0 + (channel_i * DDRCOMP_CH_OFFSET)), BIT5, BIT5); // enable bypass for CLK buffer (PO) | |
isbM32m(DDRPHY, (CMPCTRL), (BIT0), (BIT0)); // Initial COMP Enable | |
while (isbR32m(DDRPHY, (CMPCTRL)) & BIT0); // wait for Initial COMP Enable = 0 | |
isbM32m(DDRPHY, (COMPEN0CH0 + (channel_i * DDRCOMP_CH_OFFSET)), ~BIT5, BIT5); // disable bypass for CLK buffer (PO) | |
#endif | |
// IOBUFACT | |
// STEP4a | |
isbM32m(DDRPHY, (CMDCFGREG0 + (channel_i * DDRIOCCC_CH_OFFSET)), BIT2, BIT2); // IOBUFACTRST_N=1 | |
// DDRPHY initialisation complete | |
isbM32m(DDRPHY, (CMDPMCONFIG0 + (channel_i * DDRIOCCC_CH_OFFSET)), BIT20, BIT20); // SPID_INIT_COMPLETE=1 | |
} | |
} | |
LEAVEFN(); | |
return; | |
} | |
// jedec_init (aka PerformJedecInit): | |
// This function performs JEDEC initialisation on all enabled channels. | |
static void jedec_init( | |
MRCParams_t *mrc_params, | |
uint32_t silent) | |
{ | |
uint8_t TWR, WL, Rank; | |
uint32_t TCK; | |
RegDTR0 DTR0reg; | |
DramInitDDR3MRS0 mrs0Command; | |
DramInitDDR3EMR1 emrs1Command; | |
DramInitDDR3EMR2 emrs2Command; | |
DramInitDDR3EMR3 emrs3Command; | |
ENTERFN(); | |
// jedec_init starts | |
if (!silent) | |
{ | |
post_code(0x04, 0x00); | |
} | |
// Assert RESET# for 200us | |
isbM32m(DDRPHY, CCDDR3RESETCTL, BIT1, (BIT8|BIT1)); // DDR3_RESET_SET=0, DDR3_RESET_RESET=1 | |
#ifdef QUICKSIM | |
// Don't waste time during simulation | |
delay_u(2); | |
#else | |
delay_u(200); | |
#endif | |
isbM32m(DDRPHY, CCDDR3RESETCTL, BIT8, (BIT8|BIT1)); // DDR3_RESET_SET=1, DDR3_RESET_RESET=0 | |
DTR0reg.raw = isbR32m(MCU, DTR0); | |
// Set CKEVAL for populated ranks | |
// then send NOP to each rank (#4550197) | |
{ | |
uint32_t DRPbuffer; | |
uint32_t DRMCbuffer; | |
DRPbuffer = isbR32m(MCU, DRP); | |
DRPbuffer &= 0x3; | |
DRMCbuffer = isbR32m(MCU, DRMC); | |
DRMCbuffer &= 0xFFFFFFFC; | |
DRMCbuffer |= (BIT4 | DRPbuffer); | |
isbW32m(MCU, DRMC, DRMCbuffer); | |
for (Rank = 0; Rank < NUM_RANKS; Rank++) | |
{ | |
// Skip to next populated rank | |
if ((mrc_params->rank_enables & (1 << Rank)) == 0) | |
{ | |
continue; | |
} | |
dram_init_command(DCMD_NOP(Rank)); | |
} | |
isbW32m(MCU, DRMC, DRMC_DEFAULT); | |
} | |
// setup for emrs 2 | |
// BIT[15:11] --> Always "0" | |
// BIT[10:09] --> Rtt_WR: want "Dynamic ODT Off" (0) | |
// BIT[08] --> Always "0" | |
// BIT[07] --> SRT: use sr_temp_range | |
// BIT[06] --> ASR: want "Manual SR Reference" (0) | |
// BIT[05:03] --> CWL: use oem_tCWL | |
// BIT[02:00] --> PASR: want "Full Array" (0) | |
emrs2Command.raw = 0; | |
emrs2Command.field.bankAddress = 2; | |
WL = 5 + mrc_params->ddr_speed; | |
emrs2Command.field.CWL = WL - 5; | |
emrs2Command.field.SRT = mrc_params->sr_temp_range; | |
// setup for emrs 3 | |
// BIT[15:03] --> Always "0" | |
// BIT[02] --> MPR: want "Normal Operation" (0) | |
// BIT[01:00] --> MPR_Loc: want "Predefined Pattern" (0) | |
emrs3Command.raw = 0; | |
emrs3Command.field.bankAddress = 3; | |
// setup for emrs 1 | |
// BIT[15:13] --> Always "0" | |
// BIT[12:12] --> Qoff: want "Output Buffer Enabled" (0) | |
// BIT[11:11] --> TDQS: want "Disabled" (0) | |
// BIT[10:10] --> Always "0" | |
// BIT[09,06,02] --> Rtt_nom: use rtt_nom_value | |
// BIT[08] --> Always "0" | |
// BIT[07] --> WR_LVL: want "Disabled" (0) | |
// BIT[05,01] --> DIC: use ron_value | |
// BIT[04:03] --> AL: additive latency want "0" (0) | |
// BIT[00] --> DLL: want "Enable" (0) | |
// | |
// (BIT5|BIT1) set Ron value | |
// 00 --> RZQ/6 (40ohm) | |
// 01 --> RZQ/7 (34ohm) | |
// 1* --> RESERVED | |
// | |
// (BIT9|BIT6|BIT2) set Rtt_nom value | |
// 000 --> Disabled | |
// 001 --> RZQ/4 ( 60ohm) | |
// 010 --> RZQ/2 (120ohm) | |
// 011 --> RZQ/6 ( 40ohm) | |
// 1** --> RESERVED | |
emrs1Command.raw = 0; | |
emrs1Command.field.bankAddress = 1; | |
emrs1Command.field.dllEnabled = 0; // 0 = Enable , 1 = Disable | |
if (mrc_params->ron_value == 0) | |
{ | |
emrs1Command.field.DIC0 = DDR3_EMRS1_DIC_34; | |
} | |
else | |
{ | |
emrs1Command.field.DIC0 = DDR3_EMRS1_DIC_40; | |
} | |
if (mrc_params->rtt_nom_value == 0) | |
{ | |
emrs1Command.raw |= (DDR3_EMRS1_RTTNOM_40 << 6); | |
} | |
else if (mrc_params->rtt_nom_value == 1) | |
{ | |
emrs1Command.raw |= (DDR3_EMRS1_RTTNOM_60 << 6); | |
} | |
else if (mrc_params->rtt_nom_value == 2) | |
{ | |
emrs1Command.raw |= (DDR3_EMRS1_RTTNOM_120 << 6); | |
} | |
// save MRS1 value (excluding control fields) | |
mrc_params->mrs1 = emrs1Command.raw >> 6; | |
// setup for mrs 0 | |
// BIT[15:13] --> Always "0" | |
// BIT[12] --> PPD: for Quark (1) | |
// BIT[11:09] --> WR: use oem_tWR | |
// BIT[08] --> DLL: want "Reset" (1, self clearing) | |
// BIT[07] --> MODE: want "Normal" (0) | |
// BIT[06:04,02] --> CL: use oem_tCAS | |
// BIT[03] --> RD_BURST_TYPE: want "Interleave" (1) | |
// BIT[01:00] --> BL: want "8 Fixed" (0) | |
// WR: | |
// 0 --> 16 | |
// 1 --> 5 | |
// 2 --> 6 | |
// 3 --> 7 | |
// 4 --> 8 | |
// 5 --> 10 | |
// 6 --> 12 | |
// 7 --> 14 | |
// CL: | |
// BIT[02:02] "0" if oem_tCAS <= 11 (1866?) | |
// BIT[06:04] use oem_tCAS-4 | |
mrs0Command.raw = 0; | |
mrs0Command.field.bankAddress = 0; | |
mrs0Command.field.dllReset = 1; | |
mrs0Command.field.BL = 0; | |
mrs0Command.field.PPD = 1; | |
mrs0Command.field.casLatency = DTR0reg.field.tCL + 1; | |
TCK = tCK[mrc_params->ddr_speed]; | |
TWR = MCEIL(15000, TCK); // Per JEDEC: tWR=15000ps DDR2/3 from 800-1600 | |
mrs0Command.field.writeRecovery = TWR - 4; | |
for (Rank = 0; Rank < NUM_RANKS; Rank++) | |
{ | |
// Skip to next populated rank | |
if ((mrc_params->rank_enables & (1 << Rank)) == 0) | |
{ | |
continue; | |
} | |
emrs2Command.field.rankSelect = Rank; | |
dram_init_command(emrs2Command.raw); | |
emrs3Command.field.rankSelect = Rank; | |
dram_init_command(emrs3Command.raw); | |
emrs1Command.field.rankSelect = Rank; | |
dram_init_command(emrs1Command.raw); | |
mrs0Command.field.rankSelect = Rank; | |
dram_init_command(mrs0Command.raw); | |
dram_init_command(DCMD_ZQCL(Rank)); | |
} | |
LEAVEFN(); | |
return; | |
} | |
// rcvn_cal: | |
// POST_CODE[major] == 0x05 | |
// | |
// This function will perform our RCVEN Calibration Algorithm. | |
// We will only use the 2xCLK domain timings to perform RCVEN Calibration. | |
// All byte lanes will be calibrated "simultaneously" per channel per rank. | |
static void rcvn_cal( | |
MRCParams_t *mrc_params) | |
{ | |
uint8_t channel_i; // channel counter | |
uint8_t rank_i; // rank counter | |
uint8_t bl_i; // byte lane counter | |
uint8_t bl_divisor = (mrc_params->channel_width == x16) ? 2 : 1; // byte lane divisor | |
#ifdef R2R_SHARING | |
uint32_t final_delay[NUM_CHANNELS][NUM_BYTE_LANES]; // used to find placement for rank2rank sharing configs | |
#ifndef BACKUP_RCVN | |
uint32_t num_ranks_enabled = 0; // used to find placement for rank2rank sharing configs | |
