blob: 9c66418959709a287f71e1b8ed2af31b930a959c [file] [log] [blame]
/**@file
Xen Platform PEI support
Copyright (c) 2006 - 2016, Intel Corporation. All rights reserved.<BR>
Copyright (c) 2011, Andrei Warkentin <andreiw@motorola.com>
Copyright (c) 2019, Citrix Systems, Inc.
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
//
// The package level header files this module uses
//
#include <PiPei.h>
//
// The Library classes this module consumes
//
#include <Library/BaseMemoryLib.h>
#include <Library/CpuLib.h>
#include <Library/DebugLib.h>
#include <Library/HobLib.h>
#include <Library/LocalApicLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/PcdLib.h>
#include <Library/SafeIntLib.h>
#include <Guid/XenInfo.h>
#include <IndustryStandard/E820.h>
#include <Library/ResourcePublicationLib.h>
#include <Library/MtrrLib.h>
#include <IndustryStandard/PageTable.h>
#include <IndustryStandard/Xen/arch-x86/hvm/start_info.h>
#include <Library/XenHypercallLib.h>
#include <IndustryStandard/Xen/memory.h>
#include "Platform.h"
#include "Xen.h"
STATIC UINT32 mXenLeaf = 0;
EFI_XEN_INFO mXenInfo;
//
// Location of the firmware info struct setup by hvmloader.
// Only the E820 table is used by OVMF.
//
EFI_XEN_OVMF_INFO *mXenHvmloaderInfo;
STATIC EFI_E820_ENTRY64 mE820Entries[128];
STATIC UINT32 mE820EntriesCount;
/**
Returns E820 map provided by Xen
@param Entries Pointer to E820 map
@param Count Number of entries
@return EFI_STATUS
**/
EFI_STATUS
XenGetE820Map (
EFI_E820_ENTRY64 **Entries,
UINT32 *Count
)
{
INTN ReturnCode;
xen_memory_map_t Parameters;
UINTN LoopIndex;
UINTN Index;
EFI_E820_ENTRY64 TmpEntry;
//
// Get E820 produced by hvmloader
//
if (mXenHvmloaderInfo != NULL) {
ASSERT (mXenHvmloaderInfo->E820 < MAX_ADDRESS);
*Entries = (EFI_E820_ENTRY64 *)(UINTN) mXenHvmloaderInfo->E820;
*Count = mXenHvmloaderInfo->E820EntriesCount;
return EFI_SUCCESS;
}
//
// Otherwise, get the E820 table from the Xen hypervisor
//
if (mE820EntriesCount > 0) {
*Entries = mE820Entries;
*Count = mE820EntriesCount;
return EFI_SUCCESS;
}
Parameters.nr_entries = 128;
set_xen_guest_handle (Parameters.buffer, mE820Entries);
// Returns a errno
ReturnCode = XenHypercallMemoryOp (XENMEM_memory_map, &Parameters);
ASSERT (ReturnCode == 0);
mE820EntriesCount = Parameters.nr_entries;
//
// Sort E820 entries
//
for (LoopIndex = 1; LoopIndex < mE820EntriesCount; LoopIndex++) {
for (Index = LoopIndex; Index < mE820EntriesCount; Index++) {
if (mE820Entries[Index - 1].BaseAddr > mE820Entries[Index].BaseAddr) {
TmpEntry = mE820Entries[Index];
mE820Entries[Index] = mE820Entries[Index - 1];
mE820Entries[Index - 1] = TmpEntry;
}
}
}
*Count = mE820EntriesCount;
*Entries = mE820Entries;
return EFI_SUCCESS;
}
/**
Connects to the Hypervisor.
@return EFI_STATUS
**/
EFI_STATUS
XenConnect (
)
{
UINT32 Index;
UINT32 TransferReg;
UINT32 TransferPages;
UINT32 XenVersion;
EFI_XEN_OVMF_INFO *Info;
CHAR8 Sig[sizeof (Info->Signature) + 1];
UINT32 *PVHResetVectorData;
RETURN_STATUS Status;
ASSERT (mXenLeaf != 0);
//
// Prepare HyperPages to be able to make hypercalls
//
AsmCpuid (mXenLeaf + 2, &TransferPages, &TransferReg, NULL, NULL);
mXenInfo.HyperPages = AllocatePages (TransferPages);
if (!mXenInfo.HyperPages) {
return EFI_OUT_OF_RESOURCES;
}
for (Index = 0; Index < TransferPages; Index++) {
AsmWriteMsr64 (TransferReg,
(UINTN) mXenInfo.HyperPages +
(Index << EFI_PAGE_SHIFT) + Index);
}
//
// Find out the Xen version
//
AsmCpuid (mXenLeaf + 1, &XenVersion, NULL, NULL, NULL);
DEBUG ((DEBUG_ERROR, "Detected Xen version %d.%d\n",
XenVersion >> 16, XenVersion & 0xFFFF));
mXenInfo.VersionMajor = (UINT16)(XenVersion >> 16);
mXenInfo.VersionMinor = (UINT16)(XenVersion & 0xFFFF);
//
// Check if there are information left by hvmloader
//
Info = (EFI_XEN_OVMF_INFO *)(UINTN) OVMF_INFO_PHYSICAL_ADDRESS;
//
// Copy the signature, and make it null-terminated.
