blob: a392a4e31aa70e851d38911b6f29a91ea39dab24 [file] [log] [blame]
/** @file
This file provides some helper functions which are specific for EMMC device.
Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
Copyright (c) 2015 - 2016, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "SdMmcPciHcDxe.h"
/**
Send command GO_IDLE_STATE (CMD0 with argument of 0x00000000) to the device to
make it go to Idle State.
Refer to EMMC Electrical Standard Spec 5.1 Section 6.4 for details.
@param[in] PassThru A pointer to the EFI_SD_MMC_PASS_THRU_PROTOCOL instance.
@param[in] Slot The slot number of the SD card to send the command to.
@retval EFI_SUCCESS The EMMC device is reset correctly.
@retval Others The device reset fails.
**/
EFI_STATUS
EmmcReset (
IN EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru,
IN UINT8 Slot
)
{
EFI_SD_MMC_COMMAND_BLOCK SdMmcCmdBlk;
EFI_SD_MMC_STATUS_BLOCK SdMmcStatusBlk;
EFI_SD_MMC_PASS_THRU_COMMAND_PACKET Packet;
EFI_STATUS Status;
ZeroMem (&SdMmcCmdBlk, sizeof (SdMmcCmdBlk));
ZeroMem (&SdMmcStatusBlk, sizeof (SdMmcStatusBlk));
ZeroMem (&Packet, sizeof (Packet));
Packet.SdMmcCmdBlk = &SdMmcCmdBlk;
Packet.SdMmcStatusBlk = &SdMmcStatusBlk;
Packet.Timeout = SD_MMC_HC_GENERIC_TIMEOUT;
SdMmcCmdBlk.CommandIndex = EMMC_GO_IDLE_STATE;
SdMmcCmdBlk.CommandType = SdMmcCommandTypeBc;
SdMmcCmdBlk.ResponseType = 0;
SdMmcCmdBlk.CommandArgument = 0;
gBS->Stall (1000);
Status = SdMmcPassThruPassThru (PassThru, Slot, &Packet, NULL);
return Status;
}
/**
Send command SEND_OP_COND to the EMMC device to get the data of the OCR register.
Refer to EMMC Electrical Standard Spec 5.1 Section 6.4 for details.
@param[in] PassThru A pointer to the EFI_SD_MMC_PASS_THRU_PROTOCOL instance.
@param[in] Slot The slot number of the SD card to send the command to.
@param[in, out] Argument On input, the argument of SEND_OP_COND is to send to the device.
On output, the argument is the value of OCR register.
@retval EFI_SUCCESS The operation is done correctly.
@retval Others The operation fails.
**/
EFI_STATUS
EmmcGetOcr (
IN EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru,
IN UINT8 Slot,
IN OUT UINT32 *Argument
)
{
EFI_SD_MMC_COMMAND_BLOCK SdMmcCmdBlk;
EFI_SD_MMC_STATUS_BLOCK SdMmcStatusBlk;
EFI_SD_MMC_PASS_THRU_COMMAND_PACKET Packet;
EFI_STATUS Status;
ZeroMem (&SdMmcCmdBlk, sizeof (SdMmcCmdBlk));
ZeroMem (&SdMmcStatusBlk, sizeof (SdMmcStatusBlk));
ZeroMem (&Packet, sizeof (Packet));
Packet.SdMmcCmdBlk = &SdMmcCmdBlk;
Packet.SdMmcStatusBlk = &SdMmcStatusBlk;
Packet.Timeout = SD_MMC_HC_GENERIC_TIMEOUT;
SdMmcCmdBlk.CommandIndex = EMMC_SEND_OP_COND;
SdMmcCmdBlk.CommandType = SdMmcCommandTypeBcr;
SdMmcCmdBlk.ResponseType = SdMmcResponseTypeR3;
SdMmcCmdBlk.CommandArgument = *Argument;
Status = SdMmcPassThruPassThru (PassThru, Slot, &Packet, NULL);
if (!EFI_ERROR (Status)) {
//
// For details, refer to SD Host Controller Simplified Spec 3.0 Table 2-12.