#endif // BACKUP_RCVN | |
#endif // R2R_SHARING | |
#ifdef BACKUP_RCVN | |
#else | |
uint32_t tempD; // temporary DWORD | |
uint32_t delay[NUM_BYTE_LANES]; // absolute PI value to be programmed on the byte lane | |
RegDTR1 dtr1; | |
RegDTR1 dtr1save; | |
#endif // BACKUP_RCVN | |
ENTERFN(); | |
// rcvn_cal starts | |
post_code(0x05, 0x00); | |
#ifndef BACKUP_RCVN | |
// need separate burst to sample DQS preamble | |
dtr1.raw = dtr1save.raw = isbR32m(MCU, DTR1); | |
dtr1.field.tCCD = 1; | |
isbW32m(MCU, DTR1, dtr1.raw); | |
#endif | |
#ifdef R2R_SHARING | |
// need to set "final_delay[][]" elements to "0" | |
memset((void *) (final_delay), 0x00, (size_t) sizeof(final_delay)); | |
#endif // R2R_SHARING | |
// loop through each enabled channel | |
for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++) | |
{ | |
if (mrc_params->channel_enables & (1 << channel_i)) | |
{ | |
// perform RCVEN Calibration on a per rank basis | |
for (rank_i = 0; rank_i < NUM_RANKS; rank_i++) | |
{ | |
if (mrc_params->rank_enables & (1 << rank_i)) | |
{ | |
// POST_CODE here indicates the current channel and rank being calibrated | |
post_code(0x05, (0x10 + ((channel_i << 4) | rank_i))); | |
#ifdef BACKUP_RCVN | |
// set hard-coded timing values | |
for (bl_i=0; bl_i<(NUM_BYTE_LANES/bl_divisor); bl_i++) | |
{ | |
set_rcvn(channel_i, rank_i, bl_i, ddr_rcvn[PLATFORM_ID]); | |
} | |
#else | |
// enable FIFORST | |
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i += 2) | |
{ | |
isbM32m(DDRPHY, (B01PTRCTL1 + ((bl_i >> 1) * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), 0, | |
BIT8); // 0 is enabled | |
} // bl_i loop | |
// initialise the starting delay to 128 PI (tCAS +1 CLK) | |
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) | |
{ | |
#ifdef SIM | |
// Original value was late at the end of DQS sequence | |
delay[bl_i] = 3 * FULL_CLK; | |
#else | |
delay[bl_i] = (4 + 1) * FULL_CLK; // 1x CLK domain timing is tCAS-4 | |
#endif | |
set_rcvn(channel_i, rank_i, bl_i, delay[bl_i]); | |
} // bl_i loop | |
// now find the rising edge | |
find_rising_edge(mrc_params, delay, channel_i, rank_i, true); | |
// Now increase delay by 32 PI (1/4 CLK) to place in center of high pulse. | |
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) | |
{ | |
delay[bl_i] += QRTR_CLK; | |
set_rcvn(channel_i, rank_i, bl_i, delay[bl_i]); | |
} // bl_i loop | |
// Now decrement delay by 128 PI (1 CLK) until we sample a "0" | |
do | |
{ | |
tempD = sample_dqs(mrc_params, channel_i, rank_i, true); | |
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) | |
{ | |
if (tempD & (1 << bl_i)) | |
{ | |
if (delay[bl_i] >= FULL_CLK) | |
{ | |
delay[bl_i] -= FULL_CLK; | |
set_rcvn(channel_i, rank_i, bl_i, delay[bl_i]); | |
} | |
else | |
{ | |
// not enough delay | |
training_message(channel_i, rank_i, bl_i); | |
post_code(0xEE, 0x50); | |
} | |
} | |
} // bl_i loop | |
} while (tempD & 0xFF); | |
#ifdef R2R_SHARING | |
// increment "num_ranks_enabled" | |
num_ranks_enabled++; | |
// Finally increment delay by 32 PI (1/4 CLK) to place in center of preamble. | |
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) | |
{ | |
delay[bl_i] += QRTR_CLK; | |
// add "delay[]" values to "final_delay[][]" for rolling average | |
final_delay[channel_i][bl_i] += delay[bl_i]; | |
// set timing based on rolling average values | |
set_rcvn(channel_i, rank_i, bl_i, ((final_delay[channel_i][bl_i]) / num_ranks_enabled)); | |
} // bl_i loop | |
#else | |
// Finally increment delay by 32 PI (1/4 CLK) to place in center of preamble. | |
for (bl_i=0; bl_i<(NUM_BYTE_LANES/bl_divisor); bl_i++) | |
{ | |
delay[bl_i] += QRTR_CLK; | |
set_rcvn(channel_i, rank_i, bl_i, delay[bl_i]); | |
} // bl_i loop | |
#endif // R2R_SHARING | |
// disable FIFORST | |
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i += 2) | |
{ | |
isbM32m(DDRPHY, (B01PTRCTL1 + ((bl_i >> 1) * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), BIT8, | |
BIT8); // 1 is disabled | |
} // bl_i loop | |
#endif // BACKUP_RCVN | |
} // if rank is enabled | |
} // rank_i loop | |
} // if channel is enabled | |
} // channel_i loop | |
#ifndef BACKUP_RCVN | |
// restore original | |
isbW32m(MCU, DTR1, dtr1save.raw); | |
#endif | |
#ifdef MRC_SV | |
if (mrc_params->tune_rcvn) | |
{ | |
uint32_t rcven, val; | |
uint32_t rdcmd2rcven; | |
/* | |
Formulas for RDCMD2DATAVALID & DIFFAMP dynamic timings | |
1. Set after RCVEN training | |
//Tune RDCMD2DATAVALID | |
x80/x84[21:16] | |
MAX OF 2 RANKS : round up (rdcmd2rcven (rcven 1x) + 2x x 2 + PI/128) + 5 | |
//rdcmd2rcven x80/84[12:8] | |
//rcven 2x x70[23:20] & [11:8] | |
//Tune DIFFAMP Timings | |
//diffampen launch x88[20:16] & [4:0] -- B01LATCTL1 | |
MIN OF 2 RANKS : round down (rcven 1x + 2x x 2 + PI/128) - 1 | |
//diffampen length x8C/x90 [13:8] -- B0ONDURCTL B1ONDURCTL | |
MAX OF 2 RANKS : roundup (rcven 1x + 2x x 2 + PI/128) + 5 | |
2. need to do a fiforst after settings these values | |
*/ | |
DPF(D_INFO, "BEFORE\n"); | |
DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B0LATCTL0)); | |
DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B01LATCTL1)); | |
DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B0ONDURCTL)); | |
DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B1LATCTL0)); | |
DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B1ONDURCTL)); | |
rcven = get_rcvn(0, 0, 0) / 128; | |
rdcmd2rcven = (isbR32m(DDRPHY, B0LATCTL0) >> 8) & 0x1F; | |
val = rdcmd2rcven + rcven + 6; | |
isbM32m(DDRPHY, B0LATCTL0, val << 16, (BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)); | |
val = rdcmd2rcven + rcven - 1; | |
isbM32m(DDRPHY, B01LATCTL1, val << 0, (BIT4|BIT3|BIT2|BIT1|BIT0)); | |
val = rdcmd2rcven + rcven + 5; | |
isbM32m(DDRPHY, B0ONDURCTL, val << 8, (BIT13|BIT12|BIT11|BIT10|BIT9|BIT8)); | |
rcven = get_rcvn(0, 0, 1) / 128; | |
rdcmd2rcven = (isbR32m(DDRPHY, B1LATCTL0) >> 8) & 0x1F; | |
val = rdcmd2rcven + rcven + 6; | |
isbM32m(DDRPHY, B1LATCTL0, val << 16, (BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)); | |
val = rdcmd2rcven + rcven - 1; | |
isbM32m(DDRPHY, B01LATCTL1, val << 16, (BIT20|BIT19|BIT18|BIT17|BIT16)); | |
val = rdcmd2rcven + rcven + 5; | |
isbM32m(DDRPHY, B1ONDURCTL, val << 8, (BIT13|BIT12|BIT11|BIT10|BIT9|BIT8)); | |
DPF(D_INFO, "AFTER\n"); | |
DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B0LATCTL0)); | |
DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B01LATCTL1)); | |
DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B0ONDURCTL)); | |
DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B1LATCTL0)); | |
DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B1ONDURCTL)); | |
DPF(D_INFO, "\nPress a key\n"); | |
mgetc(); | |
// fifo reset | |
isbM32m(DDRPHY, B01PTRCTL1, 0, BIT8); // 0 is enabled | |
delay_n(3); | |
isbM32m(DDRPHY, B01PTRCTL1, BIT8, BIT8); // 1 is disabled | |
