blob: 0dc031393e71199e694687d8f50852c5cc3fda64 [file] [log] [blame]
/**@file
Copyright (c) 2006 - 2010, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
Module Name:
WinNtSerialIo.c
Abstract:
Our DriverBinding member functions operate on the handles
created by the NT Bus driver.
Handle(1) - WinNtIo - DevicePath(1)
If a serial port is added to the system this driver creates a new handle.
The new handle is required, since the serial device must add an UART device
pathnode.
Handle(2) - SerialIo - DevicePath(1)\UART
The driver then adds a gEfiWinNtSerialPortGuid as a protocol to Handle(1).
The instance data for this protocol is the private data used to create
Handle(2).
Handle(1) - WinNtIo - DevicePath(1) - WinNtSerialPort
If the driver is unloaded Handle(2) is removed from the system and
gEfiWinNtSerialPortGuid is removed from Handle(1).
Note: Handle(1) is any handle created by the Win NT Bus driver that is passed
into the DriverBinding member functions of this driver. This driver requires
a Handle(1) to contain a WinNtIo protocol, a DevicePath protocol, and
the TypeGuid in the WinNtIo must be gEfiWinNtSerialPortGuid.
If Handle(1) contains a gEfiWinNtSerialPortGuid protocol then the driver is
loaded on the device.
**/
#include "WinNtSerialIo.h"
EFI_DRIVER_BINDING_PROTOCOL gWinNtSerialIoDriverBinding = {
WinNtSerialIoDriverBindingSupported,
WinNtSerialIoDriverBindingStart,
WinNtSerialIoDriverBindingStop,
0xa,
NULL,
NULL
};
//
// List of supported baud rate
//
UINT64 mBaudRateCurrentSupport[] = {50, 75, 110, 134, 150, 300, 600, 1200, 1800, 2000, 2400, 3600, 4800, 7200, 9600, 19200, 38400, 57600, 115200, SERIAL_PORT_MAX_BAUD_RATE + 1};
/**
Check the device path node whether it's the Flow Control node or not.
@param[in] FlowControl The device path node to be checked.
@retval TRUE It's the Flow Control node.
@retval FALSE It's not.
**/
BOOLEAN
IsUartFlowControlNode (
IN UART_FLOW_CONTROL_DEVICE_PATH *FlowControl
)
{
return (BOOLEAN) (
(DevicePathType (FlowControl) == MESSAGING_DEVICE_PATH) &&
(DevicePathSubType (FlowControl) == MSG_VENDOR_DP) &&
(CompareGuid (&FlowControl->Guid, &gEfiUartDevicePathGuid))
);
}
/**
Check the device path node whether it contains Flow Control node or not.
@param[in] DevicePath The device path to be checked.
@retval TRUE It contains the Flow Control node.
@retval FALSE It doesn't.
**/
BOOLEAN
ContainsFlowControl (
IN EFI_DEVICE_PATH_PROTOCOL *DevicePath
)
{
while (!IsDevicePathEnd (DevicePath)) {
if (IsUartFlowControlNode ((UART_FLOW_CONTROL_DEVICE_PATH *) DevicePath)) {
return TRUE;
}
DevicePath = NextDevicePathNode (DevicePath);
}
return FALSE;
}
/**
The user Entry Point for module WinNtSerialIo. The user code starts with this function.
@param[in] ImageHandle The firmware allocated handle for the EFI image.
@param[in] SystemTable A pointer to the EFI System Table.
@retval EFI_SUCCESS The entry point is executed successfully.
@retval other Some error occurs when executing this entry point.
**/
EFI_STATUS
EFIAPI
InitializeWinNtSerialIo(
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
//
// Install driver model protocol(s).
//
Status = EfiLibInstallDriverBindingComponentName2 (
ImageHandle,
SystemTable,
&gWinNtSerialIoDriverBinding,
ImageHandle,
&gWinNtSerialIoComponentName,
&gWinNtSerialIoComponentName2
);
ASSERT_EFI_ERROR (Status);
return Status;
}
EFI_STATUS
EFIAPI
WinNtSerialIoDriverBindingSupported (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE Handle,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath
)
/*++
Routine Description:
Arguments:
Returns:
None
--*/
// TODO: This - add argument and description to function comment
// TODO: Handle - add argument and description to function comment
// TODO: RemainingDevicePath - add argument and description to function comment
// TODO: EFI_SUCCESS - add return value to function comment
// TODO: EFI_SUCCESS - add return value to function comment
{
EFI_STATUS Status;
EFI_DEVICE_PATH_PROTOCOL *ParentDevicePath;
EFI_WIN_NT_IO_PROTOCOL *WinNtIo;
UART_DEVICE_PATH *UartNode;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
UART_FLOW_CONTROL_DEVICE_PATH *FlowControlNode;
EFI_OPEN_PROTOCOL_INFORMATION_ENTRY *OpenInfoBuffer;
UINTN EntryCount;
UINTN Index;
BOOLEAN RemainingDevicePathContainsFlowControl;
//
// Check RemainingDevicePath validation
//
if (RemainingDevicePath != NULL) {
//
// Check if RemainingDevicePath is the End of Device Path Node,
// if yes, go on checking other conditions
//
if (!IsDevicePathEnd (RemainingDevicePath)) {
//
// If RemainingDevicePath isn't the End of Device Path Node,
// check its validation
//
Status = EFI_UNSUPPORTED;
UartNode = (UART_DEVICE_PATH *) RemainingDevicePath;
if (UartNode->Header.Type != MESSAGING_DEVICE_PATH ||
UartNode->Header.SubType != MSG_UART_DP ||
DevicePathNodeLength((EFI_DEVICE_PATH_PROTOCOL *)UartNode) != sizeof(UART_DEVICE_PATH)) {
goto Error;
}
if ( UartNode->BaudRate > SERIAL_PORT_MAX_BAUD_RATE) {
goto Error;
}
if (UartNode->Parity < NoParity || UartNode->Parity > SpaceParity) {
goto Error;
}
if (UartNode->DataBits < 5 || UartNode->DataBits > 8) {
goto Error;
}
if (UartNode->StopBits < OneStopBit || UartNode->StopBits > TwoStopBits) {
goto Error;
}
if ((UartNode->DataBits == 5) && (UartNode->StopBits == TwoStopBits)) {
goto Error;
}
if ((UartNode->DataBits >= 6) && (UartNode->DataBits <= 8) && (UartNode->StopBits == OneFiveStopBits)) {
goto Error;
}
FlowControlNode = (UART_FLOW_CONTROL_DEVICE_PATH *) NextDevicePathNode (UartNode);
if (IsUartFlowControlNode (FlowControlNode)) {
//
// If the second node is Flow Control Node,
// return error when it request other than hardware flow control.