//
*Argument = SdMmcStatusBlk.Resp0;
}
return Status;
}
/**
Broadcast command ALL_SEND_CID to the bus to ask all the EMMC devices to send the
data of their CID registers.
Refer to EMMC Electrical Standard Spec 5.1 Section 6.4 for details.
@param[in] PassThru A pointer to the EFI_SD_MMC_PASS_THRU_PROTOCOL instance.
@param[in] Slot The slot number of the SD card to send the command to.
@retval EFI_SUCCESS The operation is done correctly.
@retval Others The operation fails.
**/
EFI_STATUS
EmmcGetAllCid (
IN EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru,
IN UINT8 Slot
)
{
EFI_SD_MMC_COMMAND_BLOCK SdMmcCmdBlk;
EFI_SD_MMC_STATUS_BLOCK SdMmcStatusBlk;
EFI_SD_MMC_PASS_THRU_COMMAND_PACKET Packet;
EFI_STATUS Status;
ZeroMem (&SdMmcCmdBlk, sizeof (SdMmcCmdBlk));
ZeroMem (&SdMmcStatusBlk, sizeof (SdMmcStatusBlk));
ZeroMem (&Packet, sizeof (Packet));
Packet.SdMmcCmdBlk = &SdMmcCmdBlk;
Packet.SdMmcStatusBlk = &SdMmcStatusBlk;
Packet.Timeout = SD_MMC_HC_GENERIC_TIMEOUT;
SdMmcCmdBlk.CommandIndex = EMMC_ALL_SEND_CID;
SdMmcCmdBlk.CommandType = SdMmcCommandTypeBcr;
SdMmcCmdBlk.ResponseType = SdMmcResponseTypeR2;
SdMmcCmdBlk.CommandArgument = 0;
Status = SdMmcPassThruPassThru (PassThru, Slot, &Packet, NULL);
return Status;
}
/**
Send command SET_RELATIVE_ADDR to the EMMC device to assign a Relative device
Address (RCA).
Refer to EMMC Electrical Standard Spec 5.1 Section 6.4 for details.
@param[in] PassThru A pointer to the EFI_SD_MMC_PASS_THRU_PROTOCOL instance.
@param[in] Slot The slot number of the SD card to send the command to.
@param[in] Rca The relative device address to be assigned.
@retval EFI_SUCCESS The operation is done correctly.
@retval Others The operation fails.
**/
EFI_STATUS
EmmcSetRca (
IN EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru,
IN UINT8 Slot,
IN UINT16 Rca
)
{
EFI_SD_MMC_COMMAND_BLOCK SdMmcCmdBlk;
EFI_SD_MMC_STATUS_BLOCK SdMmcStatusBlk;
EFI_SD_MMC_PASS_THRU_COMMAND_PACKET Packet;
EFI_STATUS Status;
ZeroMem (&SdMmcCmdBlk, sizeof (SdMmcCmdBlk));
ZeroMem (&SdMmcStatusBlk, sizeof (SdMmcStatusBlk));
ZeroMem (&Packet, sizeof (Packet));
Packet.SdMmcCmdBlk = &SdMmcCmdBlk;
Packet.SdMmcStatusBlk = &SdMmcStatusBlk;
Packet.Timeout = SD_MMC_HC_GENERIC_TIMEOUT;
SdMmcCmdBlk.CommandIndex = EMMC_SET_RELATIVE_ADDR;
SdMmcCmdBlk.CommandType = SdMmcCommandTypeAc;
SdMmcCmdBlk.ResponseType = SdMmcResponseTypeR1;
SdMmcCmdBlk.CommandArgument = (UINT32)Rca << 16;
Status = SdMmcPassThruPassThru (PassThru, Slot, &Packet, NULL);
return Status;
}
/**
Send command SEND_CSD to the EMMC device to get the data of the CSD register.
Refer to EMMC Electrical Standard Spec 5.1 Section 6.10.4 for details.
@param[in] PassThru A pointer to the EFI_SD_MMC_PASS_THRU_PROTOCOL instance.
@param[in] Slot The slot number of the SD card to send the command to.