} | |
#endif | |
LEAVEFN(); | |
return; | |
} | |
// Check memory executing write/read/verify of many data patterns | |
// at the specified address. Bits in the result indicate failure | |
// on specific byte lane. | |
static uint32_t check_bls_ex( | |
MRCParams_t *mrc_params, | |
uint32_t address) | |
{ | |
uint32_t result; | |
uint8_t first_run = 0; | |
if (mrc_params->hte_setup) | |
{ | |
mrc_params->hte_setup = 0; | |
first_run = 1; | |
select_hte(mrc_params); | |
} | |
result = WriteStressBitLanesHTE(mrc_params, address, first_run); | |
DPF(D_TRN, "check_bls_ex result is %x\n", result); | |
return result; | |
} | |
// Check memory executing simple write/read/verify at | |
// the specified address. Bits in the result indicate failure | |
// on specific byte lane. | |
static uint32_t check_rw_coarse( | |
MRCParams_t *mrc_params, | |
uint32_t address) | |
{ | |
uint32_t result = 0; | |
uint8_t first_run = 0; | |
if (mrc_params->hte_setup) | |
{ | |
mrc_params->hte_setup = 0; | |
first_run = 1; | |
select_hte(mrc_params); | |
} | |
result = BasicWriteReadHTE(mrc_params, address, first_run, WRITE_TRAIN); | |
DPF(D_TRN, "check_rw_coarse result is %x\n", result); | |
return result; | |
} | |
// wr_level: | |
// POST_CODE[major] == 0x06 | |
// | |
// This function will perform the Write Levelling algorithm (align WCLK and WDQS). | |
// This algorithm will act on each rank in each channel separately. | |
static void wr_level( | |
MRCParams_t *mrc_params) | |
{ | |
uint8_t channel_i; // channel counter | |
uint8_t rank_i; // rank counter | |
uint8_t bl_i; // byte lane counter | |
uint8_t bl_divisor = (mrc_params->channel_width == x16) ? 2 : 1; // byte lane divisor | |
#ifdef R2R_SHARING | |
uint32_t final_delay[NUM_CHANNELS][NUM_BYTE_LANES]; // used to find placement for rank2rank sharing configs | |
#ifndef BACKUP_WDQS | |
uint32_t num_ranks_enabled = 0; // used to find placement for rank2rank sharing configs | |
#endif // BACKUP_WDQS | |
#endif // R2R_SHARING | |
#ifdef BACKUP_WDQS | |
#else | |
bool all_edges_found; // determines stop condition for CRS_WR_LVL | |
uint32_t delay[NUM_BYTE_LANES]; // absolute PI value to be programmed on the byte lane | |
// static makes it so the data is loaded in the heap once by shadow(), where | |
// non-static copies the data onto the stack every time this function is called. | |
uint32_t address; // address to be checked during COARSE_WR_LVL | |
RegDTR4 dtr4; | |
RegDTR4 dtr4save; | |
#endif // BACKUP_WDQS | |
ENTERFN(); | |
// wr_level starts | |
post_code(0x06, 0x00); | |
#ifdef R2R_SHARING | |
// need to set "final_delay[][]" elements to "0" | |
memset((void *) (final_delay), 0x00, (size_t) sizeof(final_delay)); | |
#endif // R2R_SHARING | |
// loop through each enabled channel | |
for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++) | |
{ | |
if (mrc_params->channel_enables & (1 << channel_i)) | |
{ | |
// perform WRITE LEVELING algorithm on a per rank basis | |
for (rank_i = 0; rank_i < NUM_RANKS; rank_i++) | |
{ | |
if (mrc_params->rank_enables & (1 << rank_i)) | |
{ | |
// POST_CODE here indicates the current rank and channel being calibrated | |
post_code(0x06, (0x10 + ((channel_i << 4) | rank_i))); | |
#ifdef BACKUP_WDQS | |
for (bl_i=0; bl_i<(NUM_BYTE_LANES/bl_divisor); bl_i++) | |
{ | |
set_wdqs(channel_i, rank_i, bl_i, ddr_wdqs[PLATFORM_ID]); | |
set_wdq(channel_i, rank_i, bl_i, (ddr_wdqs[PLATFORM_ID] - QRTR_CLK)); | |
} | |
#else | |
{ // Begin product specific code | |
// perform a single PRECHARGE_ALL command to make DRAM state machine go to IDLE state | |
dram_init_command(DCMD_PREA(rank_i)); | |
// enable Write Levelling Mode (EMRS1 w/ Write Levelling Mode Enable) | |
dram_init_command(DCMD_MRS1(rank_i,0x0082)); | |
// set ODT DRAM Full Time Termination disable in MCU | |
dtr4.raw = dtr4save.raw = isbR32m(MCU, DTR4); | |
dtr4.field.ODTDIS = 1; | |
isbW32m(MCU, DTR4, dtr4.raw); | |
for (bl_i = 0; bl_i < ((NUM_BYTE_LANES / bl_divisor) / 2); bl_i++) | |
{ | |
isbM32m(DDRPHY, DQCTL + (DDRIODQ_BL_OFFSET * bl_i) + (DDRIODQ_CH_OFFSET * channel_i), | |
(BIT28 | (0x1 << 8) | (0x1 << 6) | (0x1 << 4) | (0x1 << 2)), | |
(BIT28 | (BIT9|BIT8) | (BIT7|BIT6) | (BIT5|BIT4) | (BIT3|BIT2))); // Enable Sandy Bridge Mode (WDQ Tri-State) & Ensure 5 WDQS pulses during Write Leveling | |
} | |
isbM32m(DDRPHY, CCDDR3RESETCTL + (DDRIOCCC_CH_OFFSET * channel_i), (BIT16), (BIT16)); // Write Leveling Mode enabled in IO | |
} // End product specific code | |
// Initialise the starting delay to WCLK | |
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) | |
{ | |
{ // Begin product specific code | |
// CLK0 --> RK0 | |
// CLK1 --> RK1 | |
delay[bl_i] = get_wclk(channel_i, rank_i); | |
} // End product specific code | |
set_wdqs(channel_i, rank_i, bl_i, delay[bl_i]); | |
} // bl_i loop | |
// now find the rising edge | |
find_rising_edge(mrc_params, delay, channel_i, rank_i, false); | |
{ // Begin product specific code | |
// disable Write Levelling Mode | |
isbM32m(DDRPHY, CCDDR3RESETCTL + (DDRIOCCC_CH_OFFSET * channel_i), (0), (BIT16)); // Write Leveling Mode disabled in IO | |
for (bl_i = 0; bl_i < ((NUM_BYTE_LANES / bl_divisor) / 2); bl_i++) | |
{ | |
isbM32m(DDRPHY, DQCTL + (DDRIODQ_BL_OFFSET * bl_i) + (DDRIODQ_CH_OFFSET * channel_i), | |
((0x1 << 8) | (0x1 << 6) | (0x1 << 4) | (0x1 << 2)), | |
(BIT28 | (BIT9|BIT8) | (BIT7|BIT6) | (BIT5|BIT4) | (BIT3|BIT2))); // Disable Sandy Bridge Mode & Ensure 4 WDQS pulses during normal operation | |
} // bl_i loop | |
// restore original DTR4 | |
isbW32m(MCU, DTR4, dtr4save.raw); | |
// restore original value (Write Levelling Mode Disable) | |
dram_init_command(DCMD_MRS1(rank_i, mrc_params->mrs1)); | |
// perform a single PRECHARGE_ALL command to make DRAM state machine go to IDLE state | |
dram_init_command(DCMD_PREA(rank_i)); | |
} // End product specific code | |
post_code(0x06, (0x30 + ((channel_i << 4) | rank_i))); | |
// COARSE WRITE LEVEL: | |
// check that we're on the correct clock edge | |
// hte reconfiguration request | |
mrc_params->hte_setup = 1; | |
// start CRS_WR_LVL with WDQS = WDQS + 128 PI | |
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) | |
{ | |
delay[bl_i] = get_wdqs(channel_i, rank_i, bl_i) + FULL_CLK; | |
set_wdqs(channel_i, rank_i, bl_i, delay[bl_i]); | |
// program WDQ timings based on WDQS (WDQ = WDQS - 32 PI) | |
set_wdq(channel_i, rank_i, bl_i, (delay[bl_i] - QRTR_CLK)); | |
} // bl_i loop | |
// get an address in the targeted channel/rank | |
address = get_addr(mrc_params, channel_i, rank_i); | |
do | |
{ | |
uint32_t coarse_result = 0x00; | |
uint32_t coarse_result_mask = byte_lane_mask(mrc_params); | |
all_edges_found = true; // assume pass | |
#ifdef SIM | |
// need restore memory to idle state as write can be in bad sync | |