//
AsciiStrnCpyS (Sig, sizeof (Sig), (CHAR8 *) &Info->Signature,
sizeof (Info->Signature));
if (AsciiStrCmp (Sig, "XenHVMOVMF") == 0) {
mXenHvmloaderInfo = Info;
} else {
mXenHvmloaderInfo = NULL;
}
mXenInfo.RsdpPvh = NULL;
//
// Locate and use information from the start of day structure if we have
// booted via the PVH entry point.
//
PVHResetVectorData = (VOID *)(UINTN) PcdGet32 (PcdXenPvhStartOfDayStructPtr);
//
// That magic value is written in XenResetVector/Ia32/XenPVHMain.asm
//
if (PVHResetVectorData[1] == SIGNATURE_32 ('X', 'P', 'V', 'H')) {
struct hvm_start_info *HVMStartInfo;
HVMStartInfo = (VOID *)(UINTN) PVHResetVectorData[0];
if (HVMStartInfo->magic == XEN_HVM_START_MAGIC_VALUE) {
ASSERT (HVMStartInfo->rsdp_paddr != 0);
if (HVMStartInfo->rsdp_paddr != 0) {
mXenInfo.RsdpPvh = (VOID *)(UINTN)HVMStartInfo->rsdp_paddr;
}
}
}
BuildGuidDataHob (
&gEfiXenInfoGuid,
&mXenInfo,
sizeof(mXenInfo)
);
//
// Initialize the XenHypercall library, now that the XenInfo HOB is
// available
//
Status = XenHypercallLibInit ();
ASSERT_RETURN_ERROR (Status);
return EFI_SUCCESS;
}
/**
Figures out if we are running inside Xen HVM.
@retval TRUE Xen was detected
@retval FALSE Xen was not detected
**/
BOOLEAN
XenDetect (
VOID
)
{
UINT8 Signature[13];
if (mXenLeaf != 0) {
return TRUE;
}
Signature[12] = '\0';
for (mXenLeaf = 0x40000000; mXenLeaf < 0x40010000; mXenLeaf += 0x100) {
AsmCpuid (mXenLeaf,
NULL,
(UINT32 *) &Signature[0],
(UINT32 *) &Signature[4],
(UINT32 *) &Signature[8]);
if (!AsciiStrCmp ((CHAR8 *) Signature, "XenVMMXenVMM")) {
return TRUE;
}
}
mXenLeaf = 0;
return FALSE;
}
BOOLEAN
XenHvmloaderDetected (
VOID
)
{
return (mXenHvmloaderInfo != NULL);
}
BOOLEAN
XenPvhDetected (
VOID
)
{
//
// This function should only be used after XenConnect
//
ASSERT (mXenInfo.HyperPages != NULL);
return mXenHvmloaderInfo == NULL;
}
VOID
XenPublishRamRegions (
VOID
)
{
EFI_E820_ENTRY64 *E820Map;
UINT32 E820EntriesCount;
EFI_STATUS Status;
EFI_E820_ENTRY64 *Entry;
UINTN Index;
UINT64 LapicBase;
UINT64 LapicEnd;
DEBUG ((DEBUG_INFO, "Using memory map provided by Xen\n"));
//
// Parse RAM in E820 map
//
E820EntriesCount = 0;
Status = XenGetE820Map (&E820Map, &E820EntriesCount);
ASSERT_EFI_ERROR (Status);
AddMemoryBaseSizeHob (0, 0xA0000);
//
// Video memory + Legacy BIOS region, to allow Linux to boot.
//
AddReservedMemoryBaseSizeHob (0xA0000, BASE_1MB - 0xA0000, TRUE);
LapicBase = PcdGet32 (PcdCpuLocalApicBaseAddress);
LapicEnd = LapicBase + SIZE_1MB;
AddIoMemoryRangeHob (LapicBase, LapicEnd);
for (Index = 0; Index < E820EntriesCount; Index++) {
UINT64 Base;
UINT64 End;
UINT64 ReservedBase;
UINT64 ReservedEnd;
Entry = &E820Map[Index];
//
// Round up the start address, and round down the end address.