@param[in] Rca The relative device address of selected device.
@param[out] Csd The buffer to store the content of the CSD register.
Note the caller should ignore the lowest byte of this
buffer as the content of this byte is meaningless even
if the operation succeeds.
@retval EFI_SUCCESS The operation is done correctly.
@retval Others The operation fails.
**/
EFI_STATUS
EmmcGetCsd (
IN EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru,
IN UINT8 Slot,
IN UINT16 Rca,
OUT EMMC_CSD *Csd
)
{
EFI_SD_MMC_COMMAND_BLOCK SdMmcCmdBlk;
EFI_SD_MMC_STATUS_BLOCK SdMmcStatusBlk;
EFI_SD_MMC_PASS_THRU_COMMAND_PACKET Packet;
EFI_STATUS Status;
ZeroMem (&SdMmcCmdBlk, sizeof (SdMmcCmdBlk));
ZeroMem (&SdMmcStatusBlk, sizeof (SdMmcStatusBlk));
ZeroMem (&Packet, sizeof (Packet));
Packet.SdMmcCmdBlk = &SdMmcCmdBlk;
Packet.SdMmcStatusBlk = &SdMmcStatusBlk;
Packet.Timeout = SD_MMC_HC_GENERIC_TIMEOUT;
SdMmcCmdBlk.CommandIndex = EMMC_SEND_CSD;
SdMmcCmdBlk.CommandType = SdMmcCommandTypeAc;
SdMmcCmdBlk.ResponseType = SdMmcResponseTypeR2;
SdMmcCmdBlk.CommandArgument = (UINT32)Rca << 16;
Status = SdMmcPassThruPassThru (PassThru, Slot, &Packet, NULL);
if (!EFI_ERROR (Status)) {
//
// For details, refer to SD Host Controller Simplified Spec 3.0 Table 2-12.
//
CopyMem (((UINT8 *)Csd) + 1, &SdMmcStatusBlk.Resp0, sizeof (EMMC_CSD) - 1);
}
return Status;
}
/**
Send command SELECT_DESELECT_CARD to the EMMC device to select/deselect it.
Refer to EMMC Electrical Standard Spec 5.1 Section 6.10.4 for details.
@param[in] PassThru A pointer to the EFI_SD_MMC_PASS_THRU_PROTOCOL instance.
@param[in] Slot The slot number of the SD card to send the command to.
@param[in] Rca The relative device address of selected device.
@retval EFI_SUCCESS The operation is done correctly.
@retval Others The operation fails.
**/
EFI_STATUS
EmmcSelect (
IN EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru,
IN UINT8 Slot,
IN UINT16 Rca
)
{
EFI_SD_MMC_COMMAND_BLOCK SdMmcCmdBlk;
EFI_SD_MMC_STATUS_BLOCK SdMmcStatusBlk;
EFI_SD_MMC_PASS_THRU_COMMAND_PACKET Packet;
EFI_STATUS Status;
ZeroMem (&SdMmcCmdBlk, sizeof (SdMmcCmdBlk));
ZeroMem (&SdMmcStatusBlk, sizeof (SdMmcStatusBlk));
ZeroMem (&Packet, sizeof (Packet));
Packet.SdMmcCmdBlk = &SdMmcCmdBlk;
Packet.SdMmcStatusBlk = &SdMmcStatusBlk;
Packet.Timeout = SD_MMC_HC_GENERIC_TIMEOUT;
SdMmcCmdBlk.CommandIndex = EMMC_SELECT_DESELECT_CARD;
SdMmcCmdBlk.CommandType = SdMmcCommandTypeAc;
SdMmcCmdBlk.ResponseType = SdMmcResponseTypeR1;
SdMmcCmdBlk.CommandArgument = (UINT32)Rca << 16;
Status = SdMmcPassThruPassThru (PassThru, Slot, &Packet, NULL);
return Status;
}
/**
Send command SEND_EXT_CSD to the EMMC device to get the data of the EXT_CSD register.
Refer to EMMC Electrical Standard Spec 5.1 Section 6.10.4 for details.
@param[in] PassThru A pointer to the EFI_SD_MMC_PASS_THRU_PROTOCOL instance.