dram_init_command (DCMD_PREA(rank_i)); | |
#endif | |
mrc_params->hte_setup = 1; | |
coarse_result = check_rw_coarse(mrc_params, address); | |
// check for failures and margin the byte lane back 128 PI (1 CLK) | |
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) | |
{ | |
if (coarse_result & (coarse_result_mask << bl_i)) | |
{ | |
all_edges_found = false; | |
delay[bl_i] -= FULL_CLK; | |
set_wdqs(channel_i, rank_i, bl_i, delay[bl_i]); | |
// program WDQ timings based on WDQS (WDQ = WDQS - 32 PI) | |
set_wdq(channel_i, rank_i, bl_i, (delay[bl_i] - QRTR_CLK)); | |
} | |
} // bl_i loop | |
} while (!all_edges_found); | |
#ifdef R2R_SHARING | |
// increment "num_ranks_enabled" | |
num_ranks_enabled++; | |
// accumulate "final_delay[][]" values from "delay[]" values for rolling average | |
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) | |
{ | |
final_delay[channel_i][bl_i] += delay[bl_i]; | |
set_wdqs(channel_i, rank_i, bl_i, ((final_delay[channel_i][bl_i]) / num_ranks_enabled)); | |
// program WDQ timings based on WDQS (WDQ = WDQS - 32 PI) | |
set_wdq(channel_i, rank_i, bl_i, ((final_delay[channel_i][bl_i]) / num_ranks_enabled) - QRTR_CLK); | |
} // bl_i loop | |
#endif // R2R_SHARING | |
#endif // BACKUP_WDQS | |
} // if rank is enabled | |
} // rank_i loop | |
} // if channel is enabled | |
} // channel_i loop | |
LEAVEFN(); | |
return; | |
} | |
// rd_train: | |
// POST_CODE[major] == 0x07 | |
// | |
// This function will perform the READ TRAINING Algorithm on all channels/ranks/byte_lanes simultaneously to minimize execution time. | |
// The idea here is to train the VREF and RDQS (and eventually RDQ) values to achieve maximum READ margins. | |
// The algorithm will first determine the X coordinate (RDQS setting). | |
// This is done by collapsing the VREF eye until we find a minimum required RDQS eye for VREF_MIN and VREF_MAX. | |
// Then we take the averages of the RDQS eye at VREF_MIN and VREF_MAX, then average those; this will be the final X coordinate. | |
// The algorithm will then determine the Y coordinate (VREF setting). | |
// This is done by collapsing the RDQS eye until we find a minimum required VREF eye for RDQS_MIN and RDQS_MAX. | |
// Then we take the averages of the VREF eye at RDQS_MIN and RDQS_MAX, then average those; this will be the final Y coordinate. | |
// NOTE: this algorithm assumes the eye curves have a one-to-one relationship, meaning for each X the curve has only one Y and vice-a-versa. | |
static void rd_train( | |
MRCParams_t *mrc_params) | |
{ | |
#define MIN_RDQS_EYE 10 // in PI Codes | |
#define MIN_VREF_EYE 10 // in VREF Codes | |
#define RDQS_STEP 1 // how many RDQS codes to jump while margining | |
#define VREF_STEP 1 // how many VREF codes to jump while margining | |
#define VREF_MIN (0x00) // offset into "vref_codes[]" for minimum allowed VREF setting | |
#define VREF_MAX (0x3F) // offset into "vref_codes[]" for maximum allowed VREF setting | |
#define RDQS_MIN (0x00) // minimum RDQS delay value | |
#define RDQS_MAX (0x3F) // maximum RDQS delay value | |
#define B 0 // BOTTOM VREF | |
#define T 1 // TOP VREF | |
#define L 0 // LEFT RDQS | |
#define R 1 // RIGHT RDQS | |
uint8_t channel_i; // channel counter | |
uint8_t rank_i; // rank counter | |
uint8_t bl_i; // byte lane counter | |
uint8_t bl_divisor = (mrc_params->channel_width == x16) ? 2 : 1; // byte lane divisor | |
#ifdef BACKUP_RDQS | |
#else | |
uint8_t side_x; // tracks LEFT/RIGHT approach vectors | |
uint8_t side_y; // tracks BOTTOM/TOP approach vectors | |
uint8_t x_coordinate[2/*side_x*/][2/*side_y*/][NUM_CHANNELS][NUM_RANKS][NUM_BYTE_LANES]; // X coordinate data (passing RDQS values) for approach vectors | |
uint8_t y_coordinate[2/*side_x*/][2/*side_y*/][NUM_CHANNELS][NUM_BYTE_LANES]; // Y coordinate data (passing VREF values) for approach vectors | |
uint8_t x_center[NUM_CHANNELS][NUM_RANKS][NUM_BYTE_LANES]; // centered X (RDQS) | |
uint8_t y_center[NUM_CHANNELS][NUM_BYTE_LANES]; // centered Y (VREF) | |
uint32_t address; // target address for "check_bls_ex()" | |
uint32_t result; // result of "check_bls_ex()" | |
uint32_t bl_mask; // byte lane mask for "result" checking | |
#ifdef R2R_SHARING | |
uint32_t final_delay[NUM_CHANNELS][NUM_BYTE_LANES]; // used to find placement for rank2rank sharing configs | |
uint32_t num_ranks_enabled = 0; // used to find placement for rank2rank sharing configs | |
#endif // R2R_SHARING | |
#endif // BACKUP_RDQS | |
// rd_train starts | |
post_code(0x07, 0x00); | |
ENTERFN(); | |
#ifdef BACKUP_RDQS | |
for (channel_i=0; channel_i<NUM_CHANNELS; channel_i++) | |
{ | |
if (mrc_params->channel_enables & (1<<channel_i)) | |
{ | |
for (rank_i=0; rank_i<NUM_RANKS; rank_i++) | |
{ | |
if (mrc_params->rank_enables & (1<<rank_i)) | |
{ | |
for (bl_i=0; bl_i<(NUM_BYTE_LANES/bl_divisor); bl_i++) | |
{ | |
set_rdqs(channel_i, rank_i, bl_i, ddr_rdqs[PLATFORM_ID]); | |
} // bl_i loop | |
} // if rank is enabled | |
} // rank_i loop | |
} // if channel is enabled | |
} // channel_i loop | |
#else | |
// initialise x/y_coordinate arrays | |
for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++) | |
{ | |
if (mrc_params->channel_enables & (1 << channel_i)) | |
{ | |
for (rank_i = 0; rank_i < NUM_RANKS; rank_i++) | |
{ | |
if (mrc_params->rank_enables & (1 << rank_i)) | |
{ | |
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) | |
{ | |
// x_coordinate: | |
x_coordinate[L][B][channel_i][rank_i][bl_i] = RDQS_MIN; | |
x_coordinate[R][B][channel_i][rank_i][bl_i] = RDQS_MAX; | |
x_coordinate[L][T][channel_i][rank_i][bl_i] = RDQS_MIN; | |
x_coordinate[R][T][channel_i][rank_i][bl_i] = RDQS_MAX; | |
// y_coordinate: | |
y_coordinate[L][B][channel_i][bl_i] = VREF_MIN; | |
y_coordinate[R][B][channel_i][bl_i] = VREF_MIN; | |
y_coordinate[L][T][channel_i][bl_i] = VREF_MAX; | |
y_coordinate[R][T][channel_i][bl_i] = VREF_MAX; | |
} // bl_i loop | |
} // if rank is enabled | |
} // rank_i loop | |
} // if channel is enabled | |
} // channel_i loop | |
// initialise other variables | |
bl_mask = byte_lane_mask(mrc_params); | |
address = get_addr(mrc_params, 0, 0); | |
#ifdef R2R_SHARING | |
// need to set "final_delay[][]" elements to "0" | |
memset((void *) (final_delay), 0x00, (size_t) sizeof(final_delay)); | |
#endif // R2R_SHARING | |
// look for passing coordinates | |
for (side_y = B; side_y <= T; side_y++) | |
{ | |
for (side_x = L; side_x <= R; side_x++) | |
{ | |
post_code(0x07, (0x10 + (side_y * 2) + (side_x))); | |
// find passing values | |
for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++) | |
{ | |
if (mrc_params->channel_enables & (0x1 << channel_i)) | |
{ | |
for (rank_i = 0; rank_i < NUM_RANKS; rank_i++) | |
{ | |
if (mrc_params->rank_enables & (0x1 << rank_i)) | |
{ | |
// set x/y_coordinate search starting settings | |