//
Base = ALIGN_VALUE (Entry->BaseAddr, (UINT64)EFI_PAGE_SIZE);
End = (Entry->BaseAddr + Entry->Length) & ~(UINT64)EFI_PAGE_MASK;
//
// Ignore the first 1MB, this is handled before the loop.
//
if (Base < BASE_1MB) {
Base = BASE_1MB;
}
if (Base >= End) {
continue;
}
switch (Entry->Type) {
case EfiAcpiAddressRangeMemory:
AddMemoryRangeHob (Base, End);
break;
case EfiAcpiAddressRangeACPI:
AddReservedMemoryRangeHob (Base, End, FALSE);
break;
case EfiAcpiAddressRangeReserved:
//
// hvmloader marks a range that overlaps with the local APIC memory
// mapped region as reserved, but CpuDxe wants it as mapped IO. We
// have already added it as mapped IO, so skip it here.
//
//
// add LAPIC predecessor range, if any
//
ReservedBase = Base;
ReservedEnd = MIN (End, LapicBase);
if (ReservedBase < ReservedEnd) {
AddReservedMemoryRangeHob (ReservedBase, ReservedEnd, FALSE);
}
//
// add LAPIC successor range, if any
//
ReservedBase = MAX (Base, LapicEnd);
ReservedEnd = End;
if (ReservedBase < ReservedEnd) {
AddReservedMemoryRangeHob (ReservedBase, ReservedEnd, FALSE);
}
break;
default:
break;
}
}
}
EFI_STATUS
PhysicalAddressIdentityMapping (
IN EFI_PHYSICAL_ADDRESS AddressToMap
)
{
INTN Index;
PAGE_MAP_AND_DIRECTORY_POINTER *L4, *L3;
PAGE_TABLE_ENTRY *PageTable;
DEBUG ((DEBUG_INFO, "Mapping 1:1 of address 0x%lx\n", (UINT64)AddressToMap));
// L4 / Top level Page Directory Pointers
L4 = (VOID*)(UINTN)PcdGet32 (PcdOvmfSecPageTablesBase);
Index = PML4_OFFSET (AddressToMap);
if (!L4[Index].Bits.Present) {
L3 = AllocatePages (1);
if (L3 == NULL) {
return EFI_OUT_OF_RESOURCES;
}
ZeroMem (L3, EFI_PAGE_SIZE);
L4[Index].Bits.ReadWrite = 1;
L4[Index].Bits.Accessed = 1;
L4[Index].Bits.PageTableBaseAddress = (EFI_PHYSICAL_ADDRESS)L3 >> 12;
L4[Index].Bits.Present = 1;
}
// L3 / Next level Page Directory Pointers
L3 = (VOID*)(EFI_PHYSICAL_ADDRESS)(L4[Index].Bits.PageTableBaseAddress << 12);
Index = PDP_OFFSET (AddressToMap);
if (!L3[Index].Bits.Present) {
PageTable = AllocatePages (1);
if (PageTable == NULL) {
return EFI_OUT_OF_RESOURCES;
}
ZeroMem (PageTable, EFI_PAGE_SIZE);
L3[Index].Bits.ReadWrite = 1;
L3[Index].Bits.Accessed = 1;
L3[Index].Bits.PageTableBaseAddress = (EFI_PHYSICAL_ADDRESS)PageTable >> 12;
L3[Index].Bits.Present = 1;
}
// L2 / Page Table Entries
PageTable = (VOID*)(EFI_PHYSICAL_ADDRESS)(L3[Index].Bits.PageTableBaseAddress << 12);
Index = PDE_OFFSET (AddressToMap);
if (!PageTable[Index].Bits.Present) {
PageTable[Index].Bits.ReadWrite = 1;
PageTable[Index].Bits.Accessed = 1;
PageTable[Index].Bits.Dirty = 1;
PageTable[Index].Bits.MustBe1 = 1;
PageTable[Index].Bits.PageTableBaseAddress = AddressToMap >> 21;
PageTable[Index].Bits.Present = 1;
}
CpuFlushTlb ();
return EFI_SUCCESS;
}
STATIC
EFI_STATUS
MapSharedInfoPage (
IN VOID *PagePtr
)
{
xen_add_to_physmap_t Parameters;
INTN ReturnCode;
Parameters.domid = DOMID_SELF;
Parameters.space = XENMAPSPACE_shared_info;
Parameters.idx = 0;
Parameters.gpfn = (UINTN)PagePtr >> EFI_PAGE_SHIFT;
ReturnCode = XenHypercallMemoryOp (XENMEM_add_to_physmap, &Parameters);
if (ReturnCode != 0) {
return EFI_NO_MAPPING;
}
return EFI_SUCCESS;
}
STATIC
VOID
UnmapXenPage (
IN VOID *PagePtr
)
{
xen_remove_from_physmap_t Parameters;
INTN ReturnCode;