@param[in] Slot The slot number of the SD card to send the command to.
@param[out] ExtCsd The buffer to store the content of the EXT_CSD register.
@retval EFI_SUCCESS The operation is done correctly.
@retval Others The operation fails.
**/
EFI_STATUS
EmmcGetExtCsd (
IN EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru,
IN UINT8 Slot,
OUT EMMC_EXT_CSD *ExtCsd
)
{
EFI_SD_MMC_COMMAND_BLOCK SdMmcCmdBlk;
EFI_SD_MMC_STATUS_BLOCK SdMmcStatusBlk;
EFI_SD_MMC_PASS_THRU_COMMAND_PACKET Packet;
EFI_STATUS Status;
ZeroMem (&SdMmcCmdBlk, sizeof (SdMmcCmdBlk));
ZeroMem (&SdMmcStatusBlk, sizeof (SdMmcStatusBlk));
ZeroMem (&Packet, sizeof (Packet));
Packet.SdMmcCmdBlk = &SdMmcCmdBlk;
Packet.SdMmcStatusBlk = &SdMmcStatusBlk;
Packet.Timeout = SD_MMC_HC_GENERIC_TIMEOUT;
SdMmcCmdBlk.CommandIndex = EMMC_SEND_EXT_CSD;
SdMmcCmdBlk.CommandType = SdMmcCommandTypeAdtc;
SdMmcCmdBlk.ResponseType = SdMmcResponseTypeR1;
SdMmcCmdBlk.CommandArgument = 0x00000000;
Packet.InDataBuffer = ExtCsd;
Packet.InTransferLength = sizeof (EMMC_EXT_CSD);
Status = SdMmcPassThruPassThru (PassThru, Slot, &Packet, NULL);
return Status;
}
/**
Send command SWITCH to the EMMC device to switch the mode of operation of the
selected Device or modifies the EXT_CSD registers.
Refer to EMMC Electrical Standard Spec 5.1 Section 6.10.4 for details.
@param[in] PassThru A pointer to the EFI_SD_MMC_PASS_THRU_PROTOCOL instance.
@param[in] Slot The slot number of the SD card to send the command to.
@param[in] Access The access mode of SWTICH command.
@param[in] Index The offset of the field to be access.
@param[in] Value The value to be set to the specified field of EXT_CSD register.
@param[in] CmdSet The value of CmdSet field of EXT_CSD register.
@retval EFI_SUCCESS The operation is done correctly.
@retval Others The operation fails.
**/
EFI_STATUS
EmmcSwitch (
IN EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru,
IN UINT8 Slot,
IN UINT8 Access,
IN UINT8 Index,
IN UINT8 Value,
IN UINT8 CmdSet
)
{
EFI_SD_MMC_COMMAND_BLOCK SdMmcCmdBlk;
EFI_SD_MMC_STATUS_BLOCK SdMmcStatusBlk;
EFI_SD_MMC_PASS_THRU_COMMAND_PACKET Packet;
EFI_STATUS Status;
ZeroMem (&SdMmcCmdBlk, sizeof (SdMmcCmdBlk));
ZeroMem (&SdMmcStatusBlk, sizeof (SdMmcStatusBlk));
ZeroMem (&Packet, sizeof (Packet));
Packet.SdMmcCmdBlk = &SdMmcCmdBlk;
Packet.SdMmcStatusBlk = &SdMmcStatusBlk;
Packet.Timeout = SD_MMC_HC_GENERIC_TIMEOUT;
SdMmcCmdBlk.CommandIndex = EMMC_SWITCH;
SdMmcCmdBlk.CommandType = SdMmcCommandTypeAc;
SdMmcCmdBlk.ResponseType = SdMmcResponseTypeR1b;
SdMmcCmdBlk.CommandArgument = (Access << 24) | (Index << 16) | (Value << 8) | CmdSet;
Status = SdMmcPassThruPassThru (PassThru, Slot, &Packet, NULL);
return Status;
}
/**
Send command SEND_STATUS to the addressed EMMC device to get its status register.