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) | |
{ | |
set_rdqs(channel_i, rank_i, bl_i, x_coordinate[side_x][side_y][channel_i][rank_i][bl_i]); | |
set_vref(channel_i, bl_i, y_coordinate[side_x][side_y][channel_i][bl_i]); | |
} // bl_i loop | |
// get an address in the target channel/rank | |
address = get_addr(mrc_params, channel_i, rank_i); | |
// request HTE reconfiguration | |
mrc_params->hte_setup = 1; | |
// test the settings | |
do | |
{ | |
// result[07:00] == failing byte lane (MAX 8) | |
result = check_bls_ex( mrc_params, address); | |
// check for failures | |
if (result & 0xFF) | |
{ | |
// at least 1 byte lane failed | |
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) | |
{ | |
if (result & (bl_mask << bl_i)) | |
{ | |
// adjust the RDQS values accordingly | |
if (side_x == L) | |
{ | |
x_coordinate[L][side_y][channel_i][rank_i][bl_i] += RDQS_STEP; | |
} | |
else | |
{ | |
x_coordinate[R][side_y][channel_i][rank_i][bl_i] -= RDQS_STEP; | |
} | |
// check that we haven't closed the RDQS_EYE too much | |
if ((x_coordinate[L][side_y][channel_i][rank_i][bl_i] > (RDQS_MAX - MIN_RDQS_EYE)) || | |
(x_coordinate[R][side_y][channel_i][rank_i][bl_i] < (RDQS_MIN + MIN_RDQS_EYE)) | |
|| | |
(x_coordinate[L][side_y][channel_i][rank_i][bl_i] | |
== x_coordinate[R][side_y][channel_i][rank_i][bl_i])) | |
{ | |
// not enough RDQS margin available at this VREF | |
// update VREF values accordingly | |
if (side_y == B) | |
{ | |
y_coordinate[side_x][B][channel_i][bl_i] += VREF_STEP; | |
} | |
else | |
{ | |
y_coordinate[side_x][T][channel_i][bl_i] -= VREF_STEP; | |
} | |
// check that we haven't closed the VREF_EYE too much | |
if ((y_coordinate[side_x][B][channel_i][bl_i] > (VREF_MAX - MIN_VREF_EYE)) || | |
(y_coordinate[side_x][T][channel_i][bl_i] < (VREF_MIN + MIN_VREF_EYE)) || | |
(y_coordinate[side_x][B][channel_i][bl_i] == y_coordinate[side_x][T][channel_i][bl_i])) | |
{ | |
// VREF_EYE collapsed below MIN_VREF_EYE | |
training_message(channel_i, rank_i, bl_i); | |
post_code(0xEE, (0x70 + (side_y * 2) + (side_x))); | |
} | |
else | |
{ | |
// update the VREF setting | |
set_vref(channel_i, bl_i, y_coordinate[side_x][side_y][channel_i][bl_i]); | |
// reset the X coordinate to begin the search at the new VREF | |
x_coordinate[side_x][side_y][channel_i][rank_i][bl_i] = | |
(side_x == L) ? (RDQS_MIN) : (RDQS_MAX); | |
} | |
} | |
// update the RDQS setting | |
set_rdqs(channel_i, rank_i, bl_i, x_coordinate[side_x][side_y][channel_i][rank_i][bl_i]); | |
} // if bl_i failed | |
} // bl_i loop | |
} // at least 1 byte lane failed | |
} while (result & 0xFF); | |
} // if rank is enabled | |
} // rank_i loop | |
} // if channel is enabled | |
} // channel_i loop | |
} // side_x loop | |
} // side_y loop | |
post_code(0x07, 0x20); | |
// find final RDQS (X coordinate) & final VREF (Y coordinate) | |
for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++) | |
{ | |
if (mrc_params->channel_enables & (1 << channel_i)) | |
{ | |
for (rank_i = 0; rank_i < NUM_RANKS; rank_i++) | |
{ | |
if (mrc_params->rank_enables & (1 << rank_i)) | |
{ | |
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) | |
{ | |
uint32_t tempD1; | |
uint32_t tempD2; | |
// x_coordinate: | |
DPF(D_INFO, "RDQS T/B eye rank%d lane%d : %d-%d %d-%d\n", rank_i, bl_i, | |
x_coordinate[L][T][channel_i][rank_i][bl_i], | |
x_coordinate[R][T][channel_i][rank_i][bl_i], | |
x_coordinate[L][B][channel_i][rank_i][bl_i], | |
x_coordinate[R][B][channel_i][rank_i][bl_i]); | |
tempD1 = (x_coordinate[R][T][channel_i][rank_i][bl_i] + x_coordinate[L][T][channel_i][rank_i][bl_i]) / 2; // average the TOP side LEFT & RIGHT values | |
tempD2 = (x_coordinate[R][B][channel_i][rank_i][bl_i] + x_coordinate[L][B][channel_i][rank_i][bl_i]) / 2; // average the BOTTOM side LEFT & RIGHT values | |
x_center[channel_i][rank_i][bl_i] = (uint8_t) ((tempD1 + tempD2) / 2); // average the above averages | |
// y_coordinate: | |
DPF(D_INFO, "VREF R/L eye lane%d : %d-%d %d-%d\n", bl_i, | |
y_coordinate[R][B][channel_i][bl_i], | |
y_coordinate[R][T][channel_i][bl_i], | |
y_coordinate[L][B][channel_i][bl_i], | |
y_coordinate[L][T][channel_i][bl_i]); | |
tempD1 = (y_coordinate[R][T][channel_i][bl_i] + y_coordinate[R][B][channel_i][bl_i]) / 2; // average the RIGHT side TOP & BOTTOM values | |
tempD2 = (y_coordinate[L][T][channel_i][bl_i] + y_coordinate[L][B][channel_i][bl_i]) / 2; // average the LEFT side TOP & BOTTOM values | |
y_center[channel_i][bl_i] = (uint8_t) ((tempD1 + tempD2) / 2); // average the above averages | |
} // bl_i loop | |
} // if rank is enabled | |
} // rank_i loop | |
} // if channel is enabled | |
} // channel_i loop | |
#ifdef RX_EYE_CHECK | |
// perform an eye check | |
for (side_y=B; side_y<=T; side_y++) | |
{ | |
for (side_x=L; side_x<=R; side_x++) | |
{ | |
post_code(0x07, (0x30 + (side_y * 2) + (side_x))); | |
// update the settings for the eye check | |
for (channel_i=0; channel_i<NUM_CHANNELS; channel_i++) | |
{ | |
if (mrc_params->channel_enables & (1<<channel_i)) | |
{ | |
for (rank_i=0; rank_i<NUM_RANKS; rank_i++) | |
{ | |
if (mrc_params->rank_enables & (1<<rank_i)) | |
{ | |
for (bl_i=0; bl_i<(NUM_BYTE_LANES/bl_divisor); bl_i++) | |
{ | |
if (side_x == L) | |
{ | |
set_rdqs(channel_i, rank_i, bl_i, (x_center[channel_i][rank_i][bl_i] - (MIN_RDQS_EYE / 2))); | |
} | |
else | |
{ | |
set_rdqs(channel_i, rank_i, bl_i, (x_center[channel_i][rank_i][bl_i] + (MIN_RDQS_EYE / 2))); | |
} | |
if (side_y == B) | |
{ | |
set_vref(channel_i, bl_i, (y_center[channel_i][bl_i] - (MIN_VREF_EYE / 2))); | |
} | |
else | |
{ | |
set_vref(channel_i, bl_i, (y_center[channel_i][bl_i] + (MIN_VREF_EYE / 2))); | |
} | |
} // bl_i loop | |
} // if rank is enabled | |
} // rank_i loop | |
} // if channel is enabled | |
} // channel_i loop | |
// request HTE reconfiguration | |
mrc_params->hte_setup = 1; | |
// check the eye | |
if (check_bls_ex( mrc_params, address) & 0xFF) | |
{ | |
// one or more byte lanes failed | |
post_code(0xEE, (0x74 + (side_x * 2) + (side_y))); | |
} | |
} // side_x loop | |
} // side_y loop | |
#endif // RX_EYE_CHECK | |
post_code(0x07, 0x40); | |
// set final placements | |
for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++) | |
{ | |
if (mrc_params->channel_enables & (1 << channel_i)) | |
{ | |
for (rank_i = 0; rank_i < NUM_RANKS; rank_i++) | |
{ | |
if (mrc_params->rank_enables & (1 << rank_i)) | |
{ | |
#ifdef R2R_SHARING | |
// increment "num_ranks_enabled" | |
num_ranks_enabled++; | |
#endif // R2R_SHARING | |
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) | |
{ | |
// x_coordinate: | |
#ifdef R2R_SHARING | |
final_delay[channel_i][bl_i] += x_center[channel_i][rank_i][bl_i]; | |
set_rdqs(channel_i, rank_i, bl_i, ((final_delay[channel_i][bl_i]) / num_ranks_enabled)); | |
#else | |
set_rdqs(channel_i, rank_i, bl_i, x_center[channel_i][rank_i][bl_i]); | |
#endif // R2R_SHARING | |
// y_coordinate: | |
set_vref(channel_i, bl_i, y_center[channel_i][bl_i]); | |
} // bl_i loop | |
} // if rank is enabled | |
} // rank_i loop | |
} // if channel is enabled | |
} // channel_i loop | |
#endif // BACKUP_RDQS | |
LEAVEFN(); | |
return; | |
} | |
// wr_train: | |
// POST_CODE[major] == 0x08 | |
// | |
// This function will perform the WRITE TRAINING Algorithm on all channels/ranks/byte_lanes simultaneously to minimize execution time. | |
// The idea here is to train the WDQ timings to achieve maximum WRITE margins. | |
// The algorithm will start with WDQ at the current WDQ setting (tracks WDQS in WR_LVL) +/- 32 PIs (+/- 1/4 CLK) and collapse the eye until all data patterns pass. | |
// This is because WDQS will be aligned to WCLK by the Write Leveling algorithm and WDQ will only ever have a 1/2 CLK window of validity. | |
static void wr_train( | |
MRCParams_t *mrc_params) | |
{ | |
#define WDQ_STEP 1 // how many WDQ codes to jump while margining | |
#define L 0 // LEFT side loop value definition | |
#define R 1 // RIGHT side loop value definition | |
uint8_t channel_i; // channel counter | |
uint8_t rank_i; // rank counter | |
uint8_t bl_i; // byte lane counter | |
uint8_t bl_divisor = (mrc_params->channel_width == x16) ? 2 : 1; // byte lane divisor | |
#ifdef BACKUP_WDQ | |
#else | |
uint8_t side_i; // LEFT/RIGHT side indicator (0=L, 1=R) | |
uint32_t tempD; // temporary DWORD | |
uint32_t delay[2/*side_i*/][NUM_CHANNELS][NUM_RANKS][NUM_BYTE_LANES]; // 2 arrays, for L & R side passing delays | |
uint32_t address; // target address for "check_bls_ex()" | |
uint32_t result; // result of "check_bls_ex()" | |
uint32_t bl_mask; // byte lane mask for "result" checking | |
#ifdef R2R_SHARING | |
uint32_t final_delay[NUM_CHANNELS][NUM_BYTE_LANES]; // used to find placement for rank2rank sharing configs | |
uint32_t num_ranks_enabled = 0; // used to find placement for rank2rank sharing configs | |
#endif // R2R_SHARING | |
#endif // BACKUP_WDQ | |
// wr_train starts | |
post_code(0x08, 0x00); | |
ENTERFN(); | |
#ifdef BACKUP_WDQ | |
for (channel_i=0; channel_i<NUM_CHANNELS; channel_i++) | |
{ | |
if (mrc_params->channel_enables & (1<<channel_i)) | |
{ | |
for (rank_i=0; rank_i<NUM_RANKS; rank_i++) | |
{ | |
if (mrc_params->rank_enables & (1<<rank_i)) | |
{ | |
for (bl_i=0; bl_i<(NUM_BYTE_LANES/bl_divisor); bl_i++) | |
{ | |
set_wdq(channel_i, rank_i, bl_i, ddr_wdq[PLATFORM_ID]); | |
} // bl_i loop | |
} // if rank is enabled | |
} // rank_i loop | |
} // if channel is enabled | |
} // channel_i loop | |
#else | |
// initialise "delay" | |
for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++) | |
{ | |
if (mrc_params->channel_enables & (1 << channel_i)) | |
{ | |
for (rank_i = 0; rank_i < NUM_RANKS; rank_i++) | |
{ | |
if (mrc_params->rank_enables & (1 << rank_i)) | |
{ | |
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) | |
{ | |
// want to start with WDQ = (WDQS - QRTR_CLK) +/- QRTR_CLK | |
tempD = get_wdqs(channel_i, rank_i, bl_i) - QRTR_CLK; | |
delay[L][channel_i][rank_i][bl_i] = tempD - QRTR_CLK; | |
delay[R][channel_i][rank_i][bl_i] = tempD + QRTR_CLK; | |
} // bl_i loop | |
} // if rank is enabled | |
} // rank_i loop | |
} // if channel is enabled | |
} // channel_i loop | |
// initialise other variables | |
bl_mask = byte_lane_mask(mrc_params); | |
address = get_addr(mrc_params, 0, 0); | |
#ifdef R2R_SHARING | |
// need to set "final_delay[][]" elements to "0" | |
memset((void *) (final_delay), 0x00, (size_t) sizeof(final_delay)); | |
#endif // R2R_SHARING | |
// start algorithm on the LEFT side and train each channel/bl until no failures are observed, then repeat for the RIGHT side. | |
for (side_i = L; side_i <= R; side_i++) | |
{ | |
post_code(0x08, (0x10 + (side_i))); | |
// set starting values | |
for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++) | |
{ | |
if (mrc_params->channel_enables & (1 << channel_i)) | |
{ | |
for (rank_i = 0; rank_i < NUM_RANKS; rank_i++) | |
{ | |
if (mrc_params->rank_enables & (1 << rank_i)) | |
{ | |
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) | |
{ | |
set_wdq(channel_i, rank_i, bl_i, delay[side_i][channel_i][rank_i][bl_i]); | |
} // bl_i loop | |
} // if rank is enabled | |
} // rank_i loop | |
} // if channel is enabled | |
} // channel_i loop | |
// find passing values | |
for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++) | |
{ | |
if (mrc_params->channel_enables & (0x1 << channel_i)) | |
{ | |
for (rank_i = 0; rank_i < NUM_RANKS; rank_i++) | |
{ | |
if (mrc_params->rank_enables & (0x1 << rank_i)) | |
{ | |
// get an address in the target channel/rank | |
address = get_addr(mrc_params, channel_i, rank_i); | |
// request HTE reconfiguration | |
mrc_params->hte_setup = 1; | |
// check the settings | |
do | |
{ | |
#ifdef SIM | |
// need restore memory to idle state as write can be in bad sync | |
dram_init_command (DCMD_PREA(rank_i)); | |
#endif | |
// result[07:00] == failing byte lane (MAX 8) | |
result = check_bls_ex( mrc_params, address); | |
// check for failures | |
if (result & 0xFF) | |
{ | |
// at least 1 byte lane failed | |
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) | |
{ | |
if (result & (bl_mask << bl_i)) | |
{ | |
if (side_i == L) | |
{ | |
delay[L][channel_i][rank_i][bl_i] += WDQ_STEP; | |
} | |
else | |
{ | |
delay[R][channel_i][rank_i][bl_i] -= WDQ_STEP; | |
} | |
// check for algorithm failure | |
if (delay[L][channel_i][rank_i][bl_i] != delay[R][channel_i][rank_i][bl_i]) | |
{ | |
// margin available, update delay setting | |
set_wdq(channel_i, rank_i, bl_i, delay[side_i][channel_i][rank_i][bl_i]); | |
} | |
else | |
{ | |
// no margin available, notify the user and halt | |
training_message(channel_i, rank_i, bl_i); | |
post_code(0xEE, (0x80 + side_i)); | |
} | |
} // if bl_i failed | |
} // bl_i loop | |
} // at least 1 byte lane failed | |
} while (result & 0xFF); // stop when all byte lanes pass | |
} // if rank is enabled | |
} // rank_i loop | |
} // if channel is enabled | |
} // channel_i loop | |
} // side_i loop | |
// program WDQ to the middle of passing window | |
for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++) | |
{ | |
if (mrc_params->channel_enables & (1 << channel_i)) | |
{ | |
for (rank_i = 0; rank_i < NUM_RANKS; rank_i++) | |
{ | |
if (mrc_params->rank_enables & (1 << rank_i)) | |
{ | |
#ifdef R2R_SHARING | |
// increment "num_ranks_enabled" | |
num_ranks_enabled++; | |
#endif // R2R_SHARING | |
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++) | |
{ | |
DPF(D_INFO, "WDQ eye rank%d lane%d : %d-%d\n", rank_i, bl_i, | |
delay[L][channel_i][rank_i][bl_i], | |
delay[R][channel_i][rank_i][bl_i]); | |