Parameters.domid = DOMID_SELF;
Parameters.gpfn = (UINTN)PagePtr >> EFI_PAGE_SHIFT;
ReturnCode = XenHypercallMemoryOp (XENMEM_remove_from_physmap, &Parameters);
ASSERT (ReturnCode == 0);
}
STATIC
UINT64
GetCpuFreq (
IN XEN_VCPU_TIME_INFO *VcpuTime
)
{
UINT32 Version;
UINT32 TscToSystemMultiplier;
INT8 TscShift;
UINT64 CpuFreq;
do {
Version = VcpuTime->Version;
MemoryFence ();
TscToSystemMultiplier = VcpuTime->TscToSystemMultiplier;
TscShift = VcpuTime->TscShift;
MemoryFence ();
} while (((Version & 1) != 0) && (Version != VcpuTime->Version));
CpuFreq = DivU64x32 (LShiftU64 (1000000000ULL, 32), TscToSystemMultiplier);
if (TscShift >= 0) {
CpuFreq = RShiftU64 (CpuFreq, TscShift);
} else {
CpuFreq = LShiftU64 (CpuFreq, -TscShift);
}
return CpuFreq;
}
STATIC
VOID
XenDelay (
IN XEN_VCPU_TIME_INFO *VcpuTimeInfo,
IN UINT64 DelayNs
)
{
UINT64 Tick;
UINT64 CpuFreq;
UINT64 Delay;
UINT64 DelayTick;
UINT64 NewTick;
RETURN_STATUS Status;
Tick = AsmReadTsc ();
CpuFreq = GetCpuFreq (VcpuTimeInfo);
Status = SafeUint64Mult (DelayNs, CpuFreq, &Delay);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR,
"XenDelay (%lu ns): delay too big in relation to CPU freq %lu Hz\n",
DelayNs, CpuFreq));
ASSERT_EFI_ERROR (Status);
CpuDeadLoop ();
}
DelayTick = DivU64x32 (Delay, 1000000000);
NewTick = Tick + DelayTick;
//
// Check for overflow
//
if (NewTick < Tick) {
//
// Overflow, wait for TSC to also overflow
//
while (AsmReadTsc () >= Tick) {
CpuPause ();
}
}
while (AsmReadTsc () <= NewTick) {
CpuPause ();
}
}
/**
Calculate the frequency of the Local Apic Timer
**/
VOID
CalibrateLapicTimer (
VOID
)
{
XEN_SHARED_INFO *SharedInfo;
XEN_VCPU_TIME_INFO *VcpuTimeInfo;
UINT32 TimerTick, TimerTick2, DiffTimer;
UINT64 TscTick, TscTick2;
UINT64 Freq;
UINT64 Dividend;
EFI_STATUS Status;
SharedInfo = (VOID*)((UINTN)PcdGet32 (PcdCpuLocalApicBaseAddress) + SIZE_1MB);
Status = PhysicalAddressIdentityMapping ((EFI_PHYSICAL_ADDRESS)SharedInfo);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR,
"Failed to add page table entry for Xen shared info page: %r\n",
Status));
ASSERT_EFI_ERROR (Status);
return;
}
Status = MapSharedInfoPage (SharedInfo);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Failed to map Xen's shared info page: %r\n",
Status));
ASSERT_EFI_ERROR (Status);
return;
}
VcpuTimeInfo = &SharedInfo->VcpuInfo[0].Time;
InitializeApicTimer (1, MAX_UINT32, TRUE, 0);
DisableApicTimerInterrupt ();
TimerTick = GetApicTimerCurrentCount ();
TscTick = AsmReadTsc ();
XenDelay (VcpuTimeInfo, 1000000ULL);
TimerTick2 = GetApicTimerCurrentCount ();
TscTick2 = AsmReadTsc ();
DiffTimer = TimerTick - TimerTick2;
Status = SafeUint64Mult (GetCpuFreq (VcpuTimeInfo), DiffTimer, &Dividend);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "overflow while calculating APIC frequency\n"));
DEBUG ((DEBUG_ERROR, "CPU freq: %lu Hz; APIC timer tick count for 1 ms: %u\n",
GetCpuFreq (VcpuTimeInfo), DiffTimer));
ASSERT_EFI_ERROR (Status);
CpuDeadLoop ();
}
Freq = DivU64x64Remainder (Dividend, TscTick2 - TscTick, NULL);
DEBUG ((DEBUG_INFO, "APIC Freq % 8lu Hz\n", Freq));
ASSERT (Freq <= MAX_UINT32);
Status = PcdSet32S (PcdFSBClock, (UINT32)Freq);
ASSERT_EFI_ERROR (Status);
UnmapXenPage (SharedInfo);
}