Refer to EMMC Electrical Standard Spec 5.1 Section 6.10.4 for details.
@param[in] PassThru A pointer to the EFI_SD_MMC_PASS_THRU_PROTOCOL instance.
@param[in] Slot The slot number of the SD card to send the command to.
@param[in] Rca The relative device address of addressed device.
@param[out] DevStatus The returned device status.
@retval EFI_SUCCESS The operation is done correctly.
@retval Others The operation fails.
**/
EFI_STATUS
EmmcSendStatus (
IN EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru,
IN UINT8 Slot,
IN UINT16 Rca,
OUT UINT32 *DevStatus
)
{
EFI_SD_MMC_COMMAND_BLOCK SdMmcCmdBlk;
EFI_SD_MMC_STATUS_BLOCK SdMmcStatusBlk;
EFI_SD_MMC_PASS_THRU_COMMAND_PACKET Packet;
EFI_STATUS Status;
ZeroMem (&SdMmcCmdBlk, sizeof (SdMmcCmdBlk));
ZeroMem (&SdMmcStatusBlk, sizeof (SdMmcStatusBlk));
ZeroMem (&Packet, sizeof (Packet));
Packet.SdMmcCmdBlk = &SdMmcCmdBlk;
Packet.SdMmcStatusBlk = &SdMmcStatusBlk;
Packet.Timeout = SD_MMC_HC_GENERIC_TIMEOUT;
SdMmcCmdBlk.CommandIndex = EMMC_SEND_STATUS;
SdMmcCmdBlk.CommandType = SdMmcCommandTypeAc;
SdMmcCmdBlk.ResponseType = SdMmcResponseTypeR1;
SdMmcCmdBlk.CommandArgument = (UINT32)Rca << 16;
Status = SdMmcPassThruPassThru (PassThru, Slot, &Packet, NULL);
if (!EFI_ERROR (Status)) {
*DevStatus = SdMmcStatusBlk.Resp0;
}
return Status;
}
/**
Send command SEND_TUNING_BLOCK to the EMMC device for HS200 optimal sampling point
detection.
It may be sent up to 40 times until the host finishes the tuning procedure.
Refer to EMMC Electrical Standard Spec 5.1 Section 6.6.8 for details.
@param[in] PassThru A pointer to the EFI_SD_MMC_PASS_THRU_PROTOCOL instance.
@param[in] Slot The slot number of the SD card to send the command to.
@param[in] BusWidth The bus width to work.
@retval EFI_SUCCESS The operation is done correctly.
@retval Others The operation fails.
**/
EFI_STATUS
EmmcSendTuningBlk (
IN EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru,
IN UINT8 Slot,
IN UINT8 BusWidth
)
{
EFI_SD_MMC_COMMAND_BLOCK SdMmcCmdBlk;
EFI_SD_MMC_STATUS_BLOCK SdMmcStatusBlk;
EFI_SD_MMC_PASS_THRU_COMMAND_PACKET Packet;
EFI_STATUS Status;
UINT8 TuningBlock[128];
ZeroMem (&SdMmcCmdBlk, sizeof (SdMmcCmdBlk));
ZeroMem (&SdMmcStatusBlk, sizeof (SdMmcStatusBlk));
ZeroMem (&Packet, sizeof (Packet));
Packet.SdMmcCmdBlk = &SdMmcCmdBlk;
Packet.SdMmcStatusBlk = &SdMmcStatusBlk;
Packet.Timeout = SD_MMC_HC_GENERIC_TIMEOUT;
SdMmcCmdBlk.CommandIndex = EMMC_SEND_TUNING_BLOCK;
SdMmcCmdBlk.CommandType = SdMmcCommandTypeAdtc;
SdMmcCmdBlk.ResponseType = SdMmcResponseTypeR1;
SdMmcCmdBlk.CommandArgument = 0;
Packet.InDataBuffer = TuningBlock;
if (BusWidth == 8) {
Packet.InTransferLength = sizeof (TuningBlock);
} else {
Packet.InTransferLength = 64;
}
Status = SdMmcPassThruPassThru (PassThru, Slot, &Packet, NULL);
return Status;
}
/**
Tunning the clock to get HS200 optimal sampling point.