tempD = (delay[R][channel_i][rank_i][bl_i] + delay[L][channel_i][rank_i][bl_i]) / 2; | |
#ifdef R2R_SHARING | |
final_delay[channel_i][bl_i] += tempD; | |
set_wdq(channel_i, rank_i, bl_i, ((final_delay[channel_i][bl_i]) / num_ranks_enabled)); | |
#else | |
set_wdq(channel_i, rank_i, bl_i, tempD); | |
#endif // R2R_SHARING | |
} // bl_i loop | |
} // if rank is enabled | |
} // rank_i loop | |
} // if channel is enabled | |
} // channel_i loop | |
#endif // BACKUP_WDQ | |
LEAVEFN(); | |
return; | |
} | |
// Wrapper for jedec initialisation routine | |
static void perform_jedec_init( | |
MRCParams_t *mrc_params) | |
{ | |
jedec_init(mrc_params, 0); | |
} | |
// Configure DDRPHY for Auto-Refresh, Periodic Compensations, | |
// Dynamic Diff-Amp, ZQSPERIOD, Auto-Precharge, CKE Power-Down | |
static void set_auto_refresh( | |
MRCParams_t *mrc_params) | |
{ | |
uint32_t channel_i; | |
uint32_t rank_i; | |
uint32_t bl_i; | |
uint32_t bl_divisor = /*(mrc_params->channel_width==x16)?2:*/1; | |
uint32_t tempD; | |
ENTERFN(); | |
// enable Auto-Refresh, Periodic Compensations, Dynamic Diff-Amp, ZQSPERIOD, Auto-Precharge, CKE Power-Down | |
for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++) | |
{ | |
if (mrc_params->channel_enables & (1 << channel_i)) | |
{ | |
// Enable Periodic RCOMPS | |
isbM32m(DDRPHY, CMPCTRL, (BIT1), (BIT1)); | |
// Enable Dynamic DiffAmp & Set Read ODT Value | |
switch (mrc_params->rd_odt_value) | |
{ | |
case 0: tempD = 0x3F; break; // OFF | |
default: tempD = 0x00; break; // Auto | |
} // rd_odt_value switch | |
for (bl_i=0; bl_i<((NUM_BYTE_LANES/bl_divisor)/2); bl_i++) | |
{ | |
isbM32m(DDRPHY, (B0OVRCTL + (bl_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), | |
((0x00<<16)|(tempD<<10)), | |
((BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12|BIT11|BIT10))); // Override: DIFFAMP, ODT | |
isbM32m(DDRPHY, (B1OVRCTL + (bl_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), | |
((0x00<<16)|(tempD<<10)), | |
((BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12|BIT11|BIT10)));// Override: DIFFAMP, ODT | |
} // bl_i loop | |
// Issue ZQCS command | |
for (rank_i = 0; rank_i < NUM_RANKS; rank_i++) | |
{ | |
if (mrc_params->rank_enables & (1 << rank_i)) | |
{ | |
dram_init_command(DCMD_ZQCS(rank_i)); | |
} // if rank_i enabled | |
} // rank_i loop | |
} // if channel_i enabled | |
} // channel_i loop | |
clear_pointers(); | |
LEAVEFN(); | |
return; | |
} | |
// Depending on configuration enables ECC support. | |
// Available memory size is decresed, and updated with 0s | |
// in order to clear error status. Address mode 2 forced. | |
static void ecc_enable( | |
MRCParams_t *mrc_params) | |
{ | |
RegDRP Drp; | |
RegDSCH Dsch; | |
RegDECCCTRL Ctr; | |
if (mrc_params->ecc_enables == 0) return; | |
ENTERFN(); | |
// Configuration required in ECC mode | |
Drp.raw = isbR32m(MCU, DRP); | |
Drp.field.addressMap = 2; | |
Drp.field.split64 = 1; | |
isbW32m(MCU, DRP, Drp.raw); | |
// Disable new request bypass | |
Dsch.raw = isbR32m(MCU, DSCH); | |
Dsch.field.NEWBYPDIS = 1; | |
isbW32m(MCU, DSCH, Dsch.raw); | |
// Enable ECC | |
Ctr.raw = 0; | |
Ctr.field.SBEEN = 1; | |
Ctr.field.DBEEN = 1; | |
Ctr.field.ENCBGEN = 1; | |
isbW32m(MCU, DECCCTRL, Ctr.raw); | |
#ifdef SIM | |
// Read back to be sure writing took place | |
Ctr.raw = isbR32m(MCU, DECCCTRL); | |
#endif | |
// Assume 8 bank memory, one bank is gone for ECC | |
mrc_params->mem_size -= mrc_params->mem_size / 8; | |
// For S3 resume memory content has to be preserved | |
if (mrc_params->boot_mode != bmS3) | |
{ | |
select_hte(mrc_params); | |
HteMemInit(mrc_params, MrcMemInit, MrcHaltHteEngineOnError); | |
select_memory_manager(mrc_params); | |
} | |
LEAVEFN(); | |
return; | |
} | |
// Lock MCU registers at the end of initialisation sequence. | |
static void lock_registers( | |
MRCParams_t *mrc_params) | |
{ | |
RegDCO Dco; | |
ENTERFN(); | |
Dco.raw = isbR32m(MCU, DCO); | |
Dco.field.PMIDIS = 0; //0 - PRI enabled | |
Dco.field.PMICTL = 0; //0 - PRI owned by MEMORY_MANAGER | |
Dco.field.DRPLOCK = 1; | |
Dco.field.REUTLOCK = 1; | |
isbW32m(MCU, DCO, Dco.raw); | |
LEAVEFN(); | |
} | |
#ifdef MRC_SV | |
// cache write back invalidate | |
static void asm_wbinvd(void) | |
{ | |
#if defined (SIM) || defined (GCC) | |
asm( | |
"wbinvd;" | |
); | |
#else | |
__asm wbinvd; | |
#endif | |
} | |
// cache invalidate | |
static void asm_invd(void) | |
{ | |
#if defined (SIM) || defined (GCC) | |
asm( | |
"invd;" | |
); | |
#else | |
__asm invd; | |
#endif | |
} | |
static void cpu_read(void) | |
{ | |
uint32_t adr, dat, limit; | |
asm_invd(); | |
limit = 8 * 1024; | |
for (adr = 0; adr < limit; adr += 4) | |
{ | |
dat = *(uint32_t*) adr; | |
if ((adr & 0x0F) == 0) | |
{ | |
DPF(D_INFO, "\n%x : ", adr); | |
} | |
DPF(D_INFO, "%x ", dat); | |
} | |
DPF(D_INFO, "\n"); | |
DPF(D_INFO, "CPU read done\n"); | |
} | |
static void cpu_write(void) | |
{ | |
uint32_t adr, limit; | |
limit = 8 * 1024; | |
for (adr = 0; adr < limit; adr += 4) | |
{ | |
*(uint32_t*) adr = 0xDEAD0000 + adr; | |
} | |
asm_wbinvd(); | |
DPF(D_INFO, "CPU write done\n"); | |
} | |
static void cpu_memory_test( | |
MRCParams_t *mrc_params) | |
{ | |
uint32_t result = 0; | |
uint32_t val, dat, adr, adr0, step, limit; | |
uint64_t my_tsc; | |
ENTERFN(); | |
asm_invd(); | |
adr0 = 1 * 1024 * 1024; | |
limit = 256 * 1024 * 1024; | |
for (step = 0; step <= 4; step++) | |
{ | |
DPF(D_INFO, "Mem test step %d starting from %xh\n", step, adr0); | |
my_tsc = read_tsc(); | |
for (adr = adr0; adr < limit; adr += sizeof(uint32_t)) | |
{ | |
if (step == 0) dat = adr; | |
else if (step == 1) dat = (1 << ((adr >> 2) & 0x1f)); | |
else if (step == 2) dat = ~(1 << ((adr >> 2) & 0x1f)); | |
else if (step == 3) dat = 0x5555AAAA; | |
else if (step == 4) dat = 0xAAAA5555; | |
*(uint32_t*) adr = dat; | |
} | |
DPF(D_INFO, "Write time %llXh\n", read_tsc() - my_tsc); | |
my_tsc = read_tsc(); | |
for (adr = adr0; adr < limit; adr += sizeof(uint32_t)) | |
{ | |
if (step == 0) dat = adr; | |
else if (step == 1) dat = (1 << ((adr >> 2) & 0x1f)); | |
else if (step == 2) dat = ~(1 << ((adr >> 2) & 0x1f)); | |
else if (step == 3) dat = 0x5555AAAA; | |
else if (step == 4) dat = 0xAAAA5555; | |
val = *(uint32_t*) adr; | |
if (val != dat) | |
{ | |
DPF(D_INFO, "%x vs. %x@%x\n", dat, val, adr); | |
result = adr|BIT31; | |
} | |
} | |
DPF(D_INFO, "Read time %llXh\n", read_tsc() - my_tsc); | |
} | |
DPF( D_INFO, "Memory test result %x\n", result); | |
LEAVEFN(); | |
} | |
#endif // MRC_SV | |
// Execute memory test, if error dtected it is | |
// indicated in mrc_params->status. | |
static void memory_test( | |
MRCParams_t *mrc_params) | |
{ | |
uint32_t result = 0; | |
ENTERFN(); | |
select_hte(mrc_params); | |
result = HteMemInit(mrc_params, MrcMemTest, MrcHaltHteEngineOnError); | |
select_memory_manager(mrc_params); | |
DPF(D_INFO, "Memory test result %x\n", result); | |
mrc_params->status = ((result == 0) ? MRC_SUCCESS : MRC_E_MEMTEST); | |
LEAVEFN(); | |
} | |
// Force same timings as with backup settings | |
static void static_timings( | |
MRCParams_t *mrc_params) | |
{ | |
uint8_t ch, rk, bl; | |
for (ch = 0; ch < NUM_CHANNELS; ch++) | |
{ | |
for (rk = 0; rk < NUM_RANKS; rk++) | |
{ | |
for (bl = 0; bl < NUM_BYTE_LANES; bl++) | |
{ | |
set_rcvn(ch, rk, bl, 498); // RCVN | |
set_rdqs(ch, rk, bl, 24); // RDQS | |
set_wdqs(ch, rk, bl, 292); // WDQS | |
set_wdq( ch, rk, bl, 260); // WDQ | |
if (rk == 0) | |
{ | |
set_vref(ch, bl, 32); // VREF (RANK0 only) | |
} | |
} | |
set_wctl(ch, rk, 217); // WCTL | |
} | |
set_wcmd(ch, 220); // WCMD | |
} | |
return; | |
} | |
// | |
// Initialise system memory. | |
// | |
void MemInit( | |
MRCParams_t *mrc_params) | |
{ | |
static const MemInit_t init[] = | |
{ | |
{ 0x0101, bmCold|bmFast|bmWarm|bmS3, clear_self_refresh }, //0 | |
{ 0x0200, bmCold|bmFast|bmWarm|bmS3, prog_ddr_timing_control }, //1 initialise the MCU | |
{ 0x0103, bmCold|bmFast , prog_decode_before_jedec }, //2 | |
{ 0x0104, bmCold|bmFast , perform_ddr_reset }, //3 | |
{ 0x0300, bmCold|bmFast |bmS3, ddrphy_init }, //4 initialise the DDRPHY | |
{ 0x0400, bmCold|bmFast , perform_jedec_init }, //5 perform JEDEC initialisation of DRAMs | |
{ 0x0105, bmCold|bmFast , set_ddr_init_complete }, //6 | |
{ 0x0106, bmFast|bmWarm|bmS3, restore_timings }, //7 | |
{ 0x0106, bmCold , default_timings }, //8 | |
{ 0x0500, bmCold , rcvn_cal }, //9 perform RCVN_CAL algorithm | |
{ 0x0600, bmCold , wr_level }, //10 perform WR_LEVEL algorithm | |
{ 0x0120, bmCold , prog_page_ctrl }, //11 | |
{ 0x0700, bmCold , rd_train }, //12 perform RD_TRAIN algorithm | |
{ 0x0800, bmCold , wr_train }, //13 perform WR_TRAIN algorithm | |
{ 0x010B, bmCold , store_timings }, //14 | |
{ 0x010C, bmCold|bmFast|bmWarm|bmS3, enable_scrambling }, //15 | |
{ 0x010D, bmCold|bmFast|bmWarm|bmS3, prog_ddr_control }, //16 | |
{ 0x010E, bmCold|bmFast|bmWarm|bmS3, prog_dra_drb }, //17 | |
{ 0x010F, bmWarm|bmS3, perform_wake }, //18 | |
{ 0x0110, bmCold|bmFast|bmWarm|bmS3, change_refresh_period }, //19 | |
{ 0x0111, bmCold|bmFast|bmWarm|bmS3, set_auto_refresh }, //20 | |
{ 0x0112, bmCold|bmFast|bmWarm|bmS3, ecc_enable }, //21 | |
{ 0x0113, bmCold|bmFast , memory_test }, //22 | |
{ 0x0114, bmCold|bmFast|bmWarm|bmS3, lock_registers } //23 set init done | |
}; | |
uint32_t i; | |
ENTERFN(); | |
DPF(D_INFO, "Meminit build %s %s\n", __DATE__, __TIME__); | |
// MRC started | |
post_code(0x01, 0x00); | |
if (mrc_params->boot_mode != bmCold) | |
{ | |
if (mrc_params->ddr_speed != mrc_params->timings.ddr_speed) | |
{ | |
// full training required as frequency changed | |
mrc_params->boot_mode = bmCold; | |
} | |
} | |
for (i = 0; i < MCOUNT(init); i++) | |
{ | |
uint64_t my_tsc; | |
#ifdef MRC_SV | |
if (mrc_params->menu_after_mrc && i > 14) | |
{ | |
uint8_t ch; | |
mylop: | |
DPF(D_INFO, "-- c - continue --\n"); | |
DPF(D_INFO, "-- j - move to jedec init --\n"); | |
DPF(D_INFO, "-- m - memory test --\n"); | |
DPF(D_INFO, "-- r - cpu read --\n"); | |
DPF(D_INFO, "-- w - cpu write --\n"); | |
DPF(D_INFO, "-- b - hte base test --\n"); | |
DPF(D_INFO, "-- g - hte extended test --\n"); | |
ch = mgetc(); | |
switch (ch) | |
{ | |
case 'c': | |
break; | |
case 'j': //move to jedec init | |
i = 5; | |
break; | |
case 'M': | |
case 'N': | |
{ | |
uint32_t n, res, cnt=0; | |
for(n=0; mgetch()==0; n++) | |
{ | |
if( ch == 'M' || n % 256 == 0) | |
{ | |
DPF(D_INFO, "n=%d e=%d\n", n, cnt); | |
} | |
res = 0; | |
if( ch == 'M') | |
{ | |
memory_test(mrc_params); | |
res |= mrc_params->status; | |
} | |
mrc_params->hte_setup = 1; | |
res |= check_bls_ex(mrc_params, 0x00000000); | |
res |= check_bls_ex(mrc_params, 0x00000000); | |
res |= check_bls_ex(mrc_params, 0x00000000); | |
res |= check_bls_ex(mrc_params, 0x00000000); | |
if( mrc_params->rank_enables & 2) | |
{ | |
mrc_params->hte_setup = 1; | |
res |= check_bls_ex(mrc_params, 0x40000000); | |
res |= check_bls_ex(mrc_params, 0x40000000); | |
res |= check_bls_ex(mrc_params, 0x40000000); | |
res |= check_bls_ex(mrc_params, 0x40000000); | |
} | |
if( res != 0) | |
{ | |
DPF(D_INFO, "###########\n"); | |
DPF(D_INFO, "#\n"); | |
DPF(D_INFO, "# Error count %d\n", ++cnt); | |
DPF(D_INFO, "#\n"); | |
DPF(D_INFO, "###########\n"); | |
} | |
} // for | |
select_memory_manager(mrc_params); | |
} | |
goto mylop; | |
case 'm': | |
memory_test(mrc_params); | |
goto mylop; | |
case 'n': | |
cpu_memory_test(mrc_params); | |
goto mylop; | |
case 'l': | |
ch = mgetc(); | |
if (ch <= '9') DpfPrintMask ^= (ch - '0') << 3; | |
DPF(D_INFO, "Log mask %x\n", DpfPrintMask); | |
goto mylop; | |
case 'p': | |
print_timings(mrc_params); | |
goto mylop; | |
case 'R': | |
rd_train(mrc_params); | |
goto mylop; | |
case 'W': | |
wr_train(mrc_params); | |
goto mylop; | |
case 'r': | |
cpu_read(); | |
goto mylop; | |
case 'w': | |
cpu_write(); | |
goto mylop; | |
case 'g': | |
{ | |
uint32_t result; | |
select_hte(mrc_params); | |
mrc_params->hte_setup = 1; | |
result = check_bls_ex(mrc_params, 0); | |
DPF(D_INFO, "Extended test result %x\n", result); | |
select_memory_manager(mrc_params); | |
} | |
goto mylop; | |
case 'b': | |
{ | |
uint32_t result; | |
select_hte(mrc_params); | |
mrc_params->hte_setup = 1; | |
result = check_rw_coarse(mrc_params, 0); | |
DPF(D_INFO, "Base test result %x\n", result); | |
select_memory_manager(mrc_params); | |
} | |
goto mylop; | |
case 'B': | |
select_hte(mrc_params); | |
HteMemOp(0x2340, 1, 1); | |
select_memory_manager(mrc_params); | |
goto mylop; | |
case '3': | |
{ | |
RegDPMC0 DPMC0reg; | |
DPF( D_INFO, "===>> Start suspend\n"); | |
isbR32m(MCU, DSTAT); | |
DPMC0reg.raw = isbR32m(MCU, DPMC0); | |
DPMC0reg.field.DYNSREN = 0; | |
DPMC0reg.field.powerModeOpCode = 0x05; // Disable Master DLL | |
isbW32m(MCU, DPMC0, DPMC0reg.raw); | |
// Should be off for negative test case verification | |
#if 1 | |
Wr32(MMIO, PCIADDR(0,0,0,SB_PACKET_REG), | |
(uint32_t)SB_COMMAND(SB_SUSPEND_CMND_OPCODE, MCU, 0)); | |
#endif | |
DPF( D_INFO, "press key\n"); | |
mgetc(); | |
DPF( D_INFO, "===>> Start resume\n"); | |
isbR32m(MCU, DSTAT); | |
mrc_params->boot_mode = bmS3; | |
i = 0; | |
} | |
} // switch | |
} // if( menu | |
#endif //MRC_SV | |
if (mrc_params->boot_mode & init[i].boot_path) | |
{ | |
uint8_t major = init[i].post_code >> 8 & 0xFF; | |
uint8_t minor = init[i].post_code >> 0 & 0xFF; | |
post_code(major, minor); | |
my_tsc = read_tsc(); | |
init[i].init_fn(mrc_params); | |
DPF(D_TIME, "Execution time %llX", read_tsc() - my_tsc); | |
} | |
} | |
// display the timings | |
print_timings(mrc_params); | |
// MRC is complete. | |
post_code(0x01, 0xFF); | |
LEAVEFN(); | |
return; | |
} |