//
if ((FlowControlNode->FlowControlMap & ~UART_FLOW_CONTROL_HARDWARE) != 0) {
goto Error;
}
}
}
}
//
// Open the IO Abstraction(s) needed to perform the supported test
//
Status = gBS->OpenProtocol (
Handle,
&gEfiWinNtIoProtocolGuid,
(VOID **) &WinNtIo,
This->DriverBindingHandle,
Handle,
EFI_OPEN_PROTOCOL_BY_DRIVER
);
if (Status == EFI_ALREADY_STARTED) {
if (RemainingDevicePath == NULL || IsDevicePathEnd (RemainingDevicePath)) {
//
// If RemainingDevicePath is NULL or is the End of Device Path Node
//
return EFI_SUCCESS;
}
//
// When the driver has produced device path with flow control node but RemainingDevicePath only contains UART node,
// return unsupported, and vice versa.
//
Status = gBS->OpenProtocolInformation (
Handle,
&gEfiWinNtIoProtocolGuid,
&OpenInfoBuffer,
&EntryCount
);
if (EFI_ERROR (Status)) {
return Status;
}
//
// See if RemainingDevicePath has a Flow Control device path node
//
RemainingDevicePathContainsFlowControl = ContainsFlowControl (RemainingDevicePath);
for (Index = 0; Index < EntryCount; Index++) {
if ((OpenInfoBuffer[Index].Attributes & EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER) != 0) {
Status = gBS->OpenProtocol (
OpenInfoBuffer[Index].ControllerHandle,
&gEfiDevicePathProtocolGuid,
(VOID **) &DevicePath,
This->DriverBindingHandle,
Handle,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (!EFI_ERROR (Status)) {
if (RemainingDevicePathContainsFlowControl ^ ContainsFlowControl (DevicePath)) {
Status = EFI_UNSUPPORTED;
}
}
break;
}
}
FreePool (OpenInfoBuffer);
return Status;
}
if (EFI_ERROR (Status)) {
return Status;
}
//
// Close the I/O Abstraction(s) used to perform the supported test
//
gBS->CloseProtocol (
Handle,
&gEfiWinNtIoProtocolGuid,
This->DriverBindingHandle,
Handle
);
//
// Open the EFI Device Path protocol needed to perform the supported test
//
Status = gBS->OpenProtocol (
Handle,
&gEfiDevicePathProtocolGuid,
(VOID **) &ParentDevicePath,
This->DriverBindingHandle,
Handle,
EFI_OPEN_PROTOCOL_BY_DRIVER
);
if (Status == EFI_ALREADY_STARTED) {
return EFI_SUCCESS;
}
if (EFI_ERROR (Status)) {
return Status;
}
//
// Close protocol, don't use device path protocol in the Support() function
//
gBS->CloseProtocol (
Handle,
&gEfiDevicePathProtocolGuid,
This->DriverBindingHandle,
Handle
);
//
// Make sure that the WinNt Thunk Protocol is valid
//
if (WinNtIo->WinNtThunk->Signature != EFI_WIN_NT_THUNK_PROTOCOL_SIGNATURE) {
Status = EFI_UNSUPPORTED;
goto Error;
}
//
// Check the GUID to see if this is a handle type the driver supports
//
if (!CompareGuid (WinNtIo->TypeGuid, &gEfiWinNtSerialPortGuid)) {
Status = EFI_UNSUPPORTED;
goto Error;
}
return EFI_SUCCESS;
Error:
return Status;
}
EFI_STATUS
EFIAPI
WinNtSerialIoDriverBindingStart (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE Handle,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath
)
/*++
Routine Description:
Arguments:
Returns:
None
--*/
// TODO: This - add argument and description to function comment
// TODO: Handle - add argument and description to function comment
// TODO: RemainingDevicePath - add argument and description to function comment
// TODO: EFI_SUCCESS - add return value to function comment
// TODO: EFI_SUCCESS - add return value to function comment
{
EFI_STATUS Status;
EFI_WIN_NT_IO_PROTOCOL *WinNtIo;
WIN_NT_SERIAL_IO_PRIVATE_DATA *Private;
HANDLE NtHandle;
UART_DEVICE_PATH UartNode;
EFI_DEVICE_PATH_PROTOCOL *ParentDevicePath;
EFI_OPEN_PROTOCOL_INFORMATION_ENTRY *OpenInfoBuffer;
UINTN EntryCount;
UINTN Index;
EFI_SERIAL_IO_PROTOCOL *SerialIo;
UART_DEVICE_PATH *Uart;
UINT32 FlowControlMap;
UART_FLOW_CONTROL_DEVICE_PATH *FlowControl;
EFI_DEVICE_PATH_PROTOCOL *TempDevicePath;
UINT32 Control;
Private = NULL;
NtHandle = INVALID_HANDLE_VALUE;
//
// Get the Parent Device Path
//
Status = gBS->OpenProtocol (
Handle,
&gEfiDevicePathProtocolGuid,
(VOID **) &ParentDevicePath,
This->DriverBindingHandle,
Handle,
EFI_OPEN_PROTOCOL_BY_DRIVER
);
if (EFI_ERROR (Status) && Status != EFI_ALREADY_STARTED) {
return Status;
}
//
// Grab the IO abstraction we need to get any work done
//
Status = gBS->OpenProtocol (
Handle,
&gEfiWinNtIoProtocolGuid,
(VOID **) &WinNtIo,
This->DriverBindingHandle,
Handle,
EFI_OPEN_PROTOCOL_BY_DRIVER
);
if (EFI_ERROR (Status) && Status != EFI_ALREADY_STARTED) {
gBS->CloseProtocol (
Handle,
&gEfiDevicePathProtocolGuid,
This->DriverBindingHandle,
Handle
);
return Status;
}
if (Status == EFI_ALREADY_STARTED) {
if (RemainingDevicePath == NULL || IsDevicePathEnd (RemainingDevicePath)) {
//
// If RemainingDevicePath is NULL or is the End of Device Path Node
//
return EFI_SUCCESS;
}
//
// Make sure a child handle does not already exist. This driver can only
// produce one child per serial port.