Command SEND_TUNING_BLOCK may be sent up to 40 times until the host finishes the
tuning procedure.
Refer to EMMC Electrical Standard Spec 5.1 Section 6.6.8 and SD Host Controller
Simplified Spec 3.0 Figure 2-29 for details.
@param[in] PciIo A pointer to the EFI_PCI_IO_PROTOCOL instance.
@param[in] PassThru A pointer to the EFI_SD_MMC_PASS_THRU_PROTOCOL instance.
@param[in] Slot The slot number of the SD card to send the command to.
@param[in] BusWidth The bus width to work.
@retval EFI_SUCCESS The operation is done correctly.
@retval Others The operation fails.
**/
EFI_STATUS
EmmcTuningClkForHs200 (
IN EFI_PCI_IO_PROTOCOL *PciIo,
IN EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru,
IN UINT8 Slot,
IN UINT8 BusWidth
)
{
EFI_STATUS Status;
UINT8 HostCtrl2;
UINT8 Retry;
//
// Notify the host that the sampling clock tuning procedure starts.
//
HostCtrl2 = BIT6;
Status = SdMmcHcOrMmio (PciIo, Slot, SD_MMC_HC_HOST_CTRL2, sizeof (HostCtrl2), &HostCtrl2);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Ask the device to send a sequence of tuning blocks till the tuning procedure is done.
//
Retry = 0;
do {
Status = EmmcSendTuningBlk (PassThru, Slot, BusWidth);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "EmmcTuningClkForHs200: Send tuning block fails with %r\n", Status));
return Status;
}
Status = SdMmcHcRwMmio (PciIo, Slot, SD_MMC_HC_HOST_CTRL2, TRUE, sizeof (HostCtrl2), &HostCtrl2);
if (EFI_ERROR (Status)) {
return Status;
}
if ((HostCtrl2 & (BIT6 | BIT7)) == 0) {
break;
}
if ((HostCtrl2 & (BIT6 | BIT7)) == BIT7) {
return EFI_SUCCESS;
}
} while (++Retry < 40);
DEBUG ((DEBUG_ERROR, "EmmcTuningClkForHs200: Send tuning block fails at %d times with HostCtrl2 %02x\n", Retry, HostCtrl2));
//
// Abort the tuning procedure and reset the tuning circuit.
//
HostCtrl2 = (UINT8) ~(BIT6 | BIT7);
Status = SdMmcHcAndMmio (PciIo, Slot, SD_MMC_HC_HOST_CTRL2, sizeof (HostCtrl2), &HostCtrl2);
if (EFI_ERROR (Status)) {
return Status;
}
return EFI_DEVICE_ERROR;
}
/**
Check the SWITCH operation status.
@param[in] PassThru A pointer to the EFI_SD_MMC_PASS_THRU_PROTOCOL instance.
@param[in] Slot The slot number on which command should be sent.
@param[in] Rca The relative device address.
@retval EFI_SUCCESS The SWITCH finished siccessfully.
@retval others The SWITCH failed.
**/
EFI_STATUS
EmmcCheckSwitchStatus (
IN EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru,
IN UINT8 Slot,
IN UINT16 Rca
)
{
EFI_STATUS Status;
UINT32 DevStatus;
Status = EmmcSendStatus (PassThru, Slot, Rca, &DevStatus);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "EmmcCheckSwitchStatus: Send status fails with %r\n", Status));
return Status;
}
//
// Check the switch operation is really successful or not.
//
if ((DevStatus & BIT7) != 0) {
DEBUG ((DEBUG_ERROR, "EmmcCheckSwitchStatus: The switch operation fails as DevStatus is 0x%08x\n", DevStatus));
return EFI_DEVICE_ERROR;
}
return EFI_SUCCESS;
}
/**
Switch the bus width to specified width.
Refer to EMMC Electrical Standard Spec 5.1 Section 6.6.9 and SD Host Controller
Simplified Spec 3.0 Figure 3-7 for details.
@param[in] PciIo A pointer to the EFI_PCI_IO_PROTOCOL instance.
@param[in] PassThru A pointer to the EFI_SD_MMC_PASS_THRU_PROTOCOL instance.
@param[in] Slot The slot number of the SD card to send the command to.
@param[in] Rca The relative device address to be assigned.
@param[in] IsDdr If TRUE, use dual data rate data simpling method. Otherwise
use single data rate data simpling method.
@param[in] BusWidth The bus width to be set, it could be 4 or 8.
@retval EFI_SUCCESS The operation is done correctly.
@retval Others The operation fails.
**/
EFI_STATUS
EmmcSwitchBusWidth (
IN EFI_PCI_IO_PROTOCOL *PciIo,
IN EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru,
IN UINT8 Slot,
IN UINT16 Rca,
IN BOOLEAN IsDdr,
IN UINT8 BusWidth
)
{
EFI_STATUS Status;
UINT8 Access;
UINT8 Index;
UINT8 Value;
UINT8 CmdSet;
//
// Write Byte, the Value field is written into the byte pointed by Index.
//
Access = 0x03;
Index = OFFSET_OF (EMMC_EXT_CSD, BusWidth);
if (BusWidth == 4) {
Value = 1;
} else if (BusWidth == 8) {
Value = 2;
} else {
return EFI_INVALID_PARAMETER;
}
if (IsDdr) {
Value += 4;
}
CmdSet = 0;
Status = EmmcSwitch (PassThru, Slot, Access, Index, Value, CmdSet);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "EmmcSwitchBusWidth: Switch to bus width %d fails with %r\n", BusWidth, Status));
return Status;
}
Status = EmmcCheckSwitchStatus (PassThru, Slot, Rca);
if (EFI_ERROR (Status)) {
return Status;
}
Status = SdMmcHcSetBusWidth (PciIo, Slot, BusWidth);
return Status;
}
/**
Switch the bus timing and clock frequency.
Refer to EMMC Electrical Standard Spec 5.1 Section 6.6 and SD Host Controller
Simplified Spec 3.0 Figure 3-3 for details.
@param[in] PciIo A pointer to the EFI_PCI_IO_PROTOCOL instance.
@param[in] PassThru A pointer to the EFI_SD_MMC_PASS_THRU_PROTOCOL instance.
@param[in] Slot The slot number of the SD card to send the command to.
@param[in] Rca The relative device address to be assigned.
@param[in] DriverStrength Driver strength to set for speed modes that support it.
@param[in] BusTiming The bus mode timing indicator.
@param[in] ClockFreq The max clock frequency to be set, the unit is MHz.
@retval EFI_SUCCESS The operation is done correctly.
@retval Others The operation fails.
**/
EFI_STATUS
EmmcSwitchBusTiming (
IN EFI_PCI_IO_PROTOCOL *PciIo,
IN EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru,
IN UINT8 Slot,
IN UINT16 Rca,
IN EDKII_SD_MMC_DRIVER_STRENGTH DriverStrength,
IN SD_MMC_BUS_MODE BusTiming,
IN UINT32 ClockFreq
)
{
EFI_STATUS Status;
UINT8 Access;
UINT8 Index;
UINT8 Value;
UINT8 CmdSet;
SD_MMC_HC_PRIVATE_DATA *Private;
UINT8 HostCtrl1;
BOOLEAN DelaySendStatus;
Private = SD_MMC_HC_PRIVATE_FROM_THIS (PassThru);
//
// Write Byte, the Value field is written into the byte pointed by Index.
//
Access = 0x03;
Index = OFFSET_OF (EMMC_EXT_CSD, HsTiming);
CmdSet = 0;
switch (BusTiming) {
case SdMmcMmcHs400:
Value = (UINT8)((DriverStrength.Emmc << 4) | 3);
break;
case SdMmcMmcHs200:
Value = (UINT8)((DriverStrength.Emmc << 4) | 2);
break;
case SdMmcMmcHsSdr:
case SdMmcMmcHsDdr:
Value = 1;
break;
case SdMmcMmcLegacy:
Value = 0;
break;
default:
DEBUG ((DEBUG_ERROR, "EmmcSwitchBusTiming: Unsupported BusTiming(%d)\n", BusTiming));
return EFI_INVALID_PARAMETER;
}
Status = EmmcSwitch (PassThru, Slot, Access, Index, Value, CmdSet);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "EmmcSwitchBusTiming: Switch to bus timing %d fails with %r\n", BusTiming, Status));
return Status;
}
if ((BusTiming == SdMmcMmcHsSdr) || (BusTiming == SdMmcMmcHsDdr)) {
HostCtrl1 = BIT2;
Status = SdMmcHcOrMmio (PciIo, Slot, SD_MMC_HC_HOST_CTRL1, sizeof (HostCtrl1), &HostCtrl1);
if (EFI_ERROR (Status)) {
return Status;
}
} else {
HostCtrl1 = (UINT8) ~BIT2;
Status = SdMmcHcAndMmio (PciIo, Slot, SD_MMC_HC_HOST_CTRL1, sizeof (HostCtrl1), &HostCtrl1);
if (EFI_ERROR (Status)) {
return Status;
}
}
Status = SdMmcHcUhsSignaling (Private->ControllerHandle, PciIo, Slot, BusTiming);
if (EFI_ERROR (Status)) {
return Status;
}
//
// For cases when we switch bus timing to higher mode from current we want to
// send SEND_STATUS at current, lower, frequency then the target frequency to avoid
// stability issues. It has been observed that some designs are unable to process the
// SEND_STATUS at higher frequency during switch to HS200 @200MHz irrespective of the number of retries
// and only running the clock tuning is able to make them work at target frequency.
//
// For cases when we are downgrading the frequency and current high frequency is invalid
// we have to first change the frequency to target frequency and then send the SEND_STATUS.
//
if (Private->Slot[Slot].CurrentFreq < (ClockFreq * 1000)) {
Status = EmmcCheckSwitchStatus (PassThru, Slot, Rca);
if (EFI_ERROR (Status)) {
return Status;
}
DelaySendStatus = FALSE;
} else {
DelaySendStatus = TRUE;
}
//
// Convert the clock freq unit from MHz to KHz.
//
Status = SdMmcHcClockSupply (Private, Slot, BusTiming, FALSE, ClockFreq * 1000);
if (EFI_ERROR (Status)) {
return Status;
}
if (DelaySendStatus) {
Status = EmmcCheckSwitchStatus (PassThru, Slot, Rca);
if (EFI_ERROR (Status)) {
return Status;
}
}
return Status;
}
/**
Switch to the High Speed timing according to request.
Refer to EMMC Electrical Standard Spec 5.1 Section 6.6.8 and SD Host Controller
Simplified Spec 3.0 Figure 2-29 for details.
@param[in] PciIo A pointer to the EFI_PCI_IO_PROTOCOL instance.
@param[in] PassThru A pointer to the EFI_SD_MMC_PASS_THRU_PROTOCOL instance.
@param[in] Slot The slot number of the SD card to send the command to.
@param[in] Rca The relative device address to be assigned.
@param[in] BusMode Pointer to SD_MMC_BUS_SETTINGS structure containing bus settings.
@retval EFI_SUCCESS The operation is done correctly.
@retval Others The operation fails.
**/
EFI_STATUS
EmmcSwitchToHighSpeed (
IN EFI_PCI_IO_PROTOCOL *PciIo,
IN EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru,
IN UINT8 Slot,
IN UINT16 Rca,
IN SD_MMC_BUS_SETTINGS *BusMode
)
{
EFI_STATUS Status;
BOOLEAN IsDdr;
if (((BusMode->BusTiming != SdMmcMmcHsSdr) && (BusMode->BusTiming != SdMmcMmcHsDdr) && (BusMode->BusTiming != SdMmcMmcLegacy)) ||
(BusMode->ClockFreq > 52))
{
return EFI_INVALID_PARAMETER;
}
if (BusMode->BusTiming == SdMmcMmcHsDdr) {
IsDdr = TRUE;
} else {
IsDdr = FALSE;
}
Status = EmmcSwitchBusWidth (PciