| /** @file | |
| Contains code that implements the virtual machine. | |
| Copyright (c) 2006 - 2018, Intel Corporation. All rights reserved.<BR> | |
| This program and the accompanying materials | |
| are licensed and made available under the terms and conditions of the BSD License | |
| which accompanies this distribution. The full text of the license may be found at | |
| http://opensource.org/licenses/bsd-license.php | |
| THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, | |
| WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. | |
| **/ | |
| #include "EbcInt.h" | |
| #include "EbcExecute.h" | |
| #include "EbcDebuggerHook.h" | |
| // | |
| // Define some useful data size constants to allow switch statements based on | |
| // size of operands or data. | |
| // | |
| #define DATA_SIZE_INVALID 0 | |
| #define DATA_SIZE_8 1 | |
| #define DATA_SIZE_16 2 | |
| #define DATA_SIZE_32 4 | |
| #define DATA_SIZE_64 8 | |
| #define DATA_SIZE_N 48 // 4 or 8 | |
| // | |
| // Structure we'll use to dispatch opcodes to execute functions. | |
| // | |
| typedef struct { | |
| EFI_STATUS (*ExecuteFunction) (IN VM_CONTEXT * VmPtr); | |
| } | |
| VM_TABLE_ENTRY; | |
| typedef | |
| UINT64 | |
| (*DATA_MANIP_EXEC_FUNCTION) ( | |
| IN VM_CONTEXT * VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ); | |
| /** | |
| Decode a 16-bit index to determine the offset. Given an index value: | |
| b15 - sign bit | |
| b14:12 - number of bits in this index assigned to natural units (=a) | |
| ba:11 - constant units = ConstUnits | |
| b0:a - natural units = NaturalUnits | |
| Given this info, the offset can be computed by: | |
| offset = sign_bit * (ConstUnits + NaturalUnits * sizeof(UINTN)) | |
| Max offset is achieved with index = 0x7FFF giving an offset of | |
| 0x27B (32-bit machine) or 0x477 (64-bit machine). | |
| Min offset is achieved with index = | |
| @param VmPtr A pointer to VM context. | |
| @param CodeOffset Offset from IP of the location of the 16-bit index | |
| to decode. | |
| @return The decoded offset. | |
| **/ | |
| INT16 | |
| VmReadIndex16 ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT32 CodeOffset | |
| ); | |
| /** | |
| Decode a 32-bit index to determine the offset. | |
| @param VmPtr A pointer to VM context. | |
| @param CodeOffset Offset from IP of the location of the 32-bit index | |
| to decode. | |
| @return Converted index per EBC VM specification. | |
| **/ | |
| INT32 | |
| VmReadIndex32 ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT32 CodeOffset | |
| ); | |
| /** | |
| Decode a 64-bit index to determine the offset. | |
| @param VmPtr A pointer to VM context.s | |
| @param CodeOffset Offset from IP of the location of the 64-bit index | |
| to decode. | |
| @return Converted index per EBC VM specification | |
| **/ | |
| INT64 | |
| VmReadIndex64 ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT32 CodeOffset | |
| ); | |
| /** | |
| Reads 8-bit data form the memory address. | |
| @param VmPtr A pointer to VM context. | |
| @param Addr The memory address. | |
| @return The 8-bit value from the memory address. | |
| **/ | |
| UINT8 | |
| VmReadMem8 ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINTN Addr | |
| ); | |
| /** | |
| Reads 16-bit data form the memory address. | |
| @param VmPtr A pointer to VM context. | |
| @param Addr The memory address. | |
| @return The 16-bit value from the memory address. | |
| **/ | |
| UINT16 | |
| VmReadMem16 ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINTN Addr | |
| ); | |
| /** | |
| Reads 32-bit data form the memory address. | |
| @param VmPtr A pointer to VM context. | |
| @param Addr The memory address. | |
| @return The 32-bit value from the memory address. | |
| **/ | |
| UINT32 | |
| VmReadMem32 ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINTN Addr | |
| ); | |
| /** | |
| Reads 64-bit data form the memory address. | |
| @param VmPtr A pointer to VM context. | |
| @param Addr The memory address. | |
| @return The 64-bit value from the memory address. | |
| **/ | |
| UINT64 | |
| VmReadMem64 ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINTN Addr | |
| ); | |
| /** | |
| Read a natural value from memory. May or may not be aligned. | |
| @param VmPtr current VM context | |
| @param Addr the address to read from | |
| @return The natural value at address Addr. | |
| **/ | |
| UINTN | |
| VmReadMemN ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINTN Addr | |
| ); | |
| /** | |
| Writes 8-bit data to memory address. | |
| This routine is called by the EBC data | |
| movement instructions that write to memory. Since these writes | |
| may be to the stack, which looks like (high address on top) this, | |
| [EBC entry point arguments] | |
| [VM stack] | |
| [EBC stack] | |
| we need to detect all attempts to write to the EBC entry point argument | |
| stack area and adjust the address (which will initially point into the | |
| VM stack) to point into the EBC entry point arguments. | |
| @param VmPtr A pointer to a VM context. | |
| @param Addr Address to write to. | |
| @param Data Value to write to Addr. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| @retval Other Some error occurs when writing data to the address. | |
| **/ | |
| EFI_STATUS | |
| VmWriteMem8 ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINTN Addr, | |
| IN UINT8 Data | |
| ); | |
| /** | |
| Writes 16-bit data to memory address. | |
| This routine is called by the EBC data | |
| movement instructions that write to memory. Since these writes | |
| may be to the stack, which looks like (high address on top) this, | |
| [EBC entry point arguments] | |
| [VM stack] | |
| [EBC stack] | |
| we need to detect all attempts to write to the EBC entry point argument | |
| stack area and adjust the address (which will initially point into the | |
| VM stack) to point into the EBC entry point arguments. | |
| @param VmPtr A pointer to a VM context. | |
| @param Addr Address to write to. | |
| @param Data Value to write to Addr. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| @retval Other Some error occurs when writing data to the address. | |
| **/ | |
| EFI_STATUS | |
| VmWriteMem16 ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINTN Addr, | |
| IN UINT16 Data | |
| ); | |
| /** | |
| Writes 32-bit data to memory address. | |
| This routine is called by the EBC data | |
| movement instructions that write to memory. Since these writes | |
| may be to the stack, which looks like (high address on top) this, | |
| [EBC entry point arguments] | |
| [VM stack] | |
| [EBC stack] | |
| we need to detect all attempts to write to the EBC entry point argument | |
| stack area and adjust the address (which will initially point into the | |
| VM stack) to point into the EBC entry point arguments. | |
| @param VmPtr A pointer to a VM context. | |
| @param Addr Address to write to. | |
| @param Data Value to write to Addr. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| @retval Other Some error occurs when writing data to the address. | |
| **/ | |
| EFI_STATUS | |
| VmWriteMem32 ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINTN Addr, | |
| IN UINT32 Data | |
| ); | |
| /** | |
| Reads 16-bit unsigned data from the code stream. | |
| This routine provides the ability to read raw unsigned data from the code | |
| stream. | |
| @param VmPtr A pointer to VM context | |
| @param Offset Offset from current IP to the raw data to read. | |
| @return The raw unsigned 16-bit value from the code stream. | |
| **/ | |
| UINT16 | |
| VmReadCode16 ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT32 Offset | |
| ); | |
| /** | |
| Reads 32-bit unsigned data from the code stream. | |
| This routine provides the ability to read raw unsigned data from the code | |
| stream. | |
| @param VmPtr A pointer to VM context | |
| @param Offset Offset from current IP to the raw data to read. | |
| @return The raw unsigned 32-bit value from the code stream. | |
| **/ | |
| UINT32 | |
| VmReadCode32 ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT32 Offset | |
| ); | |
| /** | |
| Reads 64-bit unsigned data from the code stream. | |
| This routine provides the ability to read raw unsigned data from the code | |
| stream. | |
| @param VmPtr A pointer to VM context | |
| @param Offset Offset from current IP to the raw data to read. | |
| @return The raw unsigned 64-bit value from the code stream. | |
| **/ | |
| UINT64 | |
| VmReadCode64 ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT32 Offset | |
| ); | |
| /** | |
| Reads 8-bit immediate value at the offset. | |
| This routine is called by the EBC execute | |
| functions to read EBC immediate values from the code stream. | |
| Since we can't assume alignment, each tries to read in the biggest | |
| chunks size available, but will revert to smaller reads if necessary. | |
| @param VmPtr A pointer to a VM context. | |
| @param Offset offset from IP of the code bytes to read. | |
| @return Signed data of the requested size from the specified address. | |
| **/ | |
| INT8 | |
| VmReadImmed8 ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT32 Offset | |
| ); | |
| /** | |
| Reads 16-bit immediate value at the offset. | |
| This routine is called by the EBC execute | |
| functions to read EBC immediate values from the code stream. | |
| Since we can't assume alignment, each tries to read in the biggest | |
| chunks size available, but will revert to smaller reads if necessary. | |
| @param VmPtr A pointer to a VM context. | |
| @param Offset offset from IP of the code bytes to read. | |
| @return Signed data of the requested size from the specified address. | |
| **/ | |
| INT16 | |
| VmReadImmed16 ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT32 Offset | |
| ); | |
| /** | |
| Reads 32-bit immediate value at the offset. | |
| This routine is called by the EBC execute | |
| functions to read EBC immediate values from the code stream. | |
| Since we can't assume alignment, each tries to read in the biggest | |
| chunks size available, but will revert to smaller reads if necessary. | |
| @param VmPtr A pointer to a VM context. | |
| @param Offset offset from IP of the code bytes to read. | |
| @return Signed data of the requested size from the specified address. | |
| **/ | |
| INT32 | |
| VmReadImmed32 ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT32 Offset | |
| ); | |
| /** | |
| Reads 64-bit immediate value at the offset. | |
| This routine is called by the EBC execute | |
| functions to read EBC immediate values from the code stream. | |
| Since we can't assume alignment, each tries to read in the biggest | |
| chunks size available, but will revert to smaller reads if necessary. | |
| @param VmPtr A pointer to a VM context. | |
| @param Offset offset from IP of the code bytes to read. | |
| @return Signed data of the requested size from the specified address. | |
| **/ | |
| INT64 | |
| VmReadImmed64 ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT32 Offset | |
| ); | |
| /** | |
| Given an address that EBC is going to read from or write to, return | |
| an appropriate address that accounts for a gap in the stack. | |
| The stack for this application looks like this (high addr on top) | |
| [EBC entry point arguments] | |
| [VM stack] | |
| [EBC stack] | |
| The EBC assumes that its arguments are at the top of its stack, which | |
| is where the VM stack is really. Therefore if the EBC does memory | |
| accesses into the VM stack area, then we need to convert the address | |
| to point to the EBC entry point arguments area. Do this here. | |
| @param VmPtr A Pointer to VM context. | |
| @param Addr Address of interest | |
| @return The unchanged address if it's not in the VM stack region. Otherwise, | |
| adjust for the stack gap and return the modified address. | |
| **/ | |
| UINTN | |
| ConvertStackAddr ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINTN Addr | |
| ); | |
| /** | |
| Execute all the EBC data manipulation instructions. | |
| Since the EBC data manipulation instructions all have the same basic form, | |
| they can share the code that does the fetch of operands and the write-back | |
| of the result. This function performs the fetch of the operands (even if | |
| both are not needed to be fetched, like NOT instruction), dispatches to the | |
| appropriate subfunction, then writes back the returned result. | |
| Format: | |
| INSTRUCITON[32|64] {@}R1, {@}R2 {Immed16|Index16} | |
| @param VmPtr A pointer to VM context. | |
| @param IsSignedOp Indicates whether the operand is signed or not. | |
| @retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecuteDataManip ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN BOOLEAN IsSignedOp | |
| ); | |
| // | |
| // Functions that execute VM opcodes | |
| // | |
| /** | |
| Execute the EBC BREAK instruction. | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecuteBREAK ( | |
| IN VM_CONTEXT *VmPtr | |
| ); | |
| /** | |
| Execute the JMP instruction. | |
| Instruction syntax: | |
| JMP64{cs|cc} Immed64 | |
| JMP32{cs|cc} {@}R1 {Immed32|Index32} | |
| Encoding: | |
| b0.7 - immediate data present | |
| b0.6 - 1 = 64 bit immediate data | |
| 0 = 32 bit immediate data | |
| b1.7 - 1 = conditional | |
| b1.6 1 = CS (condition set) | |
| 0 = CC (condition clear) | |
| b1.4 1 = relative address | |
| 0 = absolute address | |
| b1.3 1 = operand1 indirect | |
| b1.2-0 operand 1 | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecuteJMP ( | |
| IN VM_CONTEXT *VmPtr | |
| ); | |
| /** | |
| Execute the EBC JMP8 instruction. | |
| Instruction syntax: | |
| JMP8{cs|cc} Offset/2 | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecuteJMP8 ( | |
| IN VM_CONTEXT *VmPtr | |
| ); | |
| /** | |
| Implements the EBC CALL instruction. | |
| Instruction format: | |
| CALL64 Immed64 | |
| CALL32 {@}R1 {Immed32|Index32} | |
| CALLEX64 Immed64 | |
| CALLEX16 {@}R1 {Immed32} | |
| If Rx == R0, then it's a PC relative call to PC = PC + imm32. | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecuteCALL ( | |
| IN VM_CONTEXT *VmPtr | |
| ); | |
| /** | |
| Execute the EBC RET instruction. | |
| Instruction syntax: | |
| RET | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecuteRET ( | |
| IN VM_CONTEXT *VmPtr | |
| ); | |
| /** | |
| Execute the EBC CMP instruction. | |
| Instruction syntax: | |
| CMP[32|64][eq|lte|gte|ulte|ugte] R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecuteCMP ( | |
| IN VM_CONTEXT *VmPtr | |
| ); | |
| /** | |
| Execute the EBC CMPI instruction | |
| Instruction syntax: | |
| CMPI[32|64]{w|d}[eq|lte|gte|ulte|ugte] {@}Rx {Index16}, Immed16|Immed32 | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecuteCMPI ( | |
| IN VM_CONTEXT *VmPtr | |
| ); | |
| /** | |
| Execute the MOVxx instructions. | |
| Instruction format: | |
| MOV[b|w|d|q|n]{w|d} {@}R1 {Index16|32}, {@}R2 {Index16|32} | |
| MOVqq {@}R1 {Index64}, {@}R2 {Index64} | |
| Copies contents of [R2] -> [R1], zero extending where required. | |
| First character indicates the size of the move. | |
| Second character indicates the size of the index(s). | |
| Invalid to have R1 direct with index. | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecuteMOVxx ( | |
| IN VM_CONTEXT *VmPtr | |
| ); | |
| /** | |
| Execute the EBC MOVI. | |
| Instruction syntax: | |
| MOVI[b|w|d|q][w|d|q] {@}R1 {Index16}, ImmData16|32|64 | |
| First variable character specifies the move size | |
| Second variable character specifies size of the immediate data | |
| Sign-extend the immediate data to the size of the operation, and zero-extend | |
| if storing to a register. | |
| Operand1 direct with index/immed is invalid. | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecuteMOVI ( | |
| IN VM_CONTEXT *VmPtr | |
| ); | |
| /** | |
| Execute the EBC MOV immediate natural. This instruction moves an immediate | |
| index value into a register or memory location. | |
| Instruction syntax: | |
| MOVIn[w|d|q] {@}R1 {Index16}, Index16|32|64 | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecuteMOVIn ( | |
| IN VM_CONTEXT *VmPtr | |
| ); | |
| /** | |
| Execute the EBC MOVREL instruction. | |
| Dest <- Ip + ImmData | |
| Instruction syntax: | |
| MOVREL[w|d|q] {@}R1 {Index16}, ImmData16|32|64 | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecuteMOVREL ( | |
| IN VM_CONTEXT *VmPtr | |
| ); | |
| /** | |
| Execute the EBC PUSHn instruction | |
| Instruction syntax: | |
| PUSHn {@}R1 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecutePUSHn ( | |
| IN VM_CONTEXT *VmPtr | |
| ); | |
| /** | |
| Execute the EBC PUSH instruction. | |
| Instruction syntax: | |
| PUSH[32|64] {@}R1 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecutePUSH ( | |
| IN VM_CONTEXT *VmPtr | |
| ); | |
| /** | |
| Execute the EBC POPn instruction. | |
| Instruction syntax: | |
| POPn {@}R1 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecutePOPn ( | |
| IN VM_CONTEXT *VmPtr | |
| ); | |
| /** | |
| Execute the EBC POP instruction. | |
| Instruction syntax: | |
| POPn {@}R1 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecutePOP ( | |
| IN VM_CONTEXT *VmPtr | |
| ); | |
| /** | |
| Execute all the EBC signed data manipulation instructions. | |
| Since the EBC data manipulation instructions all have the same basic form, | |
| they can share the code that does the fetch of operands and the write-back | |
| of the result. This function performs the fetch of the operands (even if | |
| both are not needed to be fetched, like NOT instruction), dispatches to the | |
| appropriate subfunction, then writes back the returned result. | |
| Format: | |
| INSTRUCITON[32|64] {@}R1, {@}R2 {Immed16|Index16} | |
| @param VmPtr A pointer to VM context. | |
| @retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecuteSignedDataManip ( | |
| IN VM_CONTEXT *VmPtr | |
| ); | |
| /** | |
| Execute all the EBC unsigned data manipulation instructions. | |
| Since the EBC data manipulation instructions all have the same basic form, | |
| they can share the code that does the fetch of operands and the write-back | |
| of the result. This function performs the fetch of the operands (even if | |
| both are not needed to be fetched, like NOT instruction), dispatches to the | |
| appropriate subfunction, then writes back the returned result. | |
| Format: | |
| INSTRUCITON[32|64] {@}R1, {@}R2 {Immed16|Index16} | |
| @param VmPtr A pointer to VM context. | |
| @retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecuteUnsignedDataManip ( | |
| IN VM_CONTEXT *VmPtr | |
| ); | |
| /** | |
| Execute the EBC LOADSP instruction. | |
| Instruction syntax: | |
| LOADSP SP1, R2 | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecuteLOADSP ( | |
| IN VM_CONTEXT *VmPtr | |
| ); | |
| /** | |
| Execute the EBC STORESP instruction. | |
| Instruction syntax: | |
| STORESP Rx, FLAGS|IP | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecuteSTORESP ( | |
| IN VM_CONTEXT *VmPtr | |
| ); | |
| /** | |
| Execute the EBC MOVsnw instruction. This instruction loads a signed | |
| natural value from memory or register to another memory or register. On | |
| 32-bit machines, the value gets sign-extended to 64 bits if the destination | |
| is a register. | |
| Instruction syntax: | |
| MOVsnd {@}R1 {Indx32}, {@}R2 {Index32|Immed32} | |
| 0:7 1=>operand1 index present | |
| 0:6 1=>operand2 index present | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecuteMOVsnd ( | |
| IN VM_CONTEXT *VmPtr | |
| ); | |
| /** | |
| Execute the EBC MOVsnw instruction. This instruction loads a signed | |
| natural value from memory or register to another memory or register. On | |
| 32-bit machines, the value gets sign-extended to 64 bits if the destination | |
| is a register. | |
| Instruction syntax: | |
| MOVsnw {@}R1 {Index16}, {@}R2 {Index16|Immed16} | |
| 0:7 1=>operand1 index present | |
| 0:6 1=>operand2 index present | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecuteMOVsnw ( | |
| IN VM_CONTEXT *VmPtr | |
| ); | |
| // | |
| // Data manipulation subfunctions | |
| // | |
| /** | |
| Execute the EBC NOT instruction.s | |
| Instruction syntax: | |
| NOT[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return ~Op2 | |
| **/ | |
| UINT64 | |
| ExecuteNOT ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ); | |
| /** | |
| Execute the EBC NEG instruction. | |
| Instruction syntax: | |
| NEG[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return Op2 * -1 | |
| **/ | |
| UINT64 | |
| ExecuteNEG ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ); | |
| /** | |
| Execute the EBC ADD instruction. | |
| Instruction syntax: | |
| ADD[32|64] {@}R1, {@}R2 {Index16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return Op1 + Op2 | |
| **/ | |
| UINT64 | |
| ExecuteADD ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ); | |
| /** | |
| Execute the EBC SUB instruction. | |
| Instruction syntax: | |
| SUB[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return Op1 - Op2 | |
| **/ | |
| UINT64 | |
| ExecuteSUB ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ); | |
| /** | |
| Execute the EBC MUL instruction. | |
| Instruction syntax: | |
| SUB[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return Op1 * Op2 | |
| **/ | |
| UINT64 | |
| ExecuteMUL ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ); | |
| /** | |
| Execute the EBC MULU instruction | |
| Instruction syntax: | |
| MULU[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return (unsigned)Op1 * (unsigned)Op2 | |
| **/ | |
| UINT64 | |
| ExecuteMULU ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ); | |
| /** | |
| Execute the EBC DIV instruction. | |
| Instruction syntax: | |
| DIV[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return Op1 / Op2 | |
| **/ | |
| UINT64 | |
| ExecuteDIV ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ); | |
| /** | |
| Execute the EBC DIVU instruction | |
| Instruction syntax: | |
| DIVU[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return (unsigned)Op1 / (unsigned)Op2 | |
| **/ | |
| UINT64 | |
| ExecuteDIVU ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ); | |
| /** | |
| Execute the EBC MOD instruction. | |
| Instruction syntax: | |
| MOD[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return Op1 MODULUS Op2 | |
| **/ | |
| UINT64 | |
| ExecuteMOD ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ); | |
| /** | |
| Execute the EBC MODU instruction. | |
| Instruction syntax: | |
| MODU[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return Op1 UNSIGNED_MODULUS Op2 | |
| **/ | |
| UINT64 | |
| ExecuteMODU ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ); | |
| /** | |
| Execute the EBC AND instruction. | |
| Instruction syntax: | |
| AND[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return Op1 AND Op2 | |
| **/ | |
| UINT64 | |
| ExecuteAND ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ); | |
| /** | |
| Execute the EBC OR instruction. | |
| Instruction syntax: | |
| OR[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return Op1 OR Op2 | |
| **/ | |
| UINT64 | |
| ExecuteOR ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ); | |
| /** | |
| Execute the EBC XOR instruction. | |
| Instruction syntax: | |
| XOR[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return Op1 XOR Op2 | |
| **/ | |
| UINT64 | |
| ExecuteXOR ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ); | |
| /** | |
| Execute the EBC SHL shift left instruction. | |
| Instruction syntax: | |
| SHL[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return Op1 << Op2 | |
| **/ | |
| UINT64 | |
| ExecuteSHL ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ); | |
| /** | |
| Execute the EBC SHR instruction. | |
| Instruction syntax: | |
| SHR[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return Op1 >> Op2 (unsigned operands) | |
| **/ | |
| UINT64 | |
| ExecuteSHR ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ); | |
| /** | |
| Execute the EBC ASHR instruction. | |
| Instruction syntax: | |
| ASHR[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return Op1 >> Op2 (signed) | |
| **/ | |
| UINT64 | |
| ExecuteASHR ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ); | |
| /** | |
| Execute the EBC EXTNDB instruction to sign-extend a byte value. | |
| Instruction syntax: | |
| EXTNDB[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return (INT64)(INT8)Op2 | |
| **/ | |
| UINT64 | |
| ExecuteEXTNDB ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ); | |
| /** | |
| Execute the EBC EXTNDW instruction to sign-extend a 16-bit value. | |
| Instruction syntax: | |
| EXTNDW[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return (INT64)(INT16)Op2 | |
| **/ | |
| UINT64 | |
| ExecuteEXTNDW ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ); | |
| /** | |
| Execute the EBC EXTNDD instruction to sign-extend a 32-bit value. | |
| Instruction syntax: | |
| EXTNDD[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return (INT64)(INT32)Op2 | |
| **/ | |
| UINT64 | |
| ExecuteEXTNDD ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ); | |
| // | |
| // Once we retrieve the operands for the data manipulation instructions, | |
| // call these functions to perform the operation. | |
| // | |
| CONST DATA_MANIP_EXEC_FUNCTION mDataManipDispatchTable[] = { | |
| ExecuteNOT, | |
| ExecuteNEG, | |
| ExecuteADD, | |
| ExecuteSUB, | |
| ExecuteMUL, | |
| ExecuteMULU, | |
| ExecuteDIV, | |
| ExecuteDIVU, | |
| ExecuteMOD, | |
| ExecuteMODU, | |
| ExecuteAND, | |
| ExecuteOR, | |
| ExecuteXOR, | |
| ExecuteSHL, | |
| ExecuteSHR, | |
| ExecuteASHR, | |
| ExecuteEXTNDB, | |
| ExecuteEXTNDW, | |
| ExecuteEXTNDD, | |
| }; | |
| CONST VM_TABLE_ENTRY mVmOpcodeTable[] = { | |
| { ExecuteBREAK }, // opcode 0x00 | |
| { ExecuteJMP }, // opcode 0x01 | |
| { ExecuteJMP8 }, // opcode 0x02 | |
| { ExecuteCALL }, // opcode 0x03 | |
| { ExecuteRET }, // opcode 0x04 | |
| { ExecuteCMP }, // opcode 0x05 CMPeq | |
| { ExecuteCMP }, // opcode 0x06 CMPlte | |
| { ExecuteCMP }, // opcode 0x07 CMPgte | |
| { ExecuteCMP }, // opcode 0x08 CMPulte | |
| { ExecuteCMP }, // opcode 0x09 CMPugte | |
| { ExecuteUnsignedDataManip }, // opcode 0x0A NOT | |
| { ExecuteSignedDataManip }, // opcode 0x0B NEG | |
| { ExecuteSignedDataManip }, // opcode 0x0C ADD | |
| { ExecuteSignedDataManip }, // opcode 0x0D SUB | |
| { ExecuteSignedDataManip }, // opcode 0x0E MUL | |
| { ExecuteUnsignedDataManip }, // opcode 0x0F MULU | |
| { ExecuteSignedDataManip }, // opcode 0x10 DIV | |
| { ExecuteUnsignedDataManip }, // opcode 0x11 DIVU | |
| { ExecuteSignedDataManip }, // opcode 0x12 MOD | |
| { ExecuteUnsignedDataManip }, // opcode 0x13 MODU | |
| { ExecuteUnsignedDataManip }, // opcode 0x14 AND | |
| { ExecuteUnsignedDataManip }, // opcode 0x15 OR | |
| { ExecuteUnsignedDataManip }, // opcode 0x16 XOR | |
| { ExecuteUnsignedDataManip }, // opcode 0x17 SHL | |
| { ExecuteUnsignedDataManip }, // opcode 0x18 SHR | |
| { ExecuteSignedDataManip }, // opcode 0x19 ASHR | |
| { ExecuteUnsignedDataManip }, // opcode 0x1A EXTNDB | |
| { ExecuteUnsignedDataManip }, // opcode 0x1B EXTNDW | |
| { ExecuteUnsignedDataManip }, // opcode 0x1C EXTNDD | |
| { ExecuteMOVxx }, // opcode 0x1D MOVBW | |
| { ExecuteMOVxx }, // opcode 0x1E MOVWW | |
| { ExecuteMOVxx }, // opcode 0x1F MOVDW | |
| { ExecuteMOVxx }, // opcode 0x20 MOVQW | |
| { ExecuteMOVxx }, // opcode 0x21 MOVBD | |
| { ExecuteMOVxx }, // opcode 0x22 MOVWD | |
| { ExecuteMOVxx }, // opcode 0x23 MOVDD | |
| { ExecuteMOVxx }, // opcode 0x24 MOVQD | |
| { ExecuteMOVsnw }, // opcode 0x25 MOVsnw | |
| { ExecuteMOVsnd }, // opcode 0x26 MOVsnd | |
| { NULL }, // opcode 0x27 | |
| { ExecuteMOVxx }, // opcode 0x28 MOVqq | |
| { ExecuteLOADSP }, // opcode 0x29 LOADSP SP1, R2 | |
| { ExecuteSTORESP }, // opcode 0x2A STORESP R1, SP2 | |
| { ExecutePUSH }, // opcode 0x2B PUSH {@}R1 [imm16] | |
| { ExecutePOP }, // opcode 0x2C POP {@}R1 [imm16] | |
| { ExecuteCMPI }, // opcode 0x2D CMPIEQ | |
| { ExecuteCMPI }, // opcode 0x2E CMPILTE | |
| { ExecuteCMPI }, // opcode 0x2F CMPIGTE | |
| { ExecuteCMPI }, // opcode 0x30 CMPIULTE | |
| { ExecuteCMPI }, // opcode 0x31 CMPIUGTE | |
| { ExecuteMOVxx }, // opcode 0x32 MOVN | |
| { ExecuteMOVxx }, // opcode 0x33 MOVND | |
| { NULL }, // opcode 0x34 | |
| { ExecutePUSHn }, // opcode 0x35 | |
| { ExecutePOPn }, // opcode 0x36 | |
| { ExecuteMOVI }, // opcode 0x37 - mov immediate data | |
| { ExecuteMOVIn }, // opcode 0x38 - mov immediate natural | |
| { ExecuteMOVREL }, // opcode 0x39 - move data relative to PC | |
| { NULL }, // opcode 0x3a | |
| { NULL }, // opcode 0x3b | |
| { NULL }, // opcode 0x3c | |
| { NULL }, // opcode 0x3d | |
| { NULL }, // opcode 0x3e | |
| { NULL } // opcode 0x3f | |
| }; | |
| // | |
| // Length of JMP instructions, depending on upper two bits of opcode. | |
| // | |
| CONST UINT8 mJMPLen[] = { 2, 2, 6, 10 }; | |
| /** | |
| Given a pointer to a new VM context, execute one or more instructions. This | |
| function is only used for test purposes via the EBC VM test protocol. | |
| @param This A pointer to the EFI_EBC_VM_TEST_PROTOCOL structure. | |
| @param VmPtr A pointer to a VM context. | |
| @param InstructionCount A pointer to a UINTN value holding the number of | |
| instructions to execute. If it holds value of 0, | |
| then the instruction to be executed is 1. | |
| @retval EFI_UNSUPPORTED At least one of the opcodes is not supported. | |
| @retval EFI_SUCCESS All of the instructions are executed successfully. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| EbcExecuteInstructions ( | |
| IN EFI_EBC_VM_TEST_PROTOCOL *This, | |
| IN VM_CONTEXT *VmPtr, | |
| IN OUT UINTN *InstructionCount | |
| ) | |
| { | |
| UINTN ExecFunc; | |
| EFI_STATUS Status; | |
| UINTN InstructionsLeft; | |
| UINTN SavedInstructionCount; | |
| Status = EFI_SUCCESS; | |
| if (*InstructionCount == 0) { | |
| InstructionsLeft = 1; | |
| } else { | |
| InstructionsLeft = *InstructionCount; | |
| } | |
| SavedInstructionCount = *InstructionCount; | |
| *InstructionCount = 0; | |
| // | |
| // Index into the opcode table using the opcode byte for this instruction. | |
| // This gives you the execute function, which we first test for null, then | |
| // call it if it's not null. | |
| // | |
| while (InstructionsLeft != 0) { | |
| ExecFunc = (UINTN) mVmOpcodeTable[(*VmPtr->Ip & OPCODE_M_OPCODE)].ExecuteFunction; | |
| if (ExecFunc == (UINTN) NULL) { | |
| EbcDebugSignalException (EXCEPT_EBC_INVALID_OPCODE, EXCEPTION_FLAG_FATAL, VmPtr); | |
| return EFI_UNSUPPORTED; | |
| } else { | |
| mVmOpcodeTable[(*VmPtr->Ip & OPCODE_M_OPCODE)].ExecuteFunction (VmPtr); | |
| *InstructionCount = *InstructionCount + 1; | |
| } | |
| // | |
| // Decrement counter if applicable | |
| // | |
| if (SavedInstructionCount != 0) { | |
| InstructionsLeft--; | |
| } | |
| } | |
| return Status; | |
| } | |
| /** | |
| Execute an EBC image from an entry point or from a published protocol. | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_UNSUPPORTED At least one of the opcodes is not supported. | |
| @retval EFI_SUCCESS All of the instructions are executed successfully. | |
| **/ | |
| EFI_STATUS | |
| EbcExecute ( | |
| IN VM_CONTEXT *VmPtr | |
| ) | |
| { | |
| UINTN ExecFunc; | |
| UINT8 StackCorrupted; | |
| EFI_STATUS Status; | |
| EFI_EBC_SIMPLE_DEBUGGER_PROTOCOL *EbcSimpleDebugger; | |
| mVmPtr = VmPtr; | |
| EbcSimpleDebugger = NULL; | |
| Status = EFI_SUCCESS; | |
| StackCorrupted = 0; | |
| // | |
| // Make sure the magic value has been put on the stack before we got here. | |
| // | |
| if (*VmPtr->StackMagicPtr != (UINTN) VM_STACK_KEY_VALUE) { | |
| StackCorrupted = 1; | |
| } | |
| VmPtr->FramePtr = (VOID *) ((UINT8 *) (UINTN) VmPtr->Gpr[0] + 8); | |
| // | |
| // Try to get the debug support for EBC | |
| // | |
| DEBUG_CODE_BEGIN (); | |
| Status = gBS->LocateProtocol ( | |
| &gEfiEbcSimpleDebuggerProtocolGuid, | |
| NULL, | |
| (VOID **) &EbcSimpleDebugger | |
| ); | |
| if (EFI_ERROR (Status)) { | |
| EbcSimpleDebugger = NULL; | |
| } | |
| DEBUG_CODE_END (); | |
| // | |
| // Save the start IP for debug. For example, if we take an exception we | |
| // can print out the location of the exception relative to the entry point, | |
| // which could then be used in a disassembly listing to find the problem. | |
| // | |
| VmPtr->EntryPoint = (VOID *) VmPtr->Ip; | |
| // | |
| // We'll wait for this flag to know when we're done. The RET | |
| // instruction sets it if it runs out of stack. | |
| // | |
| VmPtr->StopFlags = 0; | |
| while ((VmPtr->StopFlags & STOPFLAG_APP_DONE) == 0) { | |
| // | |
| // If we've found a simple debugger protocol, call it | |
| // | |
| DEBUG_CODE_BEGIN (); | |
| if (EbcSimpleDebugger != NULL) { | |
| EbcSimpleDebugger->Debugger (EbcSimpleDebugger, VmPtr); | |
| } | |
| DEBUG_CODE_END (); | |
| // | |
| // Use the opcode bits to index into the opcode dispatch table. If the | |
| // function pointer is null then generate an exception. | |
| // | |
| ExecFunc = (UINTN) mVmOpcodeTable[(*VmPtr->Ip & OPCODE_M_OPCODE)].ExecuteFunction; | |
| if (ExecFunc == (UINTN) NULL) { | |
| EbcDebugSignalException (EXCEPT_EBC_INVALID_OPCODE, EXCEPTION_FLAG_FATAL, VmPtr); | |
| Status = EFI_UNSUPPORTED; | |
| goto Done; | |
| } | |
| EbcDebuggerHookExecuteStart (VmPtr); | |
| // | |
| // The EBC VM is a strongly ordered processor, so perform a fence operation before | |
| // and after each instruction is executed. | |
| // | |
| MemoryFence (); | |
| mVmOpcodeTable[(*VmPtr->Ip & OPCODE_M_OPCODE)].ExecuteFunction (VmPtr); | |
| MemoryFence (); | |
| EbcDebuggerHookExecuteEnd (VmPtr); | |
| // | |
| // If the step flag is set, signal an exception and continue. We don't | |
| // clear it here. Assuming the debugger is responsible for clearing it. | |
| // | |
| if (VMFLAG_ISSET (VmPtr, VMFLAGS_STEP)) { | |
| EbcDebugSignalException (EXCEPT_EBC_STEP, EXCEPTION_FLAG_NONE, VmPtr); | |
| } | |
| // | |
| // Make sure stack has not been corrupted. Only report it once though. | |
| // | |
| if ((StackCorrupted == 0) && (*VmPtr->StackMagicPtr != (UINTN) VM_STACK_KEY_VALUE)) { | |
| EbcDebugSignalException (EXCEPT_EBC_STACK_FAULT, EXCEPTION_FLAG_FATAL, VmPtr); | |
| StackCorrupted = 1; | |
| } | |
| if ((StackCorrupted == 0) && ((UINT64)VmPtr->Gpr[0] <= (UINT64)(UINTN) VmPtr->StackTop)) { | |
| EbcDebugSignalException (EXCEPT_EBC_STACK_FAULT, EXCEPTION_FLAG_FATAL, VmPtr); | |
| StackCorrupted = 1; | |
| } | |
| } | |
| Done: | |
| mVmPtr = NULL; | |
| return Status; | |
| } | |
| /** | |
| Execute the MOVxx instructions. | |
| Instruction format: | |
| MOV[b|w|d|q|n]{w|d} {@}R1 {Index16|32}, {@}R2 {Index16|32} | |
| MOVqq {@}R1 {Index64}, {@}R2 {Index64} | |
| Copies contents of [R2] -> [R1], zero extending where required. | |
| First character indicates the size of the move. | |
| Second character indicates the size of the index(s). | |
| Invalid to have R1 direct with index. | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecuteMOVxx ( | |
| IN VM_CONTEXT *VmPtr | |
| ) | |
| { | |
| UINT8 Opcode; | |
| UINT8 OpcMasked; | |
| UINT8 Operands; | |
| UINT8 Size; | |
| UINT8 MoveSize; | |
| INT16 Index16; | |
| INT32 Index32; | |
| INT64 Index64Op1; | |
| INT64 Index64Op2; | |
| UINT64 Data64; | |
| UINT64 DataMask; | |
| UINTN Source; | |
| Opcode = GETOPCODE (VmPtr); | |
| OpcMasked = (UINT8) (Opcode & OPCODE_M_OPCODE); | |
| // | |
| // Get the operands byte so we can get R1 and R2 | |
| // | |
| Operands = GETOPERANDS (VmPtr); | |
| // | |
| // Assume no indexes | |
| // | |
| Index64Op1 = 0; | |
| Index64Op2 = 0; | |
| Data64 = 0; | |
| // | |
| // Determine if we have an index/immediate data. Base instruction size | |
| // is 2 (opcode + operands). Add to this size each index specified. | |
| // | |
| Size = 2; | |
| if ((Opcode & (OPCODE_M_IMMED_OP1 | OPCODE_M_IMMED_OP2)) != 0) { | |
| // | |
| // Determine size of the index from the opcode. Then get it. | |
| // | |
| if ((OpcMasked <= OPCODE_MOVQW) || (OpcMasked == OPCODE_MOVNW)) { | |
| // | |
| // MOVBW, MOVWW, MOVDW, MOVQW, and MOVNW have 16-bit immediate index. | |
| // Get one or both index values. | |
| // | |
| if ((Opcode & OPCODE_M_IMMED_OP1) != 0) { | |
| Index16 = VmReadIndex16 (VmPtr, 2); | |
| Index64Op1 = (INT64) Index16; | |
| Size += sizeof (UINT16); | |
| } | |
| if ((Opcode & OPCODE_M_IMMED_OP2) != 0) { | |
| Index16 = VmReadIndex16 (VmPtr, Size); | |
| Index64Op2 = (INT64) Index16; | |
| Size += sizeof (UINT16); | |
| } | |
| } else if ((OpcMasked <= OPCODE_MOVQD) || (OpcMasked == OPCODE_MOVND)) { | |
| // | |
| // MOVBD, MOVWD, MOVDD, MOVQD, and MOVND have 32-bit immediate index | |
| // | |
| if ((Opcode & OPCODE_M_IMMED_OP1) != 0) { | |
| Index32 = VmReadIndex32 (VmPtr, 2); | |
| Index64Op1 = (INT64) Index32; | |
| Size += sizeof (UINT32); | |
| } | |
| if ((Opcode & OPCODE_M_IMMED_OP2) != 0) { | |
| Index32 = VmReadIndex32 (VmPtr, Size); | |
| Index64Op2 = (INT64) Index32; | |
| Size += sizeof (UINT32); | |
| } | |
| } else if (OpcMasked == OPCODE_MOVQQ) { | |
| // | |
| // MOVqq -- only form with a 64-bit index | |
| // | |
| if ((Opcode & OPCODE_M_IMMED_OP1) != 0) { | |
| Index64Op1 = VmReadIndex64 (VmPtr, 2); | |
| Size += sizeof (UINT64); | |
| } | |
| if ((Opcode & OPCODE_M_IMMED_OP2) != 0) { | |
| Index64Op2 = VmReadIndex64 (VmPtr, Size); | |
| Size += sizeof (UINT64); | |
| } | |
| } else { | |
| // | |
| // Obsolete MOVBQ, MOVWQ, MOVDQ, and MOVNQ have 64-bit immediate index | |
| // | |
| EbcDebugSignalException ( | |
| EXCEPT_EBC_INSTRUCTION_ENCODING, | |
| EXCEPTION_FLAG_FATAL, | |
| VmPtr | |
| ); | |
| return EFI_UNSUPPORTED; | |
| } | |
| } | |
| // | |
| // Determine the size of the move, and create a mask for it so we can | |
| // clear unused bits. | |
| // | |
| if ((OpcMasked == OPCODE_MOVBW) || (OpcMasked == OPCODE_MOVBD)) { | |
| MoveSize = DATA_SIZE_8; | |
| DataMask = 0xFF; | |
| } else if ((OpcMasked == OPCODE_MOVWW) || (OpcMasked == OPCODE_MOVWD)) { | |
| MoveSize = DATA_SIZE_16; | |
| DataMask = 0xFFFF; | |
| } else if ((OpcMasked == OPCODE_MOVDW) || (OpcMasked == OPCODE_MOVDD)) { | |
| MoveSize = DATA_SIZE_32; | |
| DataMask = 0xFFFFFFFF; | |
| } else if ((OpcMasked == OPCODE_MOVQW) || (OpcMasked == OPCODE_MOVQD) || (OpcMasked == OPCODE_MOVQQ)) { | |
| MoveSize = DATA_SIZE_64; | |
| DataMask = (UINT64)~0; | |
| } else if ((OpcMasked == OPCODE_MOVNW) || (OpcMasked == OPCODE_MOVND)) { | |
| MoveSize = DATA_SIZE_N; | |
| DataMask = (UINT64)~0 >> (64 - 8 * sizeof (UINTN)); | |
| } else { | |
| // | |
| // We were dispatched to this function and we don't recognize the opcode | |
| // | |
| EbcDebugSignalException (EXCEPT_EBC_UNDEFINED, EXCEPTION_FLAG_FATAL, VmPtr); | |
| return EFI_UNSUPPORTED; | |
| } | |
| // | |
| // Now get the source address | |
| // | |
| if (OPERAND2_INDIRECT (Operands)) { | |
| // | |
| // Indirect form @R2. Compute address of operand2 | |
| // | |
| Source = (UINTN) (VmPtr->Gpr[OPERAND2_REGNUM (Operands)] + Index64Op2); | |
| // | |
| // Now get the data from the source. Always 0-extend and let the compiler | |
| // sign-extend where required. | |
| // | |
| switch (MoveSize) { | |
| case DATA_SIZE_8: | |
| Data64 = (UINT64) (UINT8) VmReadMem8 (VmPtr, Source); | |
| break; | |
| case DATA_SIZE_16: | |
| Data64 = (UINT64) (UINT16) VmReadMem16 (VmPtr, Source); | |
| break; | |
| case DATA_SIZE_32: | |
| Data64 = (UINT64) (UINT32) VmReadMem32 (VmPtr, Source); | |
| break; | |
| case DATA_SIZE_64: | |
| Data64 = (UINT64) VmReadMem64 (VmPtr, Source); | |
| break; | |
| case DATA_SIZE_N: | |
| Data64 = (UINT64) (UINTN) VmReadMemN (VmPtr, Source); | |
| break; | |
| default: | |
| // | |
| // not reached | |
| // | |
| break; | |
| } | |
| } else { | |
| // | |
| // Not indirect source: MOVxx {@}Rx, Ry [Index] | |
| // | |
| Data64 = (UINT64) (VmPtr->Gpr[OPERAND2_REGNUM (Operands)] + Index64Op2); | |
| // | |
| // Did Operand2 have an index? If so, treat as two signed values since | |
| // indexes are signed values. | |
| // | |
| if ((Opcode & OPCODE_M_IMMED_OP2) != 0) { | |
| // | |
| // NOTE: need to find a way to fix this, most likely by changing the VM | |
| // implementation to remove the stack gap. To do that, we'd need to | |
| // allocate stack space for the VM and actually set the system | |
| // stack pointer to the allocated buffer when the VM starts. | |
| // | |
| // Special case -- if someone took the address of a function parameter | |
| // then we need to make sure it's not in the stack gap. We can identify | |
| // this situation if (Operand2 register == 0) && (Operand2 is direct) | |
| // && (Index applies to Operand2) && (Index > 0) && (Operand1 register != 0) | |
| // Situations that to be aware of: | |
| // * stack adjustments at beginning and end of functions R0 = R0 += stacksize | |
| // | |
| if ((OPERAND2_REGNUM (Operands) == 0) && | |
| (!OPERAND2_INDIRECT (Operands)) && | |
| (Index64Op2 > 0) && | |
| (OPERAND1_REGNUM (Operands) == 0) && | |
| (OPERAND1_INDIRECT (Operands)) | |
| ) { | |
| Data64 = (UINT64) ConvertStackAddr (VmPtr, (UINTN) (INT64) Data64); | |
| } | |
| } | |
| } | |
| // | |
| // Now write it back | |
| // | |
| if (OPERAND1_INDIRECT (Operands)) { | |
| // | |
| // Reuse the Source variable to now be dest. | |
| // | |
| Source = (UINTN) (VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index64Op1); | |
| // | |
| // Do the write based on the size | |
| // | |
| switch (MoveSize) { | |
| case DATA_SIZE_8: | |
| VmWriteMem8 (VmPtr, Source, (UINT8) Data64); | |
| break; | |
| case DATA_SIZE_16: | |
| VmWriteMem16 (VmPtr, Source, (UINT16) Data64); | |
| break; | |
| case DATA_SIZE_32: | |
| VmWriteMem32 (VmPtr, Source, (UINT32) Data64); | |
| break; | |
| case DATA_SIZE_64: | |
| VmWriteMem64 (VmPtr, Source, Data64); | |
| break; | |
| case DATA_SIZE_N: | |
| VmWriteMemN (VmPtr, Source, (UINTN) Data64); | |
| break; | |
| default: | |
| // | |
| // not reached | |
| // | |
| break; | |
| } | |
| } else { | |
| // | |
| // Operand1 direct. | |
| // Make sure we didn't have an index on operand1. | |
| // | |
| if ((Opcode & OPCODE_M_IMMED_OP1) != 0) { | |
| EbcDebugSignalException ( | |
| EXCEPT_EBC_INSTRUCTION_ENCODING, | |
| EXCEPTION_FLAG_FATAL, | |
| VmPtr | |
| ); | |
| return EFI_UNSUPPORTED; | |
| } | |
| // | |
| // Direct storage in register. Clear unused bits and store back to | |
| // register. | |
| // | |
| VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = Data64 & DataMask; | |
| } | |
| // | |
| // Advance the instruction pointer | |
| // | |
| VmPtr->Ip += Size; | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Execute the EBC BREAK instruction. | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecuteBREAK ( | |
| IN VM_CONTEXT *VmPtr | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| UINT8 Operands; | |
| VOID *EbcEntryPoint; | |
| VOID *Thunk; | |
| UINT64 U64EbcEntryPoint; | |
| INT32 Offset; | |
| Thunk = NULL; | |
| Operands = GETOPERANDS (VmPtr); | |
| switch (Operands) { | |
| // | |
| // Runaway program break. Generate an exception and terminate | |
| // | |
| case 0: | |
| EbcDebugSignalException (EXCEPT_EBC_BAD_BREAK, EXCEPTION_FLAG_FATAL, VmPtr); | |
| break; | |
| // | |
| // Get VM version -- return VM revision number in R7 | |
| // | |
| case 1: | |
| // | |
| // Bits: | |
| // 63-17 = 0 | |
| // 16-8 = Major version | |
| // 7-0 = Minor version | |
| // | |
| VmPtr->Gpr[7] = GetVmVersion (); | |
| break; | |
| // | |
| // Debugger breakpoint | |
| // | |
| case 3: | |
| VmPtr->StopFlags |= STOPFLAG_BREAKPOINT; | |
| // | |
| // See if someone has registered a handler | |
| // | |
| EbcDebugSignalException ( | |
| EXCEPT_EBC_BREAKPOINT, | |
| EXCEPTION_FLAG_NONE, | |
| VmPtr | |
| ); | |
| break; | |
| // | |
| // System call, which there are none, so NOP it. | |
| // | |
| case 4: | |
| break; | |
| // | |
| // Create a thunk for EBC code. R7 points to a 32-bit (in a 64-bit slot) | |
| // "offset from self" pointer to the EBC entry point. | |
| // After we're done, *(UINT64 *)R7 will be the address of the new thunk. | |
| // | |
| case 5: | |
| Offset = (INT32) VmReadMem32 (VmPtr, (UINTN) VmPtr->Gpr[7]); | |
| U64EbcEntryPoint = (UINT64) (VmPtr->Gpr[7] + Offset + 4); | |
| EbcEntryPoint = (VOID *) (UINTN) U64EbcEntryPoint; | |
| // | |
| // Now create a new thunk | |
| // | |
| Status = EbcCreateThunks (VmPtr->ImageHandle, EbcEntryPoint, &Thunk, 0); | |
| if (EFI_ERROR (Status)) { | |
| return Status; | |
| } | |
| // | |
| // Finally replace the EBC entry point memory with the thunk address | |
| // | |
| VmWriteMem64 (VmPtr, (UINTN) VmPtr->Gpr[7], (UINT64) (UINTN) Thunk); | |
| break; | |
| // | |
| // Compiler setting version per value in R7 | |
| // | |
| case 6: | |
| VmPtr->CompilerVersion = (UINT32) VmPtr->Gpr[7]; | |
| // | |
| // Check compiler version against VM version? | |
| // | |
| break; | |
| // | |
| // Unhandled break code. Signal exception. | |
| // | |
| default: | |
| EbcDebugSignalException (EXCEPT_EBC_BAD_BREAK, EXCEPTION_FLAG_FATAL, VmPtr); | |
| break; | |
| } | |
| // | |
| // Advance IP | |
| // | |
| VmPtr->Ip += 2; | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Execute the JMP instruction. | |
| Instruction syntax: | |
| JMP64{cs|cc} Immed64 | |
| JMP32{cs|cc} {@}R1 {Immed32|Index32} | |
| Encoding: | |
| b0.7 - immediate data present | |
| b0.6 - 1 = 64 bit immediate data | |
| 0 = 32 bit immediate data | |
| b1.7 - 1 = conditional | |
| b1.6 1 = CS (condition set) | |
| 0 = CC (condition clear) | |
| b1.4 1 = relative address | |
| 0 = absolute address | |
| b1.3 1 = operand1 indirect | |
| b1.2-0 operand 1 | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecuteJMP ( | |
| IN VM_CONTEXT *VmPtr | |
| ) | |
| { | |
| UINT8 Opcode; | |
| UINT8 CompareSet; | |
| UINT8 ConditionFlag; | |
| UINT8 Size; | |
| UINT8 Operand; | |
| UINT64 Data64; | |
| INT32 Index32; | |
| UINTN Addr; | |
| Operand = GETOPERANDS (VmPtr); | |
| Opcode = GETOPCODE (VmPtr); | |
| // | |
| // Get instruction length from the opcode. The upper two bits are used here | |
| // to index into the length array. | |
| // | |
| Size = mJMPLen[(Opcode >> 6) & 0x03]; | |
| // | |
| // Decode instruction conditions | |
| // If we haven't met the condition, then simply advance the IP and return. | |
| // | |
| CompareSet = (UINT8) (((Operand & JMP_M_CS) != 0) ? 1 : 0); | |
| ConditionFlag = (UINT8) VMFLAG_ISSET (VmPtr, VMFLAGS_CC); | |
| if ((Operand & CONDITION_M_CONDITIONAL) != 0) { | |
| if (CompareSet != ConditionFlag) { | |
| EbcDebuggerHookJMPStart (VmPtr); | |
| VmPtr->Ip += Size; | |
| EbcDebuggerHookJMPEnd (VmPtr); | |
| return EFI_SUCCESS; | |
| } | |
| } | |
| // | |
| // Check for 64-bit form and do it right away since it's the most | |
| // straight-forward form. | |
| // | |
| if ((Opcode & OPCODE_M_IMMDATA64) != 0) { | |
| // | |
| // Double check for immediate-data, which is required. If not there, | |
| // then signal an exception | |
| // | |
| if ((Opcode & OPCODE_M_IMMDATA) == 0) { | |
| EbcDebugSignalException ( | |
| EXCEPT_EBC_INSTRUCTION_ENCODING, | |
| EXCEPTION_FLAG_ERROR, | |
| VmPtr | |
| ); | |
| return EFI_UNSUPPORTED; | |
| } | |
| // | |
| // 64-bit immediate data is full address. Read the immediate data, | |
| // check for alignment, and jump absolute. | |
| // | |
| Data64 = (UINT64) VmReadImmed64 (VmPtr, 2); | |
| if (!IS_ALIGNED ((UINTN) Data64, sizeof (UINT16))) { | |
| EbcDebugSignalException ( | |
| EXCEPT_EBC_ALIGNMENT_CHECK, | |
| EXCEPTION_FLAG_FATAL, | |
| VmPtr | |
| ); | |
| return EFI_UNSUPPORTED; | |
| } | |
| // | |
| // Take jump -- relative or absolute | |
| // | |
| EbcDebuggerHookJMPStart (VmPtr); | |
| if ((Operand & JMP_M_RELATIVE) != 0) { | |
| VmPtr->Ip += (UINTN) Data64 + Size; | |
| } else { | |
| VmPtr->Ip = (VMIP) (UINTN) Data64; | |
| } | |
| EbcDebuggerHookJMPEnd (VmPtr); | |
| return EFI_SUCCESS; | |
| } | |
| // | |
| // 32-bit forms: | |
| // Get the index if there is one. May be either an index, or an immediate | |
| // offset depending on indirect operand. | |
| // JMP32 @R1 Index32 -- immediate data is an index | |
| // JMP32 R1 Immed32 -- immedate data is an offset | |
| // | |
| if ((Opcode & OPCODE_M_IMMDATA) != 0) { | |
| if (OPERAND1_INDIRECT (Operand)) { | |
| Index32 = VmReadIndex32 (VmPtr, 2); | |
| } else { | |
| Index32 = VmReadImmed32 (VmPtr, 2); | |
| } | |
| } else { | |
| Index32 = 0; | |
| } | |
| // | |
| // Get the register data. If R == 0, then special case where it's ignored. | |
| // | |
| if (OPERAND1_REGNUM (Operand) == 0) { | |
| Data64 = 0; | |
| } else { | |
| Data64 = (UINT64) OPERAND1_REGDATA (VmPtr, Operand); | |
| } | |
| // | |
| // Decode the forms | |
| // | |
| if (OPERAND1_INDIRECT (Operand)) { | |
| // | |
| // Form: JMP32 @Rx {Index32} | |
| // | |
| Addr = VmReadMemN (VmPtr, (UINTN) Data64 + Index32); | |
| if (!IS_ALIGNED ((UINTN) Addr, sizeof (UINT16))) { | |
| EbcDebugSignalException ( | |
| EXCEPT_EBC_ALIGNMENT_CHECK, | |
| EXCEPTION_FLAG_FATAL, | |
| VmPtr | |
| ); | |
| return EFI_UNSUPPORTED; | |
| } | |
| EbcDebuggerHookJMPStart (VmPtr); | |
| if ((Operand & JMP_M_RELATIVE) != 0) { | |
| VmPtr->Ip += (UINTN) Addr + Size; | |
| } else { | |
| VmPtr->Ip = (VMIP) Addr; | |
| } | |
| EbcDebuggerHookJMPEnd (VmPtr); | |
| } else { | |
| // | |
| // Form: JMP32 Rx {Immed32} | |
| // | |
| Addr = (UINTN) (Data64 + Index32); | |
| if (!IS_ALIGNED ((UINTN) Addr, sizeof (UINT16))) { | |
| EbcDebugSignalException ( | |
| EXCEPT_EBC_ALIGNMENT_CHECK, | |
| EXCEPTION_FLAG_FATAL, | |
| VmPtr | |
| ); | |
| return EFI_UNSUPPORTED; | |
| } | |
| EbcDebuggerHookJMPStart (VmPtr); | |
| if ((Operand & JMP_M_RELATIVE) != 0) { | |
| VmPtr->Ip += (UINTN) Addr + Size; | |
| } else { | |
| VmPtr->Ip = (VMIP) Addr; | |
| } | |
| EbcDebuggerHookJMPEnd (VmPtr); | |
| } | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Execute the EBC JMP8 instruction. | |
| Instruction syntax: | |
| JMP8{cs|cc} Offset/2 | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecuteJMP8 ( | |
| IN VM_CONTEXT *VmPtr | |
| ) | |
| { | |
| UINT8 Opcode; | |
| UINT8 ConditionFlag; | |
| UINT8 CompareSet; | |
| INT8 Offset; | |
| // | |
| // Decode instruction. | |
| // | |
| Opcode = GETOPCODE (VmPtr); | |
| CompareSet = (UINT8) (((Opcode & JMP_M_CS) != 0) ? 1 : 0); | |
| ConditionFlag = (UINT8) VMFLAG_ISSET (VmPtr, VMFLAGS_CC); | |
| // | |
| // If we haven't met the condition, then simply advance the IP and return | |
| // | |
| if ((Opcode & CONDITION_M_CONDITIONAL) != 0) { | |
| if (CompareSet != ConditionFlag) { | |
| EbcDebuggerHookJMP8Start (VmPtr); | |
| VmPtr->Ip += 2; | |
| EbcDebuggerHookJMP8End (VmPtr); | |
| return EFI_SUCCESS; | |
| } | |
| } | |
| // | |
| // Get the offset from the instruction stream. It's relative to the | |
| // following instruction, and divided by 2. | |
| // | |
| Offset = VmReadImmed8 (VmPtr, 1); | |
| // | |
| // Want to check for offset == -2 and then raise an exception? | |
| // | |
| EbcDebuggerHookJMP8Start (VmPtr); | |
| VmPtr->Ip += (Offset * 2) + 2; | |
| EbcDebuggerHookJMP8End (VmPtr); | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Execute the EBC MOVI. | |
| Instruction syntax: | |
| MOVI[b|w|d|q][w|d|q] {@}R1 {Index16}, ImmData16|32|64 | |
| First variable character specifies the move size | |
| Second variable character specifies size of the immediate data | |
| Sign-extend the immediate data to the size of the operation, and zero-extend | |
| if storing to a register. | |
| Operand1 direct with index/immed is invalid. | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecuteMOVI ( | |
| IN VM_CONTEXT *VmPtr | |
| ) | |
| { | |
| UINT8 Opcode; | |
| UINT8 Operands; | |
| UINT8 Size; | |
| INT16 Index16; | |
| INT64 ImmData64; | |
| UINT64 Op1; | |
| UINT64 Mask64; | |
| // | |
| // Get the opcode and operands byte so we can get R1 and R2 | |
| // | |
| Opcode = GETOPCODE (VmPtr); | |
| Operands = GETOPERANDS (VmPtr); | |
| // | |
| // Get the index (16-bit) if present | |
| // | |
| if ((Operands & MOVI_M_IMMDATA) != 0) { | |
| Index16 = VmReadIndex16 (VmPtr, 2); | |
| Size = 4; | |
| } else { | |
| Index16 = 0; | |
| Size = 2; | |
| } | |
| // | |
| // Extract the immediate data. Sign-extend always. | |
| // | |
| if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH16) { | |
| ImmData64 = (INT64) (INT16) VmReadImmed16 (VmPtr, Size); | |
| Size += 2; | |
| } else if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH32) { | |
| ImmData64 = (INT64) (INT32) VmReadImmed32 (VmPtr, Size); | |
| Size += 4; | |
| } else if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH64) { | |
| ImmData64 = (INT64) VmReadImmed64 (VmPtr, Size); | |
| Size += 8; | |
| } else { | |
| // | |
| // Invalid encoding | |
| // | |
| EbcDebugSignalException ( | |
| EXCEPT_EBC_INSTRUCTION_ENCODING, | |
| EXCEPTION_FLAG_FATAL, | |
| VmPtr | |
| ); | |
| return EFI_UNSUPPORTED; | |
| } | |
| // | |
| // Now write back the result | |
| // | |
| if (!OPERAND1_INDIRECT (Operands)) { | |
| // | |
| // Operand1 direct. Make sure it didn't have an index. | |
| // | |
| if ((Operands & MOVI_M_IMMDATA) != 0) { | |
| EbcDebugSignalException ( | |
| EXCEPT_EBC_INSTRUCTION_ENCODING, | |
| EXCEPTION_FLAG_FATAL, | |
| VmPtr | |
| ); | |
| return EFI_UNSUPPORTED; | |
| } | |
| // | |
| // Writing directly to a register. Clear unused bits. | |
| // | |
| if ((Operands & MOVI_M_MOVEWIDTH) == MOVI_MOVEWIDTH8) { | |
| Mask64 = 0x000000FF; | |
| } else if ((Operands & MOVI_M_MOVEWIDTH) == MOVI_MOVEWIDTH16) { | |
| Mask64 = 0x0000FFFF; | |
| } else if ((Operands & MOVI_M_MOVEWIDTH) == MOVI_MOVEWIDTH32) { | |
| Mask64 = 0x00000000FFFFFFFF; | |
| } else { | |
| Mask64 = (UINT64)~0; | |
| } | |
| VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = ImmData64 & Mask64; | |
| } else { | |
| // | |
| // Get the address then write back based on size of the move | |
| // | |
| Op1 = (UINT64) VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16; | |
| if ((Operands & MOVI_M_MOVEWIDTH) == MOVI_MOVEWIDTH8) { | |
| VmWriteMem8 (VmPtr, (UINTN) Op1, (UINT8) ImmData64); | |
| } else if ((Operands & MOVI_M_MOVEWIDTH) == MOVI_MOVEWIDTH16) { | |
| VmWriteMem16 (VmPtr, (UINTN) Op1, (UINT16) ImmData64); | |
| } else if ((Operands & MOVI_M_MOVEWIDTH) == MOVI_MOVEWIDTH32) { | |
| VmWriteMem32 (VmPtr, (UINTN) Op1, (UINT32) ImmData64); | |
| } else { | |
| VmWriteMem64 (VmPtr, (UINTN) Op1, (UINT64) ImmData64); | |
| } | |
| } | |
| // | |
| // Advance the instruction pointer | |
| // | |
| VmPtr->Ip += Size; | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Execute the EBC MOV immediate natural. This instruction moves an immediate | |
| index value into a register or memory location. | |
| Instruction syntax: | |
| MOVIn[w|d|q] {@}R1 {Index16}, Index16|32|64 | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecuteMOVIn ( | |
| IN VM_CONTEXT *VmPtr | |
| ) | |
| { | |
| UINT8 Opcode; | |
| UINT8 Operands; | |
| UINT8 Size; | |
| INT16 Index16; | |
| INT16 ImmedIndex16; | |
| INT32 ImmedIndex32; | |
| INT64 ImmedIndex64; | |
| UINT64 Op1; | |
| // | |
| // Get the opcode and operands byte so we can get R1 and R2 | |
| // | |
| Opcode = GETOPCODE (VmPtr); | |
| Operands = GETOPERANDS (VmPtr); | |
| // | |
| // Get the operand1 index (16-bit) if present | |
| // | |
| if ((Operands & MOVI_M_IMMDATA) != 0) { | |
| Index16 = VmReadIndex16 (VmPtr, 2); | |
| Size = 4; | |
| } else { | |
| Index16 = 0; | |
| Size = 2; | |
| } | |
| // | |
| // Extract the immediate data and convert to a 64-bit index. | |
| // | |
| if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH16) { | |
| ImmedIndex16 = VmReadIndex16 (VmPtr, Size); | |
| ImmedIndex64 = (INT64) ImmedIndex16; | |
| Size += 2; | |
| } else if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH32) { | |
| ImmedIndex32 = VmReadIndex32 (VmPtr, Size); | |
| ImmedIndex64 = (INT64) ImmedIndex32; | |
| Size += 4; | |
| } else if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH64) { | |
| ImmedIndex64 = VmReadIndex64 (VmPtr, Size); | |
| Size += 8; | |
| } else { | |
| // | |
| // Invalid encoding | |
| // | |
| EbcDebugSignalException ( | |
| EXCEPT_EBC_INSTRUCTION_ENCODING, | |
| EXCEPTION_FLAG_FATAL, | |
| VmPtr | |
| ); | |
| return EFI_UNSUPPORTED; | |
| } | |
| // | |
| // Now write back the result | |
| // | |
| if (!OPERAND1_INDIRECT (Operands)) { | |
| // | |
| // Check for MOVIn R1 Index16, Immed (not indirect, with index), which | |
| // is illegal | |
| // | |
| if ((Operands & MOVI_M_IMMDATA) != 0) { | |
| EbcDebugSignalException ( | |
| EXCEPT_EBC_INSTRUCTION_ENCODING, | |
| EXCEPTION_FLAG_FATAL, | |
| VmPtr | |
| ); | |
| return EFI_UNSUPPORTED; | |
| } | |
| VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = ImmedIndex64; | |
| } else { | |
| // | |
| // Get the address | |
| // | |
| Op1 = (UINT64) VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16; | |
| VmWriteMemN (VmPtr, (UINTN) Op1, (UINTN)(INTN) ImmedIndex64); | |
| } | |
| // | |
| // Advance the instruction pointer | |
| // | |
| VmPtr->Ip += Size; | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Execute the EBC MOVREL instruction. | |
| Dest <- Ip + ImmData | |
| Instruction syntax: | |
| MOVREL[w|d|q] {@}R1 {Index16}, ImmData16|32|64 | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecuteMOVREL ( | |
| IN VM_CONTEXT *VmPtr | |
| ) | |
| { | |
| UINT8 Opcode; | |
| UINT8 Operands; | |
| UINT8 Size; | |
| INT16 Index16; | |
| INT64 ImmData64; | |
| UINT64 Op1; | |
| UINT64 Op2; | |
| // | |
| // Get the opcode and operands byte so we can get R1 and R2 | |
| // | |
| Opcode = GETOPCODE (VmPtr); | |
| Operands = GETOPERANDS (VmPtr); | |
| // | |
| // Get the Operand 1 index (16-bit) if present | |
| // | |
| if ((Operands & MOVI_M_IMMDATA) != 0) { | |
| Index16 = VmReadIndex16 (VmPtr, 2); | |
| Size = 4; | |
| } else { | |
| Index16 = 0; | |
| Size = 2; | |
| } | |
| // | |
| // Get the immediate data. | |
| // | |
| if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH16) { | |
| ImmData64 = (INT64) VmReadImmed16 (VmPtr, Size); | |
| Size += 2; | |
| } else if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH32) { | |
| ImmData64 = (INT64) VmReadImmed32 (VmPtr, Size); | |
| Size += 4; | |
| } else if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH64) { | |
| ImmData64 = VmReadImmed64 (VmPtr, Size); | |
| Size += 8; | |
| } else { | |
| // | |
| // Invalid encoding | |
| // | |
| EbcDebugSignalException ( | |
| EXCEPT_EBC_INSTRUCTION_ENCODING, | |
| EXCEPTION_FLAG_FATAL, | |
| VmPtr | |
| ); | |
| return EFI_UNSUPPORTED; | |
| } | |
| // | |
| // Compute the value and write back the result | |
| // | |
| Op2 = (UINT64) ((INT64) ((UINT64) (UINTN) VmPtr->Ip) + (INT64) ImmData64 + Size); | |
| if (!OPERAND1_INDIRECT (Operands)) { | |
| // | |
| // Check for illegal combination of operand1 direct with immediate data | |
| // | |
| if ((Operands & MOVI_M_IMMDATA) != 0) { | |
| EbcDebugSignalException ( | |
| EXCEPT_EBC_INSTRUCTION_ENCODING, | |
| EXCEPTION_FLAG_FATAL, | |
| VmPtr | |
| ); | |
| return EFI_UNSUPPORTED; | |
| } | |
| VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = (VM_REGISTER) Op2; | |
| } else { | |
| // | |
| // Get the address = [Rx] + Index16 | |
| // Write back the result. Always a natural size write, since | |
| // we're talking addresses here. | |
| // | |
| Op1 = (UINT64) VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16; | |
| VmWriteMemN (VmPtr, (UINTN) Op1, (UINTN) Op2); | |
| } | |
| // | |
| // Advance the instruction pointer | |
| // | |
| VmPtr->Ip += Size; | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Execute the EBC MOVsnw instruction. This instruction loads a signed | |
| natural value from memory or register to another memory or register. On | |
| 32-bit machines, the value gets sign-extended to 64 bits if the destination | |
| is a register. | |
| Instruction syntax: | |
| MOVsnw {@}R1 {Index16}, {@}R2 {Index16|Immed16} | |
| 0:7 1=>operand1 index present | |
| 0:6 1=>operand2 index present | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecuteMOVsnw ( | |
| IN VM_CONTEXT *VmPtr | |
| ) | |
| { | |
| UINT8 Opcode; | |
| UINT8 Operands; | |
| UINT8 Size; | |
| INT16 Op1Index; | |
| INT16 Op2Index; | |
| UINT64 Op2; | |
| // | |
| // Get the opcode and operand bytes | |
| // | |
| Opcode = GETOPCODE (VmPtr); | |
| Operands = GETOPERANDS (VmPtr); | |
| Op1Index = Op2Index = 0; | |
| // | |
| // Get the indexes if present. | |
| // | |
| Size = 2; | |
| if ((Opcode & OPCODE_M_IMMED_OP1) !=0) { | |
| if (OPERAND1_INDIRECT (Operands)) { | |
| Op1Index = VmReadIndex16 (VmPtr, 2); | |
| } else { | |
| // | |
| // Illegal form operand1 direct with index: MOVsnw R1 Index16, {@}R2 | |
| // | |
| EbcDebugSignalException ( | |
| EXCEPT_EBC_INSTRUCTION_ENCODING, | |
| EXCEPTION_FLAG_FATAL, | |
| VmPtr | |
| ); | |
| return EFI_UNSUPPORTED; | |
| } | |
| Size += sizeof (UINT16); | |
| } | |
| if ((Opcode & OPCODE_M_IMMED_OP2) != 0) { | |
| if (OPERAND2_INDIRECT (Operands)) { | |
| Op2Index = VmReadIndex16 (VmPtr, Size); | |
| } else { | |
| Op2Index = VmReadImmed16 (VmPtr, Size); | |
| } | |
| Size += sizeof (UINT16); | |
| } | |
| // | |
| // Get the data from the source. | |
| // | |
| Op2 = (UINT64)(INT64)(INTN)(VmPtr->Gpr[OPERAND2_REGNUM (Operands)] + Op2Index); | |
| if (OPERAND2_INDIRECT (Operands)) { | |
| Op2 = (UINT64)(INT64)(INTN)VmReadMemN (VmPtr, (UINTN) Op2); | |
| } | |
| // | |
| // Now write back the result. | |
| // | |
| if (!OPERAND1_INDIRECT (Operands)) { | |
| VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = Op2; | |
| } else { | |
| VmWriteMemN (VmPtr, (UINTN) (VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Op1Index), (UINTN) Op2); | |
| } | |
| // | |
| // Advance the instruction pointer | |
| // | |
| VmPtr->Ip += Size; | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Execute the EBC MOVsnw instruction. This instruction loads a signed | |
| natural value from memory or register to another memory or register. On | |
| 32-bit machines, the value gets sign-extended to 64 bits if the destination | |
| is a register. | |
| Instruction syntax: | |
| MOVsnd {@}R1 {Indx32}, {@}R2 {Index32|Immed32} | |
| 0:7 1=>operand1 index present | |
| 0:6 1=>operand2 index present | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecuteMOVsnd ( | |
| IN VM_CONTEXT *VmPtr | |
| ) | |
| { | |
| UINT8 Opcode; | |
| UINT8 Operands; | |
| UINT8 Size; | |
| INT32 Op1Index; | |
| INT32 Op2Index; | |
| UINT64 Op2; | |
| // | |
| // Get the opcode and operand bytes | |
| // | |
| Opcode = GETOPCODE (VmPtr); | |
| Operands = GETOPERANDS (VmPtr); | |
| Op1Index = Op2Index = 0; | |
| // | |
| // Get the indexes if present. | |
| // | |
| Size = 2; | |
| if ((Opcode & OPCODE_M_IMMED_OP1) != 0) { | |
| if (OPERAND1_INDIRECT (Operands)) { | |
| Op1Index = VmReadIndex32 (VmPtr, 2); | |
| } else { | |
| // | |
| // Illegal form operand1 direct with index: MOVsnd R1 Index16,.. | |
| // | |
| EbcDebugSignalException ( | |
| EXCEPT_EBC_INSTRUCTION_ENCODING, | |
| EXCEPTION_FLAG_FATAL, | |
| VmPtr | |
| ); | |
| return EFI_UNSUPPORTED; | |
| } | |
| Size += sizeof (UINT32); | |
| } | |
| if ((Opcode & OPCODE_M_IMMED_OP2) != 0) { | |
| if (OPERAND2_INDIRECT (Operands)) { | |
| Op2Index = VmReadIndex32 (VmPtr, Size); | |
| } else { | |
| Op2Index = VmReadImmed32 (VmPtr, Size); | |
| } | |
| Size += sizeof (UINT32); | |
| } | |
| // | |
| // Get the data from the source. | |
| // | |
| Op2 = (UINT64)(INT64)(INTN)(INT64)(VmPtr->Gpr[OPERAND2_REGNUM (Operands)] + Op2Index); | |
| if (OPERAND2_INDIRECT (Operands)) { | |
| Op2 = (UINT64)(INT64)(INTN)(INT64)VmReadMemN (VmPtr, (UINTN) Op2); | |
| } | |
| // | |
| // Now write back the result. | |
| // | |
| if (!OPERAND1_INDIRECT (Operands)) { | |
| VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = Op2; | |
| } else { | |
| VmWriteMemN (VmPtr, (UINTN) (VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Op1Index), (UINTN) Op2); | |
| } | |
| // | |
| // Advance the instruction pointer | |
| // | |
| VmPtr->Ip += Size; | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Execute the EBC PUSHn instruction | |
| Instruction syntax: | |
| PUSHn {@}R1 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecutePUSHn ( | |
| IN VM_CONTEXT *VmPtr | |
| ) | |
| { | |
| UINT8 Opcode; | |
| UINT8 Operands; | |
| INT16 Index16; | |
| UINTN DataN; | |
| // | |
| // Get opcode and operands | |
| // | |
| Opcode = GETOPCODE (VmPtr); | |
| Operands = GETOPERANDS (VmPtr); | |
| // | |
| // Get index if present | |
| // | |
| if ((Opcode & PUSHPOP_M_IMMDATA) != 0) { | |
| if (OPERAND1_INDIRECT (Operands)) { | |
| Index16 = VmReadIndex16 (VmPtr, 2); | |
| } else { | |
| Index16 = VmReadImmed16 (VmPtr, 2); | |
| } | |
| VmPtr->Ip += 4; | |
| } else { | |
| Index16 = 0; | |
| VmPtr->Ip += 2; | |
| } | |
| // | |
| // Get the data to push | |
| // | |
| if (OPERAND1_INDIRECT (Operands)) { | |
| DataN = VmReadMemN (VmPtr, (UINTN) (VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16)); | |
| } else { | |
| DataN = (UINTN) (VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16); | |
| } | |
| // | |
| // Adjust the stack down. | |
| // | |
| VmPtr->Gpr[0] -= sizeof (UINTN); | |
| VmWriteMemN (VmPtr, (UINTN) VmPtr->Gpr[0], DataN); | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Execute the EBC PUSH instruction. | |
| Instruction syntax: | |
| PUSH[32|64] {@}R1 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecutePUSH ( | |
| IN VM_CONTEXT *VmPtr | |
| ) | |
| { | |
| UINT8 Opcode; | |
| UINT8 Operands; | |
| UINT32 Data32; | |
| UINT64 Data64; | |
| INT16 Index16; | |
| // | |
| // Get opcode and operands | |
| // | |
| Opcode = GETOPCODE (VmPtr); | |
| Operands = GETOPERANDS (VmPtr); | |
| // | |
| // Get immediate index if present, then advance the IP. | |
| // | |
| if ((Opcode & PUSHPOP_M_IMMDATA) != 0) { | |
| if (OPERAND1_INDIRECT (Operands)) { | |
| Index16 = VmReadIndex16 (VmPtr, 2); | |
| } else { | |
| Index16 = VmReadImmed16 (VmPtr, 2); | |
| } | |
| VmPtr->Ip += 4; | |
| } else { | |
| Index16 = 0; | |
| VmPtr->Ip += 2; | |
| } | |
| // | |
| // Get the data to push | |
| // | |
| if ((Opcode & PUSHPOP_M_64) != 0) { | |
| if (OPERAND1_INDIRECT (Operands)) { | |
| Data64 = VmReadMem64 (VmPtr, (UINTN) (VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16)); | |
| } else { | |
| Data64 = (UINT64) VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16; | |
| } | |
| // | |
| // Adjust the stack down, then write back the data | |
| // | |
| VmPtr->Gpr[0] -= sizeof (UINT64); | |
| VmWriteMem64 (VmPtr, (UINTN) VmPtr->Gpr[0], Data64); | |
| } else { | |
| // | |
| // 32-bit data | |
| // | |
| if (OPERAND1_INDIRECT (Operands)) { | |
| Data32 = VmReadMem32 (VmPtr, (UINTN) (VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16)); | |
| } else { | |
| Data32 = (UINT32) VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16; | |
| } | |
| // | |
| // Adjust the stack down and write the data | |
| // | |
| VmPtr->Gpr[0] -= sizeof (UINT32); | |
| VmWriteMem32 (VmPtr, (UINTN) VmPtr->Gpr[0], Data32); | |
| } | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Execute the EBC POPn instruction. | |
| Instruction syntax: | |
| POPn {@}R1 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecutePOPn ( | |
| IN VM_CONTEXT *VmPtr | |
| ) | |
| { | |
| UINT8 Opcode; | |
| UINT8 Operands; | |
| INT16 Index16; | |
| UINTN DataN; | |
| // | |
| // Get opcode and operands | |
| // | |
| Opcode = GETOPCODE (VmPtr); | |
| Operands = GETOPERANDS (VmPtr); | |
| // | |
| // Get immediate data if present, and advance the IP | |
| // | |
| if ((Opcode & PUSHPOP_M_IMMDATA) != 0) { | |
| if (OPERAND1_INDIRECT (Operands)) { | |
| Index16 = VmReadIndex16 (VmPtr, 2); | |
| } else { | |
| Index16 = VmReadImmed16 (VmPtr, 2); | |
| } | |
| VmPtr->Ip += 4; | |
| } else { | |
| Index16 = 0; | |
| VmPtr->Ip += 2; | |
| } | |
| // | |
| // Read the data off the stack, then adjust the stack pointer | |
| // | |
| DataN = VmReadMemN (VmPtr, (UINTN) VmPtr->Gpr[0]); | |
| VmPtr->Gpr[0] += sizeof (UINTN); | |
| // | |
| // Do the write-back | |
| // | |
| if (OPERAND1_INDIRECT (Operands)) { | |
| VmWriteMemN (VmPtr, (UINTN) (VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16), DataN); | |
| } else { | |
| VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = (INT64) (UINT64) (UINTN) (DataN + Index16); | |
| } | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Execute the EBC POP instruction. | |
| Instruction syntax: | |
| POPn {@}R1 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecutePOP ( | |
| IN VM_CONTEXT *VmPtr | |
| ) | |
| { | |
| UINT8 Opcode; | |
| UINT8 Operands; | |
| INT16 Index16; | |
| INT32 Data32; | |
| UINT64 Data64; | |
| // | |
| // Get opcode and operands | |
| // | |
| Opcode = GETOPCODE (VmPtr); | |
| Operands = GETOPERANDS (VmPtr); | |
| // | |
| // Get immediate data if present, and advance the IP. | |
| // | |
| if ((Opcode & PUSHPOP_M_IMMDATA) != 0) { | |
| if (OPERAND1_INDIRECT (Operands)) { | |
| Index16 = VmReadIndex16 (VmPtr, 2); | |
| } else { | |
| Index16 = VmReadImmed16 (VmPtr, 2); | |
| } | |
| VmPtr->Ip += 4; | |
| } else { | |
| Index16 = 0; | |
| VmPtr->Ip += 2; | |
| } | |
| // | |
| // Get the data off the stack, then write it to the appropriate location | |
| // | |
| if ((Opcode & PUSHPOP_M_64) != 0) { | |
| // | |
| // Read the data off the stack, then adjust the stack pointer | |
| // | |
| Data64 = VmReadMem64 (VmPtr, (UINTN) VmPtr->Gpr[0]); | |
| VmPtr->Gpr[0] += sizeof (UINT64); | |
| // | |
| // Do the write-back | |
| // | |
| if (OPERAND1_INDIRECT (Operands)) { | |
| VmWriteMem64 (VmPtr, (UINTN) (VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16), Data64); | |
| } else { | |
| VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = Data64 + Index16; | |
| } | |
| } else { | |
| // | |
| // 32-bit pop. Read it off the stack and adjust the stack pointer | |
| // | |
| Data32 = (INT32) VmReadMem32 (VmPtr, (UINTN) VmPtr->Gpr[0]); | |
| VmPtr->Gpr[0] += sizeof (UINT32); | |
| // | |
| // Do the write-back | |
| // | |
| if (OPERAND1_INDIRECT (Operands)) { | |
| VmWriteMem32 (VmPtr, (UINTN) (VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16), Data32); | |
| } else { | |
| VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = (INT64) Data32 + Index16; | |
| } | |
| } | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Implements the EBC CALL instruction. | |
| Instruction format: | |
| CALL64 Immed64 | |
| CALL32 {@}R1 {Immed32|Index32} | |
| CALLEX64 Immed64 | |
| CALLEX16 {@}R1 {Immed32} | |
| If Rx == R0, then it's a PC relative call to PC = PC + imm32. | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecuteCALL ( | |
| IN VM_CONTEXT *VmPtr | |
| ) | |
| { | |
| UINT8 Opcode; | |
| UINT8 Operands; | |
| INT32 Immed32; | |
| UINT8 Size; | |
| INT64 Immed64; | |
| VOID *FramePtr; | |
| // | |
| // Get opcode and operands | |
| // | |
| Opcode = GETOPCODE (VmPtr); | |
| Operands = GETOPERANDS (VmPtr); | |
| if ((Operands & OPERAND_M_NATIVE_CALL) != 0) { | |
| EbcDebuggerHookCALLEXStart (VmPtr); | |
| } else { | |
| EbcDebuggerHookCALLStart (VmPtr); | |
| } | |
| // | |
| // Assign these as well to avoid compiler warnings | |
| // | |
| Immed64 = 0; | |
| Immed32 = 0; | |
| FramePtr = VmPtr->FramePtr; | |
| // | |
| // Determine the instruction size, and get immediate data if present | |
| // | |
| if ((Opcode & OPCODE_M_IMMDATA) != 0) { | |
| if ((Opcode & OPCODE_M_IMMDATA64) != 0) { | |
| Immed64 = VmReadImmed64 (VmPtr, 2); | |
| Size = 10; | |
| } else { | |
| // | |
| // If register operand is indirect, then the immediate data is an index | |
| // | |
| if (OPERAND1_INDIRECT (Operands)) { | |
| Immed32 = VmReadIndex32 (VmPtr, 2); | |
| } else { | |
| Immed32 = VmReadImmed32 (VmPtr, 2); | |
| } | |
| Size = 6; | |
| } | |
| } else { | |
| Size = 2; | |
| } | |
| // | |
| // If it's a call to EBC, adjust the stack pointer down 16 bytes and | |
| // put our return address and frame pointer on the VM stack. | |
| // | |
| if ((Operands & OPERAND_M_NATIVE_CALL) == 0) { | |
| VmPtr->Gpr[0] -= 8; | |
| VmWriteMemN (VmPtr, (UINTN) VmPtr->Gpr[0], (UINTN) FramePtr); | |
| VmPtr->FramePtr = (VOID *) (UINTN) VmPtr->Gpr[0]; | |
| VmPtr->Gpr[0] -= 8; | |
| VmWriteMem64 (VmPtr, (UINTN) VmPtr->Gpr[0], (UINT64) (UINTN) (VmPtr->Ip + Size)); | |
| } | |
| // | |
| // If 64-bit data, then absolute jump only | |
| // | |
| if ((Opcode & OPCODE_M_IMMDATA64) != 0) { | |
| // | |
| // Native or EBC call? | |
| // | |
| if ((Operands & OPERAND_M_NATIVE_CALL) == 0) { | |
| VmPtr->Ip = (VMIP) (UINTN) Immed64; | |
| } else { | |
| // | |
| // Call external function, get the return value, and advance the IP | |
| // | |
| EbcLLCALLEX (VmPtr, (UINTN) Immed64, (UINTN) VmPtr->Gpr[0], FramePtr, Size); | |
| } | |
| } else { | |
| // | |
| // Get the register data. If operand1 == 0, then ignore register and | |
| // take immediate data as relative or absolute address. | |
| // Compiler should take care of upper bits if 32-bit machine. | |
| // | |
| if (OPERAND1_REGNUM (Operands) != 0) { | |
| Immed64 = (UINT64) (UINTN) VmPtr->Gpr[OPERAND1_REGNUM (Operands)]; | |
| } | |
| // | |
| // Get final address | |
| // | |
| if (OPERAND1_INDIRECT (Operands)) { | |
| Immed64 = (INT64) (UINT64) (UINTN) VmReadMemN (VmPtr, (UINTN) (Immed64 + Immed32)); | |
| } else { | |
| Immed64 += Immed32; | |
| } | |
| // | |
| // Now determine if external call, and then if relative or absolute | |
| // | |
| if ((Operands & OPERAND_M_NATIVE_CALL) == 0) { | |
| // | |
| // EBC call. Relative or absolute? If relative, then it's relative to the | |
| // start of the next instruction. | |
| // | |
| if ((Operands & OPERAND_M_RELATIVE_ADDR) != 0) { | |
| VmPtr->Ip += Immed64 + Size; | |
| } else { | |
| VmPtr->Ip = (VMIP) (UINTN) Immed64; | |
| } | |
| } else { | |
| // | |
| // Native call. Relative or absolute? | |
| // | |
| if ((Operands & OPERAND_M_RELATIVE_ADDR) != 0) { | |
| EbcLLCALLEX (VmPtr, (UINTN) (Immed64 + VmPtr->Ip + Size), (UINTN) VmPtr->Gpr[0], FramePtr, Size); | |
| } else { | |
| if ((VmPtr->StopFlags & STOPFLAG_BREAK_ON_CALLEX) != 0) { | |
| CpuBreakpoint (); | |
| } | |
| EbcLLCALLEX (VmPtr, (UINTN) Immed64, (UINTN) VmPtr->Gpr[0], FramePtr, Size); | |
| } | |
| } | |
| } | |
| if ((Operands & OPERAND_M_NATIVE_CALL) != 0) { | |
| EbcDebuggerHookCALLEXEnd (VmPtr); | |
| } else { | |
| EbcDebuggerHookCALLEnd (VmPtr); | |
| } | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Execute the EBC RET instruction. | |
| Instruction syntax: | |
| RET | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecuteRET ( | |
| IN VM_CONTEXT *VmPtr | |
| ) | |
| { | |
| EbcDebuggerHookRETStart (VmPtr); | |
| // | |
| // If we're at the top of the stack, then simply set the done | |
| // flag and return | |
| // | |
| if (VmPtr->StackRetAddr == (UINT64) VmPtr->Gpr[0]) { | |
| VmPtr->StopFlags |= STOPFLAG_APP_DONE; | |
| } else { | |
| // | |
| // Pull the return address off the VM app's stack and set the IP | |
| // to it | |
| // | |
| if (!IS_ALIGNED ((UINTN) VmPtr->Gpr[0], sizeof (UINT16))) { | |
| EbcDebugSignalException ( | |
| EXCEPT_EBC_ALIGNMENT_CHECK, | |
| EXCEPTION_FLAG_FATAL, | |
| VmPtr | |
| ); | |
| } | |
| // | |
| // Restore the IP and frame pointer from the stack | |
| // | |
| VmPtr->Ip = (VMIP) (UINTN) VmReadMem64 (VmPtr, (UINTN) VmPtr->Gpr[0]); | |
| VmPtr->Gpr[0] += 8; | |
| VmPtr->FramePtr = (VOID *) VmReadMemN (VmPtr, (UINTN) VmPtr->Gpr[0]); | |
| VmPtr->Gpr[0] += 8; | |
| } | |
| EbcDebuggerHookRETEnd (VmPtr); | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Execute the EBC CMP instruction. | |
| Instruction syntax: | |
| CMP[32|64][eq|lte|gte|ulte|ugte] R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecuteCMP ( | |
| IN VM_CONTEXT *VmPtr | |
| ) | |
| { | |
| UINT8 Opcode; | |
| UINT8 Operands; | |
| UINT8 Size; | |
| INT16 Index16; | |
| UINT32 Flag; | |
| INT64 Op2; | |
| INT64 Op1; | |
| // | |
| // Get opcode and operands | |
| // | |
| Opcode = GETOPCODE (VmPtr); | |
| Operands = GETOPERANDS (VmPtr); | |
| // | |
| // Get the register data we're going to compare to | |
| // | |
| Op1 = VmPtr->Gpr[OPERAND1_REGNUM (Operands)]; | |
| // | |
| // Get immediate data | |
| // | |
| if ((Opcode & OPCODE_M_IMMDATA) != 0) { | |
| if (OPERAND2_INDIRECT (Operands)) { | |
| Index16 = VmReadIndex16 (VmPtr, 2); | |
| } else { | |
| Index16 = VmReadImmed16 (VmPtr, 2); | |
| } | |
| Size = 4; | |
| } else { | |
| Index16 = 0; | |
| Size = 2; | |
| } | |
| // | |
| // Now get Op2 | |
| // | |
| if (OPERAND2_INDIRECT (Operands)) { | |
| if ((Opcode & OPCODE_M_64BIT) != 0) { | |
| Op2 = (INT64) VmReadMem64 (VmPtr, (UINTN) (VmPtr->Gpr[OPERAND2_REGNUM (Operands)] + Index16)); | |
| } else { | |
| // | |
| // 32-bit operations. 0-extend the values for all cases. | |
| // | |
| Op2 = (INT64) (UINT64) ((UINT32) VmReadMem32 (VmPtr, (UINTN) (VmPtr->Gpr[OPERAND2_REGNUM (Operands)] + Index16))); | |
| } | |
| } else { | |
| Op2 = VmPtr->Gpr[OPERAND2_REGNUM (Operands)] + Index16; | |
| } | |
| // | |
| // Now do the compare | |
| // | |
| Flag = 0; | |
| if ((Opcode & OPCODE_M_64BIT) != 0) { | |
| // | |
| // 64-bit compares | |
| // | |
| switch (Opcode & OPCODE_M_OPCODE) { | |
| case OPCODE_CMPEQ: | |
| if (Op1 == Op2) { | |
| Flag = 1; | |
| } | |
| break; | |
| case OPCODE_CMPLTE: | |
| if (Op1 <= Op2) { | |
| Flag = 1; | |
| } | |
| break; | |
| case OPCODE_CMPGTE: | |
| if (Op1 >= Op2) { | |
| Flag = 1; | |
| } | |
| break; | |
| case OPCODE_CMPULTE: | |
| if ((UINT64) Op1 <= (UINT64) Op2) { | |
| Flag = 1; | |
| } | |
| break; | |
| case OPCODE_CMPUGTE: | |
| if ((UINT64) Op1 >= (UINT64) Op2) { | |
| Flag = 1; | |
| } | |
| break; | |
| default: | |
| ASSERT (0); | |
| } | |
| } else { | |
| // | |
| // 32-bit compares | |
| // | |
| switch (Opcode & OPCODE_M_OPCODE) { | |
| case OPCODE_CMPEQ: | |
| if ((INT32) Op1 == (INT32) Op2) { | |
| Flag = 1; | |
| } | |
| break; | |
| case OPCODE_CMPLTE: | |
| if ((INT32) Op1 <= (INT32) Op2) { | |
| Flag = 1; | |
| } | |
| break; | |
| case OPCODE_CMPGTE: | |
| if ((INT32) Op1 >= (INT32) Op2) { | |
| Flag = 1; | |
| } | |
| break; | |
| case OPCODE_CMPULTE: | |
| if ((UINT32) Op1 <= (UINT32) Op2) { | |
| Flag = 1; | |
| } | |
| break; | |
| case OPCODE_CMPUGTE: | |
| if ((UINT32) Op1 >= (UINT32) Op2) { | |
| Flag = 1; | |
| } | |
| break; | |
| default: | |
| ASSERT (0); | |
| } | |
| } | |
| // | |
| // Now set the flag accordingly for the comparison | |
| // | |
| if (Flag != 0) { | |
| VMFLAG_SET (VmPtr, VMFLAGS_CC); | |
| } else { | |
| VMFLAG_CLEAR (VmPtr, (UINT64)VMFLAGS_CC); | |
| } | |
| // | |
| // Advance the IP | |
| // | |
| VmPtr->Ip += Size; | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Execute the EBC CMPI instruction | |
| Instruction syntax: | |
| CMPI[32|64]{w|d}[eq|lte|gte|ulte|ugte] {@}Rx {Index16}, Immed16|Immed32 | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecuteCMPI ( | |
| IN VM_CONTEXT *VmPtr | |
| ) | |
| { | |
| UINT8 Opcode; | |
| UINT8 Operands; | |
| UINT8 Size; | |
| INT64 Op1; | |
| INT64 Op2; | |
| INT16 Index16; | |
| UINT32 Flag; | |
| // | |
| // Get opcode and operands | |
| // | |
| Opcode = GETOPCODE (VmPtr); | |
| Operands = GETOPERANDS (VmPtr); | |
| // | |
| // Get operand1 index if present | |
| // | |
| Size = 2; | |
| if ((Operands & OPERAND_M_CMPI_INDEX) != 0) { | |
| Index16 = VmReadIndex16 (VmPtr, 2); | |
| Size += 2; | |
| } else { | |
| Index16 = 0; | |
| } | |
| // | |
| // Get operand1 data we're going to compare to | |
| // | |
| Op1 = (INT64) VmPtr->Gpr[OPERAND1_REGNUM (Operands)]; | |
| if (OPERAND1_INDIRECT (Operands)) { | |
| // | |
| // Indirect operand1. Fetch 32 or 64-bit value based on compare size. | |
| // | |
| if ((Opcode & OPCODE_M_CMPI64) != 0) { | |
| Op1 = (INT64) VmReadMem64 (VmPtr, (UINTN) Op1 + Index16); | |
| } else { | |
| Op1 = (INT64) VmReadMem32 (VmPtr, (UINTN) Op1 + Index16); | |
| } | |
| } else { | |
| // | |
| // Better not have been an index with direct. That is, CMPI R1 Index,... | |
| // is illegal. | |
| // | |
| if ((Operands & OPERAND_M_CMPI_INDEX) != 0) { | |
| EbcDebugSignalException ( | |
| EXCEPT_EBC_INSTRUCTION_ENCODING, | |
| EXCEPTION_FLAG_ERROR, | |
| VmPtr | |
| ); | |
| VmPtr->Ip += Size; | |
| return EFI_UNSUPPORTED; | |
| } | |
| } | |
| // | |
| // Get immediate data -- 16- or 32-bit sign extended | |
| // | |
| if ((Opcode & OPCODE_M_CMPI32_DATA) != 0) { | |
| Op2 = (INT64) VmReadImmed32 (VmPtr, Size); | |
| Size += 4; | |
| } else { | |
| // | |
| // 16-bit immediate data. Sign extend always. | |
| // | |
| Op2 = (INT64) ((INT16) VmReadImmed16 (VmPtr, Size)); | |
| Size += 2; | |
| } | |
| // | |
| // Now do the compare | |
| // | |
| Flag = 0; | |
| if ((Opcode & OPCODE_M_CMPI64) != 0) { | |
| // | |
| // 64 bit comparison | |
| // | |
| switch (Opcode & OPCODE_M_OPCODE) { | |
| case OPCODE_CMPIEQ: | |
| if (Op1 == (INT64) Op2) { | |
| Flag = 1; | |
| } | |
| break; | |
| case OPCODE_CMPILTE: | |
| if (Op1 <= (INT64) Op2) { | |
| Flag = 1; | |
| } | |
| break; | |
| case OPCODE_CMPIGTE: | |
| if (Op1 >= (INT64) Op2) { | |
| Flag = 1; | |
| } | |
| break; | |
| case OPCODE_CMPIULTE: | |
| if ((UINT64) Op1 <= (UINT64) ((UINT32) Op2)) { | |
| Flag = 1; | |
| } | |
| break; | |
| case OPCODE_CMPIUGTE: | |
| if ((UINT64) Op1 >= (UINT64) ((UINT32) Op2)) { | |
| Flag = 1; | |
| } | |
| break; | |
| default: | |
| ASSERT (0); | |
| } | |
| } else { | |
| // | |
| // 32-bit comparisons | |
| // | |
| switch (Opcode & OPCODE_M_OPCODE) { | |
| case OPCODE_CMPIEQ: | |
| if ((INT32) Op1 == Op2) { | |
| Flag = 1; | |
| } | |
| break; | |
| case OPCODE_CMPILTE: | |
| if ((INT32) Op1 <= Op2) { | |
| Flag = 1; | |
| } | |
| break; | |
| case OPCODE_CMPIGTE: | |
| if ((INT32) Op1 >= Op2) { | |
| Flag = 1; | |
| } | |
| break; | |
| case OPCODE_CMPIULTE: | |
| if ((UINT32) Op1 <= (UINT32) Op2) { | |
| Flag = 1; | |
| } | |
| break; | |
| case OPCODE_CMPIUGTE: | |
| if ((UINT32) Op1 >= (UINT32) Op2) { | |
| Flag = 1; | |
| } | |
| break; | |
| default: | |
| ASSERT (0); | |
| } | |
| } | |
| // | |
| // Now set the flag accordingly for the comparison | |
| // | |
| if (Flag != 0) { | |
| VMFLAG_SET (VmPtr, VMFLAGS_CC); | |
| } else { | |
| VMFLAG_CLEAR (VmPtr, (UINT64)VMFLAGS_CC); | |
| } | |
| // | |
| // Advance the IP | |
| // | |
| VmPtr->Ip += Size; | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Execute the EBC NOT instruction.s | |
| Instruction syntax: | |
| NOT[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return ~Op2 | |
| **/ | |
| UINT64 | |
| ExecuteNOT ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ) | |
| { | |
| return ~Op2; | |
| } | |
| /** | |
| Execute the EBC NEG instruction. | |
| Instruction syntax: | |
| NEG[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return Op2 * -1 | |
| **/ | |
| UINT64 | |
| ExecuteNEG ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ) | |
| { | |
| return ~Op2 + 1; | |
| } | |
| /** | |
| Execute the EBC ADD instruction. | |
| Instruction syntax: | |
| ADD[32|64] {@}R1, {@}R2 {Index16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return Op1 + Op2 | |
| **/ | |
| UINT64 | |
| ExecuteADD ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ) | |
| { | |
| return Op1 + Op2; | |
| } | |
| /** | |
| Execute the EBC SUB instruction. | |
| Instruction syntax: | |
| SUB[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return Op1 - Op2 | |
| **/ | |
| UINT64 | |
| ExecuteSUB ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ) | |
| { | |
| if ((*VmPtr->Ip & DATAMANIP_M_64) != 0) { | |
| return (UINT64) ((INT64) ((INT64) Op1 - (INT64) Op2)); | |
| } else { | |
| return (UINT64) ((INT64) ((INT32) ((INT32) Op1 - (INT32) Op2))); | |
| } | |
| } | |
| /** | |
| Execute the EBC MUL instruction. | |
| Instruction syntax: | |
| SUB[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return Op1 * Op2 | |
| **/ | |
| UINT64 | |
| ExecuteMUL ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ) | |
| { | |
| if ((*VmPtr->Ip & DATAMANIP_M_64) != 0) { | |
| return MultS64x64 ((INT64)Op1, (INT64)Op2); | |
| } else { | |
| return (UINT64) ((INT64) ((INT32) ((INT32) Op1 * (INT32) Op2))); | |
| } | |
| } | |
| /** | |
| Execute the EBC MULU instruction | |
| Instruction syntax: | |
| MULU[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return (unsigned)Op1 * (unsigned)Op2 | |
| **/ | |
| UINT64 | |
| ExecuteMULU ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ) | |
| { | |
| if ((*VmPtr->Ip & DATAMANIP_M_64) != 0) { | |
| return MultU64x64 (Op1, Op2); | |
| } else { | |
| return (UINT64) ((UINT32) ((UINT32) Op1 * (UINT32) Op2)); | |
| } | |
| } | |
| /** | |
| Execute the EBC DIV instruction. | |
| Instruction syntax: | |
| DIV[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return Op1 / Op2 | |
| **/ | |
| UINT64 | |
| ExecuteDIV ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ) | |
| { | |
| INT64 Remainder; | |
| // | |
| // Check for divide-by-0 | |
| // | |
| if (Op2 == 0) { | |
| EbcDebugSignalException ( | |
| EXCEPT_EBC_DIVIDE_ERROR, | |
| EXCEPTION_FLAG_FATAL, | |
| VmPtr | |
| ); | |
| return 0; | |
| } else { | |
| if ((*VmPtr->Ip & DATAMANIP_M_64) != 0) { | |
| return (UINT64) (DivS64x64Remainder (Op1, Op2, &Remainder)); | |
| } else { | |
| return (UINT64) ((INT64) ((INT32) Op1 / (INT32) Op2)); | |
| } | |
| } | |
| } | |
| /** | |
| Execute the EBC DIVU instruction | |
| Instruction syntax: | |
| DIVU[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return (unsigned)Op1 / (unsigned)Op2 | |
| **/ | |
| UINT64 | |
| ExecuteDIVU ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ) | |
| { | |
| UINT64 Remainder; | |
| // | |
| // Check for divide-by-0 | |
| // | |
| if (Op2 == 0) { | |
| EbcDebugSignalException ( | |
| EXCEPT_EBC_DIVIDE_ERROR, | |
| EXCEPTION_FLAG_FATAL, | |
| VmPtr | |
| ); | |
| return 0; | |
| } else { | |
| // | |
| // Get the destination register | |
| // | |
| if ((*VmPtr->Ip & DATAMANIP_M_64) != 0) { | |
| return (UINT64) (DivU64x64Remainder (Op1, Op2, &Remainder)); | |
| } else { | |
| return (UINT64) ((UINT32) Op1 / (UINT32) Op2); | |
| } | |
| } | |
| } | |
| /** | |
| Execute the EBC MOD instruction. | |
| Instruction syntax: | |
| MOD[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return Op1 MODULUS Op2 | |
| **/ | |
| UINT64 | |
| ExecuteMOD ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ) | |
| { | |
| INT64 Remainder; | |
| // | |
| // Check for divide-by-0 | |
| // | |
| if (Op2 == 0) { | |
| EbcDebugSignalException ( | |
| EXCEPT_EBC_DIVIDE_ERROR, | |
| EXCEPTION_FLAG_FATAL, | |
| VmPtr | |
| ); | |
| return 0; | |
| } else { | |
| DivS64x64Remainder ((INT64)Op1, (INT64)Op2, &Remainder); | |
| return Remainder; | |
| } | |
| } | |
| /** | |
| Execute the EBC MODU instruction. | |
| Instruction syntax: | |
| MODU[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return Op1 UNSIGNED_MODULUS Op2 | |
| **/ | |
| UINT64 | |
| ExecuteMODU ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ) | |
| { | |
| UINT64 Remainder; | |
| // | |
| // Check for divide-by-0 | |
| // | |
| if (Op2 == 0) { | |
| EbcDebugSignalException ( | |
| EXCEPT_EBC_DIVIDE_ERROR, | |
| EXCEPTION_FLAG_FATAL, | |
| VmPtr | |
| ); | |
| return 0; | |
| } else { | |
| DivU64x64Remainder (Op1, Op2, &Remainder); | |
| return Remainder; | |
| } | |
| } | |
| /** | |
| Execute the EBC AND instruction. | |
| Instruction syntax: | |
| AND[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return Op1 AND Op2 | |
| **/ | |
| UINT64 | |
| ExecuteAND ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ) | |
| { | |
| return Op1 & Op2; | |
| } | |
| /** | |
| Execute the EBC OR instruction. | |
| Instruction syntax: | |
| OR[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return Op1 OR Op2 | |
| **/ | |
| UINT64 | |
| ExecuteOR ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ) | |
| { | |
| return Op1 | Op2; | |
| } | |
| /** | |
| Execute the EBC XOR instruction. | |
| Instruction syntax: | |
| XOR[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return Op1 XOR Op2 | |
| **/ | |
| UINT64 | |
| ExecuteXOR ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ) | |
| { | |
| return Op1 ^ Op2; | |
| } | |
| /** | |
| Execute the EBC SHL shift left instruction. | |
| Instruction syntax: | |
| SHL[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return Op1 << Op2 | |
| **/ | |
| UINT64 | |
| ExecuteSHL ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ) | |
| { | |
| if ((*VmPtr->Ip & DATAMANIP_M_64) != 0) { | |
| return LShiftU64 (Op1, (UINTN)Op2); | |
| } else { | |
| return (UINT64) ((UINT32) ((UINT32) Op1 << (UINT32) Op2)); | |
| } | |
| } | |
| /** | |
| Execute the EBC SHR instruction. | |
| Instruction syntax: | |
| SHR[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return Op1 >> Op2 (unsigned operands) | |
| **/ | |
| UINT64 | |
| ExecuteSHR ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ) | |
| { | |
| if ((*VmPtr->Ip & DATAMANIP_M_64) != 0) { | |
| return RShiftU64 (Op1, (UINTN)Op2); | |
| } else { | |
| return (UINT64) ((UINT32) Op1 >> (UINT32) Op2); | |
| } | |
| } | |
| /** | |
| Execute the EBC ASHR instruction. | |
| Instruction syntax: | |
| ASHR[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return Op1 >> Op2 (signed) | |
| **/ | |
| UINT64 | |
| ExecuteASHR ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ) | |
| { | |
| if ((*VmPtr->Ip & DATAMANIP_M_64) != 0) { | |
| return ARShiftU64 (Op1, (UINTN)Op2); | |
| } else { | |
| return (UINT64) ((INT64) ((INT32) Op1 >> (UINT32) Op2)); | |
| } | |
| } | |
| /** | |
| Execute the EBC EXTNDB instruction to sign-extend a byte value. | |
| Instruction syntax: | |
| EXTNDB[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return (INT64)(INT8)Op2 | |
| **/ | |
| UINT64 | |
| ExecuteEXTNDB ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ) | |
| { | |
| INT8 Data8; | |
| INT64 Data64; | |
| // | |
| // Convert to byte, then return as 64-bit signed value to let compiler | |
| // sign-extend the value | |
| // | |
| Data8 = (INT8) Op2; | |
| Data64 = (INT64) Data8; | |
| return (UINT64) Data64; | |
| } | |
| /** | |
| Execute the EBC EXTNDW instruction to sign-extend a 16-bit value. | |
| Instruction syntax: | |
| EXTNDW[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return (INT64)(INT16)Op2 | |
| **/ | |
| UINT64 | |
| ExecuteEXTNDW ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ) | |
| { | |
| INT16 Data16; | |
| INT64 Data64; | |
| // | |
| // Convert to word, then return as 64-bit signed value to let compiler | |
| // sign-extend the value | |
| // | |
| Data16 = (INT16) Op2; | |
| Data64 = (INT64) Data16; | |
| return (UINT64) Data64; | |
| } | |
| // | |
| // Execute the EBC EXTNDD instruction. | |
| // | |
| // Format: EXTNDD {@}Rx, {@}Ry [Index16|Immed16] | |
| // EXTNDD Dest, Source | |
| // | |
| // Operation: Dest <- SignExtended((DWORD)Source)) | |
| // | |
| /** | |
| Execute the EBC EXTNDD instruction to sign-extend a 32-bit value. | |
| Instruction syntax: | |
| EXTNDD[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
| @param VmPtr A pointer to a VM context. | |
| @param Op1 Operand 1 from the instruction | |
| @param Op2 Operand 2 from the instruction | |
| @return (INT64)(INT32)Op2 | |
| **/ | |
| UINT64 | |
| ExecuteEXTNDD ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT64 Op1, | |
| IN UINT64 Op2 | |
| ) | |
| { | |
| INT32 Data32; | |
| INT64 Data64; | |
| // | |
| // Convert to 32-bit value, then return as 64-bit signed value to let compiler | |
| // sign-extend the value | |
| // | |
| Data32 = (INT32) Op2; | |
| Data64 = (INT64) Data32; | |
| return (UINT64) Data64; | |
| } | |
| /** | |
| Execute all the EBC signed data manipulation instructions. | |
| Since the EBC data manipulation instructions all have the same basic form, | |
| they can share the code that does the fetch of operands and the write-back | |
| of the result. This function performs the fetch of the operands (even if | |
| both are not needed to be fetched, like NOT instruction), dispatches to the | |
| appropriate subfunction, then writes back the returned result. | |
| Format: | |
| INSTRUCITON[32|64] {@}R1, {@}R2 {Immed16|Index16} | |
| @param VmPtr A pointer to VM context. | |
| @retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecuteSignedDataManip ( | |
| IN VM_CONTEXT *VmPtr | |
| ) | |
| { | |
| // | |
| // Just call the data manipulation function with a flag indicating this | |
| // is a signed operation. | |
| // | |
| return ExecuteDataManip (VmPtr, TRUE); | |
| } | |
| /** | |
| Execute all the EBC unsigned data manipulation instructions. | |
| Since the EBC data manipulation instructions all have the same basic form, | |
| they can share the code that does the fetch of operands and the write-back | |
| of the result. This function performs the fetch of the operands (even if | |
| both are not needed to be fetched, like NOT instruction), dispatches to the | |
| appropriate subfunction, then writes back the returned result. | |
| Format: | |
| INSTRUCITON[32|64] {@}R1, {@}R2 {Immed16|Index16} | |
| @param VmPtr A pointer to VM context. | |
| @retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecuteUnsignedDataManip ( | |
| IN VM_CONTEXT *VmPtr | |
| ) | |
| { | |
| // | |
| // Just call the data manipulation function with a flag indicating this | |
| // is not a signed operation. | |
| // | |
| return ExecuteDataManip (VmPtr, FALSE); | |
| } | |
| /** | |
| Execute all the EBC data manipulation instructions. | |
| Since the EBC data manipulation instructions all have the same basic form, | |
| they can share the code that does the fetch of operands and the write-back | |
| of the result. This function performs the fetch of the operands (even if | |
| both are not needed to be fetched, like NOT instruction), dispatches to the | |
| appropriate subfunction, then writes back the returned result. | |
| Format: | |
| INSTRUCITON[32|64] {@}R1, {@}R2 {Immed16|Index16} | |
| @param VmPtr A pointer to VM context. | |
| @param IsSignedOp Indicates whether the operand is signed or not. | |
| @retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecuteDataManip ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN BOOLEAN IsSignedOp | |
| ) | |
| { | |
| UINT8 Opcode; | |
| INT16 Index16; | |
| UINT8 Operands; | |
| UINT8 Size; | |
| UINT64 Op1; | |
| UINT64 Op2; | |
| INTN DataManipDispatchTableIndex; | |
| // | |
| // Get opcode and operands | |
| // | |
| Opcode = GETOPCODE (VmPtr); | |
| Operands = GETOPERANDS (VmPtr); | |
| // | |
| // Determine if we have immediate data by the opcode | |
| // | |
| if ((Opcode & DATAMANIP_M_IMMDATA) != 0) { | |
| // | |
| // Index16 if Ry is indirect, or Immed16 if Ry direct. | |
| // | |
| if (OPERAND2_INDIRECT (Operands)) { | |
| Index16 = VmReadIndex16 (VmPtr, 2); | |
| } else { | |
| Index16 = VmReadImmed16 (VmPtr, 2); | |
| } | |
| Size = 4; | |
| } else { | |
| Index16 = 0; | |
| Size = 2; | |
| } | |
| // | |
| // Now get operand2 (source). It's of format {@}R2 {Index16|Immed16} | |
| // | |
| Op2 = (UINT64) VmPtr->Gpr[OPERAND2_REGNUM (Operands)] + Index16; | |
| if (OPERAND2_INDIRECT (Operands)) { | |
| // | |
| // Indirect form: @R2 Index16. Fetch as 32- or 64-bit data | |
| // | |
| if ((Opcode & DATAMANIP_M_64) != 0) { | |
| Op2 = VmReadMem64 (VmPtr, (UINTN) Op2); | |
| } else { | |
| // | |
| // Read as signed value where appropriate. | |
| // | |
| if (IsSignedOp) { | |
| Op2 = (UINT64) (INT64) ((INT32) VmReadMem32 (VmPtr, (UINTN) Op2)); | |
| } else { | |
| Op2 = (UINT64) VmReadMem32 (VmPtr, (UINTN) Op2); | |
| } | |
| } | |
| } else { | |
| if ((Opcode & DATAMANIP_M_64) == 0) { | |
| if (IsSignedOp) { | |
| Op2 = (UINT64) (INT64) ((INT32) Op2); | |
| } else { | |
| Op2 = (UINT64) ((UINT32) Op2); | |
| } | |
| } | |
| } | |
| // | |
| // Get operand1 (destination and sometimes also an actual operand) | |
| // of form {@}R1 | |
| // | |
| Op1 = (UINT64) VmPtr->Gpr[OPERAND1_REGNUM (Operands)]; | |
| if (OPERAND1_INDIRECT (Operands)) { | |
| if ((Opcode & DATAMANIP_M_64) != 0) { | |
| Op1 = VmReadMem64 (VmPtr, (UINTN) Op1); | |
| } else { | |
| if (IsSignedOp) { | |
| Op1 = (UINT64) (INT64) ((INT32) VmReadMem32 (VmPtr, (UINTN) Op1)); | |
| } else { | |
| Op1 = (UINT64) VmReadMem32 (VmPtr, (UINTN) Op1); | |
| } | |
| } | |
| } else { | |
| if ((Opcode & DATAMANIP_M_64) == 0) { | |
| if (IsSignedOp) { | |
| Op1 = (UINT64) (INT64) ((INT32) Op1); | |
| } else { | |
| Op1 = (UINT64) ((UINT32) Op1); | |
| } | |
| } | |
| } | |
| // | |
| // Dispatch to the computation function | |
| // | |
| DataManipDispatchTableIndex = (Opcode & OPCODE_M_OPCODE) - OPCODE_NOT; | |
| if ((DataManipDispatchTableIndex < 0) || | |
| (DataManipDispatchTableIndex >= ARRAY_SIZE (mDataManipDispatchTable))) { | |
| EbcDebugSignalException ( | |
| EXCEPT_EBC_INVALID_OPCODE, | |
| EXCEPTION_FLAG_ERROR, | |
| VmPtr | |
| ); | |
| // | |
| // Advance and return | |
| // | |
| VmPtr->Ip += Size; | |
| return EFI_UNSUPPORTED; | |
| } else { | |
| Op2 = mDataManipDispatchTable[DataManipDispatchTableIndex](VmPtr, Op1, Op2); | |
| } | |
| // | |
| // Write back the result. | |
| // | |
| if (OPERAND1_INDIRECT (Operands)) { | |
| Op1 = (UINT64) VmPtr->Gpr[OPERAND1_REGNUM (Operands)]; | |
| if ((Opcode & DATAMANIP_M_64) != 0) { | |
| VmWriteMem64 (VmPtr, (UINTN) Op1, Op2); | |
| } else { | |
| VmWriteMem32 (VmPtr, (UINTN) Op1, (UINT32) Op2); | |
| } | |
| } else { | |
| // | |
| // Storage back to a register. Write back, clearing upper bits (as per | |
| // the specification) if 32-bit operation. | |
| // | |
| VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = Op2; | |
| if ((Opcode & DATAMANIP_M_64) == 0) { | |
| VmPtr->Gpr[OPERAND1_REGNUM (Operands)] &= 0xFFFFFFFF; | |
| } | |
| } | |
| // | |
| // Advance the instruction pointer | |
| // | |
| VmPtr->Ip += Size; | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Execute the EBC LOADSP instruction. | |
| Instruction syntax: | |
| LOADSP SP1, R2 | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecuteLOADSP ( | |
| IN VM_CONTEXT *VmPtr | |
| ) | |
| { | |
| UINT8 Operands; | |
| // | |
| // Get the operands | |
| // | |
| Operands = GETOPERANDS (VmPtr); | |
| // | |
| // Do the operation | |
| // | |
| switch (OPERAND1_REGNUM (Operands)) { | |
| // | |
| // Set flags | |
| // | |
| case 0: | |
| // | |
| // Spec states that this instruction will not modify reserved bits in | |
| // the flags register. | |
| // | |
| VmPtr->Flags = (VmPtr->Flags &~VMFLAGS_ALL_VALID) | (VmPtr->Gpr[OPERAND2_REGNUM (Operands)] & VMFLAGS_ALL_VALID); | |
| break; | |
| default: | |
| EbcDebugSignalException ( | |
| EXCEPT_EBC_INSTRUCTION_ENCODING, | |
| EXCEPTION_FLAG_WARNING, | |
| VmPtr | |
| ); | |
| VmPtr->Ip += 2; | |
| return EFI_UNSUPPORTED; | |
| } | |
| VmPtr->Ip += 2; | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Execute the EBC STORESP instruction. | |
| Instruction syntax: | |
| STORESP Rx, FLAGS|IP | |
| @param VmPtr A pointer to a VM context. | |
| @retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| **/ | |
| EFI_STATUS | |
| ExecuteSTORESP ( | |
| IN VM_CONTEXT *VmPtr | |
| ) | |
| { | |
| UINT8 Operands; | |
| // | |
| // Get the operands | |
| // | |
| Operands = GETOPERANDS (VmPtr); | |
| // | |
| // Do the operation | |
| // | |
| switch (OPERAND2_REGNUM (Operands)) { | |
| // | |
| // Get flags | |
| // | |
| case 0: | |
| // | |
| // Retrieve the value in the flags register, then clear reserved bits | |
| // | |
| VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = (UINT64) (VmPtr->Flags & VMFLAGS_ALL_VALID); | |
| break; | |
| // | |
| // Get IP -- address of following instruction | |
| // | |
| case 1: | |
| VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = (UINT64) (UINTN) VmPtr->Ip + 2; | |
| break; | |
| default: | |
| EbcDebugSignalException ( | |
| EXCEPT_EBC_INSTRUCTION_ENCODING, | |
| EXCEPTION_FLAG_WARNING, | |
| VmPtr | |
| ); | |
| VmPtr->Ip += 2; | |
| return EFI_UNSUPPORTED; | |
| break; | |
| } | |
| VmPtr->Ip += 2; | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Decode a 16-bit index to determine the offset. Given an index value: | |
| b15 - sign bit | |
| b14:12 - number of bits in this index assigned to natural units (=a) | |
| ba:11 - constant units = ConstUnits | |
| b0:a - natural units = NaturalUnits | |
| Given this info, the offset can be computed by: | |
| offset = sign_bit * (ConstUnits + NaturalUnits * sizeof(UINTN)) | |
| Max offset is achieved with index = 0x7FFF giving an offset of | |
| 0x27B (32-bit machine) or 0x477 (64-bit machine). | |
| Min offset is achieved with index = | |
| @param VmPtr A pointer to VM context. | |
| @param CodeOffset Offset from IP of the location of the 16-bit index | |
| to decode. | |
| @return The decoded offset. | |
| **/ | |
| INT16 | |
| VmReadIndex16 ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT32 CodeOffset | |
| ) | |
| { | |
| UINT16 Index; | |
| INT16 Offset; | |
| INT16 ConstUnits; | |
| INT16 NaturalUnits; | |
| INT16 NBits; | |
| INT16 Mask; | |
| // | |
| // First read the index from the code stream | |
| // | |
| Index = VmReadCode16 (VmPtr, CodeOffset); | |
| // | |
| // Get the mask for NaturalUnits. First get the number of bits from the index. | |
| // | |
| NBits = (INT16) ((Index & 0x7000) >> 12); | |
| // | |
| // Scale it for 16-bit indexes | |
| // | |
| NBits *= 2; | |
| // | |
| // Now using the number of bits, create a mask. | |
| // | |
| Mask = (INT16) ((INT16)~0 << NBits); | |
| // | |
| // Now using the mask, extract NaturalUnits from the lower bits of the index. | |
| // | |
| NaturalUnits = (INT16) (Index &~Mask); | |
| // | |
| // Now compute ConstUnits | |
| // | |
| ConstUnits = (INT16) (((Index &~0xF000) & Mask) >> NBits); | |
| Offset = (INT16) (NaturalUnits * sizeof (UINTN) + ConstUnits); | |
| // | |
| // Now set the sign | |
| // | |
| if ((Index & 0x8000) != 0) { | |
| // | |
| // Do it the hard way to work around a bogus compiler warning | |
| // | |
| // Offset = -1 * Offset; | |
| // | |
| Offset = (INT16) ((INT32) Offset * -1); | |
| } | |
| return Offset; | |
| } | |
| /** | |
| Decode a 32-bit index to determine the offset. | |
| @param VmPtr A pointer to VM context. | |
| @param CodeOffset Offset from IP of the location of the 32-bit index | |
| to decode. | |
| @return Converted index per EBC VM specification. | |
| **/ | |
| INT32 | |
| VmReadIndex32 ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT32 CodeOffset | |
| ) | |
| { | |
| UINT32 Index; | |
| INT32 Offset; | |
| INT32 ConstUnits; | |
| INT32 NaturalUnits; | |
| INT32 NBits; | |
| INT32 Mask; | |
| Index = VmReadImmed32 (VmPtr, CodeOffset); | |
| // | |
| // Get the mask for NaturalUnits. First get the number of bits from the index. | |
| // | |
| NBits = (Index & 0x70000000) >> 28; | |
| // | |
| // Scale it for 32-bit indexes | |
| // | |
| NBits *= 4; | |
| // | |
| // Now using the number of bits, create a mask. | |
| // | |
| Mask = (INT32)~0 << NBits; | |
| // | |
| // Now using the mask, extract NaturalUnits from the lower bits of the index. | |
| // | |
| NaturalUnits = Index &~Mask; | |
| // | |
| // Now compute ConstUnits | |
| // | |
| ConstUnits = ((Index &~0xF0000000) & Mask) >> NBits; | |
| Offset = NaturalUnits * sizeof (UINTN) + ConstUnits; | |
| // | |
| // Now set the sign | |
| // | |
| if ((Index & 0x80000000) != 0) { | |
| Offset = Offset * -1; | |
| } | |
| return Offset; | |
| } | |
| /** | |
| Decode a 64-bit index to determine the offset. | |
| @param VmPtr A pointer to VM context.s | |
| @param CodeOffset Offset from IP of the location of the 64-bit index | |
| to decode. | |
| @return Converted index per EBC VM specification | |
| **/ | |
| INT64 | |
| VmReadIndex64 ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT32 CodeOffset | |
| ) | |
| { | |
| UINT64 Index; | |
| INT64 Offset; | |
| INT64 ConstUnits; | |
| INT64 NaturalUnits; | |
| INT64 NBits; | |
| INT64 Mask; | |
| Index = VmReadCode64 (VmPtr, CodeOffset); | |
| // | |
| // Get the mask for NaturalUnits. First get the number of bits from the index. | |
| // | |
| NBits = RShiftU64 ((Index & 0x7000000000000000ULL), 60); | |
| // | |
| // Scale it for 64-bit indexes (multiply by 8 by shifting left 3) | |
| // | |
| NBits = LShiftU64 ((UINT64)NBits, 3); | |
| // | |
| // Now using the number of bits, create a mask. | |
| // | |
| Mask = (LShiftU64 ((UINT64)~0, (UINTN)NBits)); | |
| // | |
| // Now using the mask, extract NaturalUnits from the lower bits of the index. | |
| // | |
| NaturalUnits = Index &~Mask; | |
| // | |
| // Now compute ConstUnits | |
| // | |
| ConstUnits = ARShiftU64 (((Index &~0xF000000000000000ULL) & Mask), (UINTN)NBits); | |
| Offset = MultU64x64 ((UINT64) NaturalUnits, sizeof (UINTN)) + ConstUnits; | |
| // | |
| // Now set the sign | |
| // | |
| if ((Index & 0x8000000000000000ULL) != 0) { | |
| Offset = MultS64x64 (Offset, -1); | |
| } | |
| return Offset; | |
| } | |
| /** | |
| Writes 8-bit data to memory address. | |
| This routine is called by the EBC data | |
| movement instructions that write to memory. Since these writes | |
| may be to the stack, which looks like (high address on top) this, | |
| [EBC entry point arguments] | |
| [VM stack] | |
| [EBC stack] | |
| we need to detect all attempts to write to the EBC entry point argument | |
| stack area and adjust the address (which will initially point into the | |
| VM stack) to point into the EBC entry point arguments. | |
| @param VmPtr A pointer to a VM context. | |
| @param Addr Address to write to. | |
| @param Data Value to write to Addr. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| @retval Other Some error occurs when writing data to the address. | |
| **/ | |
| EFI_STATUS | |
| VmWriteMem8 ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINTN Addr, | |
| IN UINT8 Data | |
| ) | |
| { | |
| // | |
| // Convert the address if it's in the stack gap | |
| // | |
| Addr = ConvertStackAddr (VmPtr, Addr); | |
| *(UINT8 *) Addr = Data; | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Writes 16-bit data to memory address. | |
| This routine is called by the EBC data | |
| movement instructions that write to memory. Since these writes | |
| may be to the stack, which looks like (high address on top) this, | |
| [EBC entry point arguments] | |
| [VM stack] | |
| [EBC stack] | |
| we need to detect all attempts to write to the EBC entry point argument | |
| stack area and adjust the address (which will initially point into the | |
| VM stack) to point into the EBC entry point arguments. | |
| @param VmPtr A pointer to a VM context. | |
| @param Addr Address to write to. | |
| @param Data Value to write to Addr. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| @retval Other Some error occurs when writing data to the address. | |
| **/ | |
| EFI_STATUS | |
| VmWriteMem16 ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINTN Addr, | |
| IN UINT16 Data | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| // | |
| // Convert the address if it's in the stack gap | |
| // | |
| Addr = ConvertStackAddr (VmPtr, Addr); | |
| // | |
| // Do a simple write if aligned | |
| // | |
| if (IS_ALIGNED (Addr, sizeof (UINT16))) { | |
| *(UINT16 *) Addr = Data; | |
| } else { | |
| // | |
| // Write as two bytes | |
| // | |
| MemoryFence (); | |
| if ((Status = VmWriteMem8 (VmPtr, Addr, (UINT8) Data)) != EFI_SUCCESS) { | |
| return Status; | |
| } | |
| MemoryFence (); | |
| if ((Status = VmWriteMem8 (VmPtr, Addr + 1, (UINT8) (Data >> 8))) != EFI_SUCCESS) { | |
| return Status; | |
| } | |
| MemoryFence (); | |
| } | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Writes 32-bit data to memory address. | |
| This routine is called by the EBC data | |
| movement instructions that write to memory. Since these writes | |
| may be to the stack, which looks like (high address on top) this, | |
| [EBC entry point arguments] | |
| [VM stack] | |
| [EBC stack] | |
| we need to detect all attempts to write to the EBC entry point argument | |
| stack area and adjust the address (which will initially point into the | |
| VM stack) to point into the EBC entry point arguments. | |
| @param VmPtr A pointer to a VM context. | |
| @param Addr Address to write to. | |
| @param Data Value to write to Addr. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| @retval Other Some error occurs when writing data to the address. | |
| **/ | |
| EFI_STATUS | |
| VmWriteMem32 ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINTN Addr, | |
| IN UINT32 Data | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| // | |
| // Convert the address if it's in the stack gap | |
| // | |
| Addr = ConvertStackAddr (VmPtr, Addr); | |
| // | |
| // Do a simple write if aligned | |
| // | |
| if (IS_ALIGNED (Addr, sizeof (UINT32))) { | |
| *(UINT32 *) Addr = Data; | |
| } else { | |
| // | |
| // Write as two words | |
| // | |
| MemoryFence (); | |
| if ((Status = VmWriteMem16 (VmPtr, Addr, (UINT16) Data)) != EFI_SUCCESS) { | |
| return Status; | |
| } | |
| MemoryFence (); | |
| if ((Status = VmWriteMem16 (VmPtr, Addr + sizeof (UINT16), (UINT16) (Data >> 16))) != EFI_SUCCESS) { | |
| return Status; | |
| } | |
| MemoryFence (); | |
| } | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Writes 64-bit data to memory address. | |
| This routine is called by the EBC data | |
| movement instructions that write to memory. Since these writes | |
| may be to the stack, which looks like (high address on top) this, | |
| [EBC entry point arguments] | |
| [VM stack] | |
| [EBC stack] | |
| we need to detect all attempts to write to the EBC entry point argument | |
| stack area and adjust the address (which will initially point into the | |
| VM stack) to point into the EBC entry point arguments. | |
| @param VmPtr A pointer to a VM context. | |
| @param Addr Address to write to. | |
| @param Data Value to write to Addr. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| @retval Other Some error occurs when writing data to the address. | |
| **/ | |
| EFI_STATUS | |
| VmWriteMem64 ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINTN Addr, | |
| IN UINT64 Data | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| // | |
| // Convert the address if it's in the stack gap | |
| // | |
| Addr = ConvertStackAddr (VmPtr, Addr); | |
| // | |
| // Do a simple write if aligned | |
| // | |
| if (IS_ALIGNED (Addr, sizeof (UINT64))) { | |
| *(UINT64 *) Addr = Data; | |
| } else { | |
| // | |
| // Write as two 32-bit words | |
| // | |
| MemoryFence (); | |
| if ((Status = VmWriteMem32 (VmPtr, Addr, (UINT32) Data)) != EFI_SUCCESS) { | |
| return Status; | |
| } | |
| MemoryFence (); | |
| if ((Status = VmWriteMem32 (VmPtr, Addr + sizeof (UINT32), (UINT32) RShiftU64(Data, 32))) != EFI_SUCCESS) { | |
| return Status; | |
| } | |
| MemoryFence (); | |
| } | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Writes UINTN data to memory address. | |
| This routine is called by the EBC data | |
| movement instructions that write to memory. Since these writes | |
| may be to the stack, which looks like (high address on top) this, | |
| [EBC entry point arguments] | |
| [VM stack] | |
| [EBC stack] | |
| we need to detect all attempts to write to the EBC entry point argument | |
| stack area and adjust the address (which will initially point into the | |
| VM stack) to point into the EBC entry point arguments. | |
| @param VmPtr A pointer to a VM context. | |
| @param Addr Address to write to. | |
| @param Data Value to write to Addr. | |
| @retval EFI_SUCCESS The instruction is executed successfully. | |
| @retval Other Some error occurs when writing data to the address. | |
| **/ | |
| EFI_STATUS | |
| VmWriteMemN ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINTN Addr, | |
| IN UINTN Data | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| UINTN Index; | |
| Status = EFI_SUCCESS; | |
| // | |
| // Convert the address if it's in the stack gap | |
| // | |
| Addr = ConvertStackAddr (VmPtr, Addr); | |
| // | |
| // Do a simple write if aligned | |
| // | |
| if (IS_ALIGNED (Addr, sizeof (UINTN))) { | |
| *(UINTN *) Addr = Data; | |
| } else { | |
| for (Index = 0; Index < sizeof (UINTN) / sizeof (UINT32); Index++) { | |
| MemoryFence (); | |
| Status = VmWriteMem32 (VmPtr, Addr + Index * sizeof (UINT32), (UINT32) Data); | |
| MemoryFence (); | |
| Data = (UINTN) RShiftU64 ((UINT64)Data, 32); | |
| } | |
| } | |
| return Status; | |
| } | |
| /** | |
| Reads 8-bit immediate value at the offset. | |
| This routine is called by the EBC execute | |
| functions to read EBC immediate values from the code stream. | |
| Since we can't assume alignment, each tries to read in the biggest | |
| chunks size available, but will revert to smaller reads if necessary. | |
| @param VmPtr A pointer to a VM context. | |
| @param Offset offset from IP of the code bytes to read. | |
| @return Signed data of the requested size from the specified address. | |
| **/ | |
| INT8 | |
| VmReadImmed8 ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT32 Offset | |
| ) | |
| { | |
| // | |
| // Simply return the data in flat memory space | |
| // | |
| return * (INT8 *) (VmPtr->Ip + Offset); | |
| } | |
| /** | |
| Reads 16-bit immediate value at the offset. | |
| This routine is called by the EBC execute | |
| functions to read EBC immediate values from the code stream. | |
| Since we can't assume alignment, each tries to read in the biggest | |
| chunks size available, but will revert to smaller reads if necessary. | |
| @param VmPtr A pointer to a VM context. | |
| @param Offset offset from IP of the code bytes to read. | |
| @return Signed data of the requested size from the specified address. | |
| **/ | |
| INT16 | |
| VmReadImmed16 ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT32 Offset | |
| ) | |
| { | |
| // | |
| // Read direct if aligned | |
| // | |
| if (IS_ALIGNED ((UINTN) VmPtr->Ip + Offset, sizeof (INT16))) { | |
| return * (INT16 *) (VmPtr->Ip + Offset); | |
| } else { | |
| // | |
| // All code word reads should be aligned | |
| // | |
| EbcDebugSignalException ( | |
| EXCEPT_EBC_ALIGNMENT_CHECK, | |
| EXCEPTION_FLAG_WARNING, | |
| VmPtr | |
| ); | |
| } | |
| // | |
| // Return unaligned data | |
| // | |
| return (INT16) (*(UINT8 *) (VmPtr->Ip + Offset) + (*(UINT8 *) (VmPtr->Ip + Offset + 1) << 8)); | |
| } | |
| /** | |
| Reads 32-bit immediate value at the offset. | |
| This routine is called by the EBC execute | |
| functions to read EBC immediate values from the code stream. | |
| Since we can't assume alignment, each tries to read in the biggest | |
| chunks size available, but will revert to smaller reads if necessary. | |
| @param VmPtr A pointer to a VM context. | |
| @param Offset offset from IP of the code bytes to read. | |
| @return Signed data of the requested size from the specified address. | |
| **/ | |
| INT32 | |
| VmReadImmed32 ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT32 Offset | |
| ) | |
| { | |
| UINT32 Data; | |
| // | |
| // Read direct if aligned | |
| // | |
| if (IS_ALIGNED ((UINTN) VmPtr->Ip + Offset, sizeof (UINT32))) { | |
| return * (INT32 *) (VmPtr->Ip + Offset); | |
| } | |
| // | |
| // Return unaligned data | |
| // | |
| Data = (UINT32) VmReadCode16 (VmPtr, Offset); | |
| Data |= (UINT32)(VmReadCode16 (VmPtr, Offset + 2) << 16); | |
| return Data; | |
| } | |
| /** | |
| Reads 64-bit immediate value at the offset. | |
| This routine is called by the EBC execute | |
| functions to read EBC immediate values from the code stream. | |
| Since we can't assume alignment, each tries to read in the biggest | |
| chunks size available, but will revert to smaller reads if necessary. | |
| @param VmPtr A pointer to a VM context. | |
| @param Offset offset from IP of the code bytes to read. | |
| @return Signed data of the requested size from the specified address. | |
| **/ | |
| INT64 | |
| VmReadImmed64 ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT32 Offset | |
| ) | |
| { | |
| UINT64 Data64; | |
| UINT32 Data32; | |
| UINT8 *Ptr; | |
| // | |
| // Read direct if aligned | |
| // | |
| if (IS_ALIGNED ((UINTN) VmPtr->Ip + Offset, sizeof (UINT64))) { | |
| return * (UINT64 *) (VmPtr->Ip + Offset); | |
| } | |
| // | |
| // Return unaligned data. | |
| // | |
| Ptr = (UINT8 *) &Data64; | |
| Data32 = VmReadCode32 (VmPtr, Offset); | |
| *(UINT32 *) Ptr = Data32; | |
| Ptr += sizeof (Data32); | |
| Data32 = VmReadCode32 (VmPtr, Offset + sizeof (UINT32)); | |
| *(UINT32 *) Ptr = Data32; | |
| return Data64; | |
| } | |
| /** | |
| Reads 16-bit unsigned data from the code stream. | |
| This routine provides the ability to read raw unsigned data from the code | |
| stream. | |
| @param VmPtr A pointer to VM context | |
| @param Offset Offset from current IP to the raw data to read. | |
| @return The raw unsigned 16-bit value from the code stream. | |
| **/ | |
| UINT16 | |
| VmReadCode16 ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT32 Offset | |
| ) | |
| { | |
| // | |
| // Read direct if aligned | |
| // | |
| if (IS_ALIGNED ((UINTN) VmPtr->Ip + Offset, sizeof (UINT16))) { | |
| return * (UINT16 *) (VmPtr->Ip + Offset); | |
| } else { | |
| // | |
| // All code word reads should be aligned | |
| // | |
| EbcDebugSignalException ( | |
| EXCEPT_EBC_ALIGNMENT_CHECK, | |
| EXCEPTION_FLAG_WARNING, | |
| VmPtr | |
| ); | |
| } | |
| // | |
| // Return unaligned data | |
| // | |
| return (UINT16) (*(UINT8 *) (VmPtr->Ip + Offset) + (*(UINT8 *) (VmPtr->Ip + Offset + 1) << 8)); | |
| } | |
| /** | |
| Reads 32-bit unsigned data from the code stream. | |
| This routine provides the ability to read raw unsigned data from the code | |
| stream. | |
| @param VmPtr A pointer to VM context | |
| @param Offset Offset from current IP to the raw data to read. | |
| @return The raw unsigned 32-bit value from the code stream. | |
| **/ | |
| UINT32 | |
| VmReadCode32 ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT32 Offset | |
| ) | |
| { | |
| UINT32 Data; | |
| // | |
| // Read direct if aligned | |
| // | |
| if (IS_ALIGNED ((UINTN) VmPtr->Ip + Offset, sizeof (UINT32))) { | |
| return * (UINT32 *) (VmPtr->Ip + Offset); | |
| } | |
| // | |
| // Return unaligned data | |
| // | |
| Data = (UINT32) VmReadCode16 (VmPtr, Offset); | |
| Data |= (VmReadCode16 (VmPtr, Offset + 2) << 16); | |
| return Data; | |
| } | |
| /** | |
| Reads 64-bit unsigned data from the code stream. | |
| This routine provides the ability to read raw unsigned data from the code | |
| stream. | |
| @param VmPtr A pointer to VM context | |
| @param Offset Offset from current IP to the raw data to read. | |
| @return The raw unsigned 64-bit value from the code stream. | |
| **/ | |
| UINT64 | |
| VmReadCode64 ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINT32 Offset | |
| ) | |
| { | |
| UINT64 Data64; | |
| UINT32 Data32; | |
| UINT8 *Ptr; | |
| // | |
| // Read direct if aligned | |
| // | |
| if (IS_ALIGNED ((UINTN) VmPtr->Ip + Offset, sizeof (UINT64))) { | |
| return * (UINT64 *) (VmPtr->Ip + Offset); | |
| } | |
| // | |
| // Return unaligned data. | |
| // | |
| Ptr = (UINT8 *) &Data64; | |
| Data32 = VmReadCode32 (VmPtr, Offset); | |
| *(UINT32 *) Ptr = Data32; | |
| Ptr += sizeof (Data32); | |
| Data32 = VmReadCode32 (VmPtr, Offset + sizeof (UINT32)); | |
| *(UINT32 *) Ptr = Data32; | |
| return Data64; | |
| } | |
| /** | |
| Reads 8-bit data form the memory address. | |
| @param VmPtr A pointer to VM context. | |
| @param Addr The memory address. | |
| @return The 8-bit value from the memory address. | |
| **/ | |
| UINT8 | |
| VmReadMem8 ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINTN Addr | |
| ) | |
| { | |
| // | |
| // Convert the address if it's in the stack gap | |
| // | |
| Addr = ConvertStackAddr (VmPtr, Addr); | |
| // | |
| // Simply return the data in flat memory space | |
| // | |
| return * (UINT8 *) Addr; | |
| } | |
| /** | |
| Reads 16-bit data form the memory address. | |
| @param VmPtr A pointer to VM context. | |
| @param Addr The memory address. | |
| @return The 16-bit value from the memory address. | |
| **/ | |
| UINT16 | |
| VmReadMem16 ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINTN Addr | |
| ) | |
| { | |
| // | |
| // Convert the address if it's in the stack gap | |
| // | |
| Addr = ConvertStackAddr (VmPtr, Addr); | |
| // | |
| // Read direct if aligned | |
| // | |
| if (IS_ALIGNED (Addr, sizeof (UINT16))) { | |
| return * (UINT16 *) Addr; | |
| } | |
| // | |
| // Return unaligned data | |
| // | |
| return (UINT16) (*(UINT8 *) Addr + (*(UINT8 *) (Addr + 1) << 8)); | |
| } | |
| /** | |
| Reads 32-bit data form the memory address. | |
| @param VmPtr A pointer to VM context. | |
| @param Addr The memory address. | |
| @return The 32-bit value from the memory address. | |
| **/ | |
| UINT32 | |
| VmReadMem32 ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINTN Addr | |
| ) | |
| { | |
| UINT32 Data; | |
| // | |
| // Convert the address if it's in the stack gap | |
| // | |
| Addr = ConvertStackAddr (VmPtr, Addr); | |
| // | |
| // Read direct if aligned | |
| // | |
| if (IS_ALIGNED (Addr, sizeof (UINT32))) { | |
| return * (UINT32 *) Addr; | |
| } | |
| // | |
| // Return unaligned data | |
| // | |
| Data = (UINT32) VmReadMem16 (VmPtr, Addr); | |
| Data |= (VmReadMem16 (VmPtr, Addr + 2) << 16); | |
| return Data; | |
| } | |
| /** | |
| Reads 64-bit data form the memory address. | |
| @param VmPtr A pointer to VM context. | |
| @param Addr The memory address. | |
| @return The 64-bit value from the memory address. | |
| **/ | |
| UINT64 | |
| VmReadMem64 ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINTN Addr | |
| ) | |
| { | |
| UINT64 Data; | |
| UINT32 Data32; | |
| // | |
| // Convert the address if it's in the stack gap | |
| // | |
| Addr = ConvertStackAddr (VmPtr, Addr); | |
| // | |
| // Read direct if aligned | |
| // | |
| if (IS_ALIGNED (Addr, sizeof (UINT64))) { | |
| return * (UINT64 *) Addr; | |
| } | |
| // | |
| // Return unaligned data. Assume little endian. | |
| // | |
| Data32 = VmReadMem32 (VmPtr, Addr); | |
| Data = (UINT64) VmReadMem32 (VmPtr, Addr + sizeof (UINT32)); | |
| Data = LShiftU64 (Data, 32) | Data32; | |
| return Data; | |
| } | |
| /** | |
| Given an address that EBC is going to read from or write to, return | |
| an appropriate address that accounts for a gap in the stack. | |
| The stack for this application looks like this (high addr on top) | |
| [EBC entry point arguments] | |
| [VM stack] | |
| [EBC stack] | |
| The EBC assumes that its arguments are at the top of its stack, which | |
| is where the VM stack is really. Therefore if the EBC does memory | |
| accesses into the VM stack area, then we need to convert the address | |
| to point to the EBC entry point arguments area. Do this here. | |
| @param VmPtr A Pointer to VM context. | |
| @param Addr Address of interest | |
| @return The unchanged address if it's not in the VM stack region. Otherwise, | |
| adjust for the stack gap and return the modified address. | |
| **/ | |
| UINTN | |
| ConvertStackAddr ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINTN Addr | |
| ) | |
| { | |
| ASSERT(((Addr < VmPtr->LowStackTop) || (Addr > VmPtr->HighStackBottom))); | |
| return Addr; | |
| } | |
| /** | |
| Read a natural value from memory. May or may not be aligned. | |
| @param VmPtr current VM context | |
| @param Addr the address to read from | |
| @return The natural value at address Addr. | |
| **/ | |
| UINTN | |
| VmReadMemN ( | |
| IN VM_CONTEXT *VmPtr, | |
| IN UINTN Addr | |
| ) | |
| { | |
| UINTN Data; | |
| volatile UINT32 Size; | |
| UINT8 *FromPtr; | |
| UINT8 *ToPtr; | |
| // | |
| // Convert the address if it's in the stack gap | |
| // | |
| Addr = ConvertStackAddr (VmPtr, Addr); | |
| // | |
| // Read direct if aligned | |
| // | |
| if (IS_ALIGNED (Addr, sizeof (UINTN))) { | |
| return * (UINTN *) Addr; | |
| } | |
| // | |
| // Return unaligned data | |
| // | |
| Data = 0; | |
| FromPtr = (UINT8 *) Addr; | |
| ToPtr = (UINT8 *) &Data; | |
| for (Size = 0; Size < sizeof (Data); Size++) { | |
| *ToPtr = *FromPtr; | |
| ToPtr++; | |
| FromPtr++; | |
| } | |
| return Data; | |
| } | |
| /** | |
| Returns the version of the EBC virtual machine. | |
| @return The 64-bit version of EBC virtual machine. | |
| **/ | |
| UINT64 | |
| GetVmVersion ( | |
| VOID | |
| ) | |
| { | |
| return (UINT64) (((VM_MAJOR_VERSION & 0xFFFF) << 16) | ((VM_MINOR_VERSION & 0xFFFF))); | |
| } |