//
Status = gBS->OpenProtocolInformation (
Handle,
&gEfiWinNtIoProtocolGuid,
&OpenInfoBuffer,
&EntryCount
);
if (EFI_ERROR (Status)) {
return Status;
}
Status = EFI_ALREADY_STARTED;
for (Index = 0; Index < EntryCount; Index++) {
if ((OpenInfoBuffer[Index].Attributes & EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER) != 0) {
Status = gBS->OpenProtocol (
OpenInfoBuffer[Index].ControllerHandle,
&gEfiSerialIoProtocolGuid,
(VOID **) &SerialIo,
This->DriverBindingHandle,
Handle,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (!EFI_ERROR (Status)) {
Uart = (UART_DEVICE_PATH *) RemainingDevicePath;
Status = SerialIo->SetAttributes (
SerialIo,
Uart->BaudRate,
SerialIo->Mode->ReceiveFifoDepth,
SerialIo->Mode->Timeout,
(EFI_PARITY_TYPE) Uart->Parity,
Uart->DataBits,
(EFI_STOP_BITS_TYPE) Uart->StopBits
);
FlowControl = (UART_FLOW_CONTROL_DEVICE_PATH *) NextDevicePathNode (Uart);
if (!EFI_ERROR (Status) && IsUartFlowControlNode (FlowControl)) {
Status = SerialIo->GetControl (SerialIo, &Control);
if (!EFI_ERROR (Status)) {
if (FlowControl->FlowControlMap == UART_FLOW_CONTROL_HARDWARE) {
Control |= EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE;
} else {
Control &= ~EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE;
}
//
// Clear the bits that are not allowed to pass to SetControl
//
Control &= (EFI_SERIAL_REQUEST_TO_SEND | EFI_SERIAL_DATA_TERMINAL_READY |
EFI_SERIAL_HARDWARE_LOOPBACK_ENABLE | EFI_SERIAL_SOFTWARE_LOOPBACK_ENABLE |
EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE);
Status = SerialIo->SetControl (SerialIo, Control);
}
}
}
break;
}
}
FreePool (OpenInfoBuffer);
return Status;
}
FlowControl = NULL;
FlowControlMap = 0;
if (RemainingDevicePath == NULL) {
//
// Build the device path by appending the UART node to the ParentDevicePath
// from the WinNtIo handle. The Uart setings are zero here, since
// SetAttribute() will update them to match the default setings.
//
ZeroMem (&UartNode, sizeof (UART_DEVICE_PATH));
UartNode.Header.Type = MESSAGING_DEVICE_PATH;
UartNode.Header.SubType = MSG_UART_DP;
SetDevicePathNodeLength ((EFI_DEVICE_PATH_PROTOCOL *) &UartNode, sizeof (UART_DEVICE_PATH));
} else if (!IsDevicePathEnd (RemainingDevicePath)) {
//
// If RemainingDevicePath isn't the End of Device Path Node,
// only scan the specified device by RemainingDevicePath
//
//
// Match the configuration of the RemainingDevicePath. IsHandleSupported()
// already checked to make sure the RemainingDevicePath contains settings
// that we can support.
//
CopyMem (&UartNode, RemainingDevicePath, sizeof (UART_DEVICE_PATH));
FlowControl = (UART_FLOW_CONTROL_DEVICE_PATH *) NextDevicePathNode (RemainingDevicePath);
if (IsUartFlowControlNode (FlowControl)) {
FlowControlMap = FlowControl->FlowControlMap;
} else {
FlowControl = NULL;
}
} else {
//
// If RemainingDevicePath is the End of Device Path Node,
// skip enumerate any device and return EFI_SUCESSS
//
return EFI_SUCCESS;
}
//
// Check to see if we can access the hardware device. If it's Open in NT we
// will not get access.
//
NtHandle = WinNtIo->WinNtThunk->CreateFile (
WinNtIo->EnvString,
GENERIC_READ | GENERIC_WRITE,
0,
NULL,
OPEN_EXISTING,
0,
NULL
);
if (NtHandle == INVALID_HANDLE_VALUE) {
Status = EFI_DEVICE_ERROR;
goto Error;
}
//
// Construct Private data
//
Private = AllocatePool (sizeof (WIN_NT_SERIAL_IO_PRIVATE_DATA));
if (Private == NULL) {
goto Error;
}
//
// This signature must be valid before any member function is called
//
Private->Signature = WIN_NT_SERIAL_IO_PRIVATE_DATA_SIGNATURE;
Private->NtHandle = NtHandle;
Private->ControllerHandle = Handle;
Private->Handle = NULL;
Private->WinNtThunk = WinNtIo->WinNtThunk;
Private->ParentDevicePath = ParentDevicePath;
Private->ControllerNameTable = NULL;
Private->SoftwareLoopbackEnable = FALSE;
Private->HardwareLoopbackEnable = FALSE;
Private->HardwareFlowControl = (BOOLEAN) (FlowControlMap == UART_FLOW_CONTROL_HARDWARE);
Private->Fifo.First = 0;
Private->Fifo.Last = 0;
Private->Fifo.Surplus = SERIAL_MAX_BUFFER_SIZE;
CopyMem (&Private->UartDevicePath, &UartNode, sizeof (UART_DEVICE_PATH));
AddUnicodeString2 (
"eng",
gWinNtSerialIoComponentName.SupportedLanguages,
&Private->ControllerNameTable,
WinNtIo->EnvString,
TRUE
);
AddUnicodeString2 (
"en",
gWinNtSerialIoComponentName2.SupportedLanguages,
&Private->ControllerNameTable,
WinNtIo->EnvString,
FALSE
);
Private->SerialIo.Revision = SERIAL_IO_INTERFACE_REVISION;
Private->SerialIo.Reset = WinNtSerialIoReset;
Private->SerialIo.SetAttributes = WinNtSerialIoSetAttributes;
Private->SerialIo.SetControl = WinNtSerialIoSetControl;
Private->SerialIo.GetControl = WinNtSerialIoGetControl;
Private->SerialIo.Write = WinNtSerialIoWrite;
Private->SerialIo.Read = WinNtSerialIoRead;
Private->SerialIo.Mode = &Private->SerialIoMode;
//
// Build the device path by appending the UART node to the ParentDevicePath
// from the WinNtIo handle. The Uart setings are zero here, since
// SetAttribute() will update them to match the current setings.
//
Private->DevicePath = AppendDevicePathNode (
ParentDevicePath,
(EFI_DEVICE_PATH_PROTOCOL *) &Private->UartDevicePath
);
//
// Only produce the FlowControl node when remaining device path has it
//
if (FlowControl != NULL) {
TempDevicePath = Private->DevicePath;
if (TempDevicePath != NULL) {
Private->DevicePath = AppendDevicePathNode (
TempDevicePath,
(EFI_DEVICE_PATH_PROTOCOL *) FlowControl
);
FreePool (TempDevicePath);
}
}
if (Private->DevicePath == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto Error;
}
//
// Fill in Serial I/O Mode structure based on either the RemainingDevicePath or defaults.
//
Private->SerialIoMode.ControlMask = SERIAL_CONTROL_MASK;
Private->SerialIoMode.Timeout = SERIAL_TIMEOUT_DEFAULT;
Private->SerialIoMode.BaudRate = Private->UartDevicePath.BaudRate;
Private->SerialIoMode.ReceiveFifoDepth = SERIAL_FIFO_DEFAULT;
Private->SerialIoMode.DataBits = Private->UartDevicePath.DataBits;
Private->SerialIoMode.Parity = Private->UartDevicePath.Parity;
Private->SerialIoMode.StopBits = Private->UartDevicePath.StopBits;
//
// Issue a reset to initialize the COM port
//
Status = Private->SerialIo.Reset (&Private->SerialIo);
if (EFI_ERROR (Status)) {
goto Error;
}
//
// Create new child handle
//
Status = gBS->InstallMultipleProtocolInterfaces (
&Private->Handle,
&gEfiSerialIoProtocolGuid,
&Private->SerialIo,
&gEfiDevicePathProtocolGuid,
Private->DevicePath,
NULL
);
if (EFI_ERROR (Status)) {
goto Error;
}
//
// Open For Child Device
//
Status = gBS->OpenProtocol (
Handle,
&gEfiWinNtIoProtocolGuid,
(VOID **) &WinNtIo,
This->DriverBindingHandle,
Private->Handle,
EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER
);
if (EFI_ERROR (Status)) {
goto Error;
}
return EFI_SUCCESS;
Error:
//
// Use the Stop() function to free all resources allocated in Start()
//
if (Private != NULL) {
if (Private->Handle != NULL) {
This->Stop (This, Handle, 1, &Private->Handle);
} else {
if (NtHandle != INVALID_HANDLE_VALUE) {
Private->WinNtThunk->CloseHandle (NtHandle);
}
if (Private->DevicePath != NULL) {
FreePool (Private->DevicePath);
}
FreeUnicodeStringTable (Private->ControllerNameTable);
FreePool (Private);
}
}
This->Stop (This, Handle, 0, NULL);
return Status;
}
EFI_STATUS
EFIAPI
WinNtSerialIoDriverBindingStop (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE Handle,
IN UINTN NumberOfChildren,
IN EFI_HANDLE *ChildHandleBuffer
)
/*++
Routine Description:
TODO: Add function description
Arguments:
This - TODO: add argument description
Handle - TODO: add argument description
NumberOfChildren - TODO: add argument description
ChildHandleBuffer - TODO: add argument description
Returns:
EFI_DEVICE_ERROR - TODO: Add description for return value
EFI_SUCCESS - TODO: Add description for return value
--*/
{
EFI_STATUS Status;
UINTN Index;
BOOLEAN AllChildrenStopped;
EFI_SERIAL_IO_PROTOCOL *SerialIo;
WIN_NT_SERIAL_IO_PRIVATE_DATA *Private;
EFI_WIN_NT_IO_PROTOCOL *WinNtIo;
//
// Complete all outstanding transactions to Controller.
// Don't allow any new transaction to Controller to be started.
//
if (NumberOfChildren == 0) {
//
// Close the bus driver
//
Status = gBS->CloseProtocol (
Handle,
&gEfiWinNtIoProtocolGuid,
This->DriverBindingHandle,
Handle
);
Status = gBS->CloseProtocol (
Handle,
&gEfiDevicePathProtocolGuid,
This->DriverBindingHandle,
Handle
);
return Status;
}
AllChildrenStopped = TRUE;
for (Index = 0; Index < NumberOfChildren; Index++) {
Status = gBS->OpenProtocol (
ChildHandleBuffer[Index],
&gEfiSerialIoProtocolGuid,
(VOID **) &SerialIo,
This->DriverBindingHandle,
Handle,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (!EFI_ERROR (Status)) {
Private = WIN_NT_SERIAL_IO_PRIVATE_DATA_FROM_THIS (SerialIo);
ASSERT (Private->Handle == ChildHandleBuffer[Index]);
Status = gBS->CloseProtocol (
Handle,
&gEfiWinNtIoProtocolGuid,
This->DriverBindingHandle,
ChildHandleBuffer[Index]
);
Status = gBS->UninstallMultipleProtocolInterfaces (
ChildHandleBuffer[Index],
&gEfiSerialIoProtocolGuid,
&Private->SerialIo,
&gEfiDevicePathProtocolGuid,
Private->DevicePath,
NULL
);
if (EFI_ERROR (Status)) {
gBS->OpenProtocol (
Handle,
&gEfiWinNtIoProtocolGuid,
(VOID **) &WinNtIo,
This->DriverBindingHandle,
ChildHandleBuffer[Index],
EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER
);
} else {
Private->WinNtThunk->CloseHandle (Private->NtHandle);
FreePool (Private->DevicePath);
FreeUnicodeStringTable (Private->ControllerNameTable);
FreePool (Private);
}
}
if (EFI_ERROR (Status)) {
AllChildrenStopped = FALSE;
}
}
if (!AllChildrenStopped) {
return EFI_DEVICE_ERROR;
}
return EFI_SUCCESS;
}
//
// Serial IO Protocol member functions
//
EFI_STATUS
EFIAPI
WinNtSerialIoReset (
IN EFI_SERIAL_IO_PROTOCOL *This
)
/*++
Routine Description:
TODO: Add function description
Arguments:
This - TODO: add argument description
Returns:
TODO: add return values
--*/
{
WIN_NT_SERIAL_IO_PRIVATE_DATA *Private;
EFI_TPL Tpl;
Tpl = gBS->RaiseTPL (TPL_NOTIFY);
Private = WIN_NT_SERIAL_IO_PRIVATE_DATA_FROM_THIS (This);
Private->WinNtThunk->PurgeComm (
Private->NtHandle,
PURGE_TXCLEAR | PURGE_RXCLEAR
);
gBS->RestoreTPL (Tpl);
return This->SetAttributes (
This,
This->Mode->BaudRate,
This->Mode->ReceiveFifoDepth,
This->Mode->Timeout,
(EFI_PARITY_TYPE)This->Mode->Parity,
(UINT8) This->Mode->DataBits,
(EFI_STOP_BITS_TYPE)This->Mode->StopBits
);
}
EFI_STATUS
EFIAPI
WinNtSerialIoSetAttributes (
IN EFI_SERIAL_IO_PROTOCOL *This,
IN UINT64 BaudRate,
IN UINT32 ReceiveFifoDepth,
IN UINT32 Timeout,
IN EFI_PARITY_TYPE Parity,
IN UINT8 DataBits,
IN EFI_STOP_BITS_TYPE StopBits
)
/*++
Routine Description:
This function is used to set the attributes.
Arguments:
This - A pointer to the EFI_SERIAL_IO_PROTOCOL structrue.
BaudRate - The Baud rate of the serial device.
ReceiveFifoDepth - The request depth of fifo on receive side.
Timeout - the request timeout for a single charact.
Parity - The type of parity used in serial device.
DataBits - Number of deata bits used in serial device.
StopBits - Number of stop bits used in serial device.
Returns:
Status code
None
--*/
// TODO: EFI_SUCCESS - add return value to function comment
// TODO: EFI_DEVICE_ERROR - add return value to function comment
// TODO: EFI_DEVICE_ERROR - add return value to function comment
// TODO: EFI_DEVICE_ERROR - add return value to function comment
// TODO: EFI_SUCCESS - add return value to function comment
// TODO: EFI_DEVICE_ERROR - add return value to function comment
// TODO: EFI_SUCCESS - add return value to function comment
{
EFI_STATUS Status;
UINTN Index;
WIN_NT_SERIAL_IO_PRIVATE_DATA *Private;
COMMTIMEOUTS PortTimeOuts;
DWORD ConvertedTime;
BOOL Result;
UART_DEVICE_PATH *Uart;
EFI_TPL Tpl;
Private = WIN_NT_SERIAL_IO_PRIVATE_DATA_FROM_THIS (This);
//
// Some of our arguments have defaults if a null value is passed in, and
// we must set the default values if a null argument is passed in.
//
if (BaudRate == 0) {
BaudRate = PcdGet64 (PcdUartDefaultBaudRate);
}
if (ReceiveFifoDepth == 0) {
ReceiveFifoDepth = SERIAL_FIFO_DEFAULT;
}
if (Timeout == 0) {
Timeout = SERIAL_TIMEOUT_DEFAULT;
}
if (Parity == DefaultParity) {
Parity = (EFI_PARITY_TYPE) (PcdGet8 (PcdUartDefaultParity));
}
if (DataBits == 0) {
DataBits = PcdGet8 (PcdUartDefaultDataBits);
}
if (StopBits == DefaultStopBits) {
StopBits = (EFI_STOP_BITS_TYPE) PcdGet8 (PcdUartDefaultStopBits);
}
//
// Make sure all parameters are valid
//
if ((BaudRate > SERIAL_PORT_MAX_BAUD_RATE) || (BaudRate < SERIAL_PORT_MIN_BAUD_RATE)) {
return EFI_INVALID_PARAMETER;
}
//
//The lower baud rate supported by the serial device will be selected without exceeding the unsupported BaudRate parameter
//
for (Index = 1; Index < (sizeof (mBaudRateCurrentSupport) / sizeof (mBaudRateCurrentSupport[0])); Index++) {
if (BaudRate < mBaudRateCurrentSupport[Index]) {
BaudRate = mBaudRateCurrentSupport[Index-1];
break;
}
}
if ((ReceiveFifoDepth < 1) || (ReceiveFifoDepth > SERIAL_PORT_MAX_RECEIVE_FIFO_DEPTH)) {
return EFI_INVALID_PARAMETER;
}
if ((Timeout < SERIAL_PORT_MIN_TIMEOUT) || (Timeout > SERIAL_PORT_MAX_TIMEOUT)) {
return EFI_INVALID_PARAMETER;
}
if ((Parity < NoParity) || (Parity > SpaceParity)) {
return EFI_INVALID_PARAMETER;
}
if ((StopBits < OneStopBit) || (StopBits > TwoStopBits)) {
return EFI_INVALID_PARAMETER;
}
//
// Now we only support DataBits=7,8.
//
if ((DataBits < 7) || (DataBits > 8)) {
return EFI_INVALID_PARAMETER;
}
//
// Now we only support DataBits=7,8.
// for DataBits = 6,7,8, StopBits can not set OneFiveStopBits.
//
if (StopBits == OneFiveStopBits) {
return EFI_INVALID_PARAMETER;
}
//
// See if the new attributes already match the current attributes
//
if (Private->UartDevicePath.BaudRate == BaudRate &&
Private->UartDevicePath.DataBits == DataBits &&
Private->UartDevicePath.Parity == Parity &&
Private->UartDevicePath.StopBits == StopBits &&
Private->SerialIoMode.ReceiveFifoDepth == ReceiveFifoDepth &&
Private->SerialIoMode.Timeout == Timeout ) {
return EFI_SUCCESS;
}
Tpl = gBS->RaiseTPL (TPL_NOTIFY);
//
// Get current values from NT
//
ZeroMem (&Private->NtDCB, sizeof (DCB));
Private->NtDCB.DCBlength = sizeof (DCB);
if (!Private->WinNtThunk->GetCommState (Private->NtHandle, &Private->NtDCB)) {
Private->NtError = Private->WinNtThunk->GetLastError ();
DEBUG ((EFI_D_ERROR, "SerialSetAttributes: GetCommState %d\n", Private->NtError));
gBS->RestoreTPL (Tpl);
return EFI_DEVICE_ERROR;
}
//
// Map EFI com setting to NT
//
Private->NtDCB.BaudRate = ConvertBaud2Nt (BaudRate);
Private->NtDCB.ByteSize = ConvertData2Nt (DataBits);
Private->NtDCB.Parity = ConvertParity2Nt (Parity);
Private->NtDCB.StopBits = ConvertStop2Nt (StopBits);
Private->NtDCB.fBinary = TRUE;
Private->NtDCB.fParity = Private->NtDCB.Parity == NOPARITY ? FALSE : TRUE;
Private->NtDCB.fOutxCtsFlow = FALSE;
Private->NtDCB.fOutxDsrFlow = FALSE;
Private->NtDCB.fDtrControl = DTR_CONTROL_ENABLE;
Private->NtDCB.fDsrSensitivity = FALSE;
Private->NtDCB.fOutX = FALSE;
Private->NtDCB.fInX = FALSE;
Private->NtDCB.fRtsControl = RTS_CONTROL_ENABLE;
Private->NtDCB.fNull = FALSE;
//
// Set new values
//
Result = Private->WinNtThunk->SetCommState (Private->NtHandle, &Private->NtDCB);
if (!Result) {
Private->NtError = Private->WinNtThunk->GetLastError ();
DEBUG ((EFI_D_ERROR, "SerialSetAttributes: SetCommState %d\n", Private->NtError));
gBS->RestoreTPL (Tpl);
return EFI_DEVICE_ERROR;
}
//
// Set com port read/write timeout values
//
ConvertedTime = ConvertTime2Nt (Timeout);
PortTimeOuts.ReadIntervalTimeout = MAXDWORD;
PortTimeOuts.ReadTotalTimeoutMultiplier = 0;
PortTimeOuts.ReadTotalTimeoutConstant = ConvertedTime;
PortTimeOuts.WriteTotalTimeoutMultiplier = ConvertedTime == 0 ? 1 : ConvertedTime;
PortTimeOuts.WriteTotalTimeoutConstant = 0;
if (!Private->WinNtThunk->SetCommTimeouts (Private->NtHandle, &PortTimeOuts)) {
Private->NtError = Private->WinNtThunk->GetLastError ();
DEBUG ((EFI_D_ERROR, "SerialSetAttributes: SetCommTimeouts %d\n", Private->NtError));
gBS->RestoreTPL (Tpl);
return EFI_DEVICE_ERROR;
}
//
// Update mode
//
Private->SerialIoMode.BaudRate = BaudRate;
Private->SerialIoMode.ReceiveFifoDepth = ReceiveFifoDepth;
Private->SerialIoMode.Timeout = Timeout;
Private->SerialIoMode.Parity = Parity;
Private->SerialIoMode.DataBits = DataBits;
Private->SerialIoMode.StopBits = StopBits;
//
// See if Device Path Node has actually changed
//
if (Private->UartDevicePath.BaudRate == BaudRate &&
Private->UartDevicePath.DataBits == DataBits &&
Private->UartDevicePath.Parity == Parity &&
Private->UartDevicePath.StopBits == StopBits ) {
gBS->RestoreTPL(Tpl);
return EFI_SUCCESS;
}
//
// Update the device path
//
Private->UartDevicePath.BaudRate = BaudRate;
Private->UartDevicePath.DataBits = DataBits;
Private->UartDevicePath.Parity = (UINT8) Parity;
Private->UartDevicePath.StopBits = (UINT8) StopBits;
Status = EFI_SUCCESS;
if (Private->Handle != NULL) {
Uart = (UART_DEVICE_PATH *) (
(UINTN) Private->DevicePath
+ GetDevicePathSize (Private->ParentDevicePath)
- END_DEVICE_PATH_LENGTH
);
CopyMem (Uart, &Private->UartDevicePath, sizeof (UART_DEVICE_PATH));
Status = gBS->ReinstallProtocolInterface (
Private->Handle,
&gEfiDevicePathProtocolGuid,
Private->DevicePath,
Private->DevicePath
);
}
gBS->RestoreTPL (Tpl);
return Status;
}
EFI_STATUS
EFIAPI
WinNtSerialIoSetControl (
IN EFI_SERIAL_IO_PROTOCOL *This,
IN UINT32 Control
)
/*++
Routine Description:
TODO: Add function description
Arguments:
This - TODO: add argument description
Control - TODO: add argument description
Returns:
EFI_DEVICE_ERROR - TODO: Add description for return value
EFI_DEVICE_ERROR - TODO: Add description for return value
EFI_SUCCESS - TODO: Add description for return value
--*/
{
WIN_NT_SERIAL_IO_PRIVATE_DATA *Private;
BOOL Result;
DCB Dcb;
EFI_TPL Tpl;
UART_FLOW_CONTROL_DEVICE_PATH *FlowControl;
EFI_STATUS Status;
//
// first determine the parameter is invalid
//
if (Control & (~(EFI_SERIAL_REQUEST_TO_SEND | EFI_SERIAL_DATA_TERMINAL_READY |
EFI_SERIAL_HARDWARE_LOOPBACK_ENABLE | EFI_SERIAL_SOFTWARE_LOOPBACK_ENABLE |
EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE))) {
return EFI_UNSUPPORTED;
}
Tpl = gBS->RaiseTPL (TPL_NOTIFY);
Private = WIN_NT_SERIAL_IO_PRIVATE_DATA_FROM_THIS (This);
Result = Private->WinNtThunk->GetCommState (Private->NtHandle, &Dcb);
if (!Result) {
Private->NtError = Private->WinNtThunk->GetLastError ();
DEBUG ((EFI_D_ERROR, "SerialSetControl: GetCommState %d\n", Private->NtError));
gBS->RestoreTPL (Tpl);
return EFI_DEVICE_ERROR;
}
Dcb.fRtsControl = RTS_CONTROL_DISABLE;
Dcb.fDtrControl = DTR_CONTROL_DISABLE;
Private->HardwareFlowControl = FALSE;
Private->SoftwareLoopbackEnable = FALSE;
Private->HardwareLoopbackEnable = FALSE;
if (Control & EFI_SERIAL_REQUEST_TO_SEND) {
Dcb.fRtsControl = RTS_CONTROL_ENABLE;
}
if (Control & EFI_SERIAL_DATA_TERMINAL_READY) {
Dcb.fDtrControl = DTR_CONTROL_ENABLE;
}
if (Control & EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE) {
Private->HardwareFlowControl = TRUE;
}
if (Control & EFI_SERIAL_SOFTWARE_LOOPBACK_ENABLE) {
Private->SoftwareLoopbackEnable = TRUE;
}
if (Control & EFI_SERIAL_HARDWARE_LOOPBACK_ENABLE) {
Private->HardwareLoopbackEnable = TRUE;
}
Result = Private->WinNtThunk->SetCommState (
Private->NtHandle,
&Dcb
);
if (!Result) {
Private->NtError = Private->WinNtThunk->GetLastError ();
DEBUG ((EFI_D_ERROR, "SerialSetControl: SetCommState %d\n", Private->NtError));
gBS->RestoreTPL (Tpl);
return EFI_DEVICE_ERROR;
}
Status = EFI_SUCCESS;
if (Private->Handle != NULL) {
FlowControl = (UART_FLOW_CONTROL_DEVICE_PATH *) (
(UINTN) Private->DevicePath
+ GetDevicePathSize (Private->ParentDevicePath)
- END_DEVICE_PATH_LENGTH
+ sizeof (UART_DEVICE_PATH)
);
if (IsUartFlowControlNode (FlowControl) &&
((FlowControl->FlowControlMap == UART_FLOW_CONTROL_HARDWARE) ^ Private->HardwareFlowControl)) {
//
// Flow Control setting is changed, need to reinstall device path protocol
//
FlowControl->FlowControlMap = Private->HardwareFlowControl ? UART_FLOW_CONTROL_HARDWARE : 0;
Status = gBS->ReinstallProtocolInterface (
Private->Handle,
&gEfiDevicePathProtocolGuid,
Private->DevicePath,
Private->DevicePath
);
}
}
gBS->RestoreTPL (Tpl);
return Status;
}
EFI_STATUS
EFIAPI
WinNtSerialIoGetControl (
IN EFI_SERIAL_IO_PROTOCOL *This,
OUT UINT32 *Control
)
/*++
Routine Description:
TODO: Add function description
Arguments:
This - TODO: add argument description
Control - TODO: add argument description
Returns:
EFI_DEVICE_ERROR - TODO: Add description for return value
EFI_DEVICE_ERROR - TODO: Add description for return value
EFI_DEVICE_ERROR - TODO: Add description for return value
EFI_SUCCESS - TODO: Add description for return value
--*/
{
WIN_NT_SERIAL_IO_PRIVATE_DATA *Private;
DWORD ModemStatus;
DWORD Errors;
UINT32 Bits;
DCB Dcb;
EFI_TPL Tpl;
Tpl = gBS->RaiseTPL (TPL_NOTIFY);
Private = WIN_NT_SERIAL_IO_PRIVATE_DATA_FROM_THIS (This);
//
// Get modem status
//
if (!Private->WinNtThunk->GetCommModemStatus (Private->NtHandle, &ModemStatus)) {
Private->NtError = Private->WinNtThunk->GetLastError ();
gBS->RestoreTPL (Tpl);
return EFI_DEVICE_ERROR;
}
Bits = 0;
if (ModemStatus & MS_CTS_ON) {
Bits |= EFI_SERIAL_CLEAR_TO_SEND;
}
if (ModemStatus & MS_DSR_ON) {
Bits |= EFI_SERIAL_DATA_SET_READY;
}
if (ModemStatus & MS_RING_ON) {
Bits |= EFI_SERIAL_RING_INDICATE;
}
if (ModemStatus & MS_RLSD_ON) {
Bits |= EFI_SERIAL_CARRIER_DETECT;
}
//
// Get ctrl status
//
if (!Private->WinNtThunk->GetCommState (Private->NtHandle, &Dcb)) {
Private->NtError = Private->WinNtThunk->GetLastError ();
DEBUG ((EFI_D_ERROR, "SerialGetControl: GetCommState %d\n", Private->NtError));
gBS->RestoreTPL (Tpl);
return EFI_DEVICE_ERROR;
}
if (Dcb.fDtrControl == DTR_CONTROL_ENABLE) {
Bits |= EFI_SERIAL_DATA_TERMINAL_READY;
}
if (Dcb.fRtsControl == RTS_CONTROL_ENABLE) {
Bits |= EFI_SERIAL_REQUEST_TO_SEND;
}
if (Private->HardwareFlowControl) {
Bits |= EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE;
}
if (Private->SoftwareLoopbackEnable) {
Bits |= EFI_SERIAL_SOFTWARE_LOOPBACK_ENABLE;
}
if (Private->HardwareLoopbackEnable) {
Bits |= EFI_SERIAL_HARDWARE_LOOPBACK_ENABLE;
}
//
// Get input buffer status
//
if (!Private->WinNtThunk->ClearCommError (Private->NtHandle, &Errors, &Private->NtComStatus)) {
Private->NtError = Private->WinNtThunk->GetLastError ();
DEBUG ((EFI_D_ERROR, "SerialGetControl: ClearCommError %d\n", Private->NtError));
gBS->RestoreTPL (Tpl);
return EFI_DEVICE_ERROR;
}
if (Private->NtComStatus.cbInQue == 0) {
Bits |= EFI_SERIAL_INPUT_BUFFER_EMPTY;
}
*Control = Bits;
gBS->RestoreTPL (Tpl);
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
WinNtSerialIoWrite (
IN EFI_SERIAL_IO_PROTOCOL *This,
IN OUT UINTN *BufferSize,
IN VOID *Buffer
)
/*++
Routine Description:
TODO: Add function description
Arguments:
This - TODO: add argument description
BufferSize - TODO: add argument description
Buffer - TODO: add argument description
Returns:
EFI_DEVICE_ERROR - TODO: Add description for return value
EFI_SUCCESS - TODO: Add description for return value
--*/
{
WIN_NT_SERIAL_IO_PRIVATE_DATA *Private;
UINT8 *ByteBuffer;
UINTN TotalBytesWritten;
DWORD BytesToGo;
DWORD BytesWritten;
BOOL Result;
UINT32 Index;
UINT32 Control;
EFI_TPL Tpl;
Tpl = gBS->RaiseTPL (TPL_NOTIFY);
Private = WIN_NT_SERIAL_IO_PRIVATE_DATA_FROM_THIS (This);
ByteBuffer = (UINT8 *) Buffer;
TotalBytesWritten = 0;
if (Private->SoftwareLoopbackEnable || Private->HardwareLoopbackEnable) {
for (Index = 0; Index < *BufferSize; Index++) {
if (IsaSerialFifoAdd (&Private->Fifo, ByteBuffer[Index]) == EFI_SUCCESS) {
TotalBytesWritten++;
} else {
break;
}
}
} else {
BytesToGo = (DWORD) (*BufferSize);
do {
if (Private->HardwareFlowControl) {
//
// Send RTS
//
WinNtSerialIoGetControl (&Private->SerialIo, &Control);
Control |= EFI_SERIAL_REQUEST_TO_SEND;
WinNtSerialIoSetControl (&Private->SerialIo, Control);
}
//
// Do the write
//
Result = Private->WinNtThunk->WriteFile (
Private->NtHandle,
&ByteBuffer[TotalBytesWritten],
BytesToGo,
&BytesWritten,
NULL
);
if (Private->HardwareFlowControl) {
//
// Assert RTS
//
WinNtSerialIoGetControl (&Private->SerialIo, &Control);
Control &= ~ (UINT32) EFI_SERIAL_REQUEST_TO_SEND;
WinNtSerialIoSetControl (&Private->SerialIo, Control);
}
TotalBytesWritten += BytesWritten;
BytesToGo -= BytesWritten;
if (!Result) {
Private->NtError = Private->WinNtThunk->GetLastError ();
DEBUG ((EFI_D_ERROR, "SerialWrite: FileWrite %d\n", Private->NtError));
*BufferSize = TotalBytesWritten;
gBS->RestoreTPL (Tpl);
return EFI_DEVICE_ERROR;
}
} while (BytesToGo > 0);
}
*BufferSize = TotalBytesWritten;
gBS->RestoreTPL (Tpl);
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
WinNtSerialIoRead (
IN EFI_SERIAL_IO_PROTOCOL *This,
IN OUT UINTN *BufferSize,
OUT VOID *Buffer
)
/*++
Routine Description:
TODO: Add function description
Arguments:
This - TODO: add argument description
BufferSize - TODO: add argument description
Buffer - TODO: add argument description
Returns:
EFI_DEVICE_ERROR - TODO: Add description for return value
--*/
{
WIN_NT_SERIAL_IO_PRIVATE_DATA *Private;
BOOL Result;
DWORD BytesRead;
EFI_STATUS Status;
UINT32 Index;
UINT8 Data;
UINT32 Control;
EFI_TPL Tpl;
Tpl = gBS->RaiseTPL (TPL_NOTIFY);
Private = WIN_NT_SERIAL_IO_PRIVATE_DATA_FROM_THIS (This);
//
// Do the read
//
if (Private->SoftwareLoopbackEnable || Private->HardwareLoopbackEnable) {
for (Index = 0, BytesRead = 0; Index < *BufferSize; Index++) {
if (IsaSerialFifoRemove (&Private->Fifo, &Data) == EFI_SUCCESS) {
((UINT8 *) Buffer)[Index] = Data;
BytesRead++;
} else {
break;
}
}
} else {
if (Private->HardwareFlowControl) {
WinNtSerialIoGetControl (&Private->SerialIo, &Control);
Control |= EFI_SERIAL_DATA_TERMINAL_READY;
WinNtSerialIoSetControl (&Private->SerialIo, Control);
}
Result = Private->WinNtThunk->ReadFile (
Private->NtHandle,
Buffer,
(DWORD) *BufferSize,
&BytesRead,
NULL
);
if (Private->HardwareFlowControl) {
WinNtSerialIoGetControl (&Private->SerialIo, &Control);
Control &= ~ (UINT32) EFI_SERIAL_DATA_TERMINAL_READY;
WinNtSerialIoSetControl (&Private->SerialIo, Control);
}
if (!Result) {
Private->NtError = Private->WinNtThunk->GetLastError ();
gBS->RestoreTPL (Tpl);
return EFI_DEVICE_ERROR;
}
}
if (BytesRead != *BufferSize) {
Status = EFI_TIMEOUT;
} else {
Status = EFI_SUCCESS;
}
*BufferSize = (UINTN) BytesRead;
gBS->RestoreTPL (Tpl);
return Status;
}
BOOLEAN
IsaSerialFifoFull (
IN SERIAL_DEV_FIFO *Fifo
)
/*++
Routine Description:
Detect whether specific FIFO is full or not
Arguments:
Fifo SERIAL_DEV_FIFO *: A pointer to the Data Structure SERIAL_DEV_FIFO
Returns:
TRUE: the FIFO is full
FALSE: the FIFO is not full
--*/
{
if (Fifo->Surplus == 0) {
return TRUE;
}
return FALSE;
}
BOOLEAN
IsaSerialFifoEmpty (
IN SERIAL_DEV_FIFO *Fifo
)
/*++
Routine Description:
Detect whether specific FIFO is empty or not
Arguments:
Fifo SERIAL_DEV_FIFO *: A pointer to the Data Structure SERIAL_DEV_FIFO
Returns:
TRUE: the FIFO is empty
FALSE: the FIFO is not empty
--*/
{
if (Fifo->Surplus == SERIAL_MAX_BUFFER_SIZE) {
return TRUE;
}
return FALSE;
}
EFI_STATUS
IsaSerialFifoAdd (
IN SERIAL_DEV_FIFO *Fifo,
IN UINT8 Data
)
/*++
Routine Description:
Add data to specific FIFO
Arguments:
Fifo SERIAL_DEV_FIFO *: A pointer to the Data Structure SERIAL_DEV_FIFO
Data UINT8: the data added to FIFO
Returns:
EFI_SUCCESS: Add data to specific FIFO successfully
EFI_OUT_RESOURCE: Failed to add data because FIFO is already full
--*/
// TODO: EFI_OUT_OF_RESOURCES - add return value to function comment
{
//
// if FIFO full can not add data
//
if (IsaSerialFifoFull (Fifo)) {
return EFI_OUT_OF_RESOURCES;
}
//
// FIFO is not full can add data
//
Fifo->Data[Fifo->Last] = Data;
Fifo->Surplus--;
Fifo->Last++;
if (Fifo->Last >= SERIAL_MAX_BUFFER_SIZE) {
Fifo->Last = 0;
}
return EFI_SUCCESS;
}
EFI_STATUS
IsaSerialFifoRemove (
IN SERIAL_DEV_FIFO *Fifo,
OUT UINT8 *Data
)
/*++
Routine Description:
Remove data from specific FIFO
Arguments:
Fifo SERIAL_DEV_FIFO *: A pointer to the Data Structure SERIAL_DEV_FIFO
Data UINT8*: the data removed from FIFO
Returns:
EFI_SUCCESS: Remove data from specific FIFO successfully
EFI_OUT_RESOURCE: Failed to remove data because FIFO is empty
--*/
// TODO: EFI_OUT_OF_RESOURCES - add return value to function comment
{
//
// if FIFO is empty, no data can remove
//
if (IsaSerialFifoEmpty (Fifo)) {
return EFI_OUT_OF_RESOURCES;
}
//
// FIFO is not empty, can remove data
//
*Data = Fifo->Data[Fifo->First];
Fifo->Surplus++;
Fifo->First++;
if (Fifo->First >= SERIAL_MAX_BUFFER_SIZE) {
Fifo->First = 0;
}
return EFI_SUCCESS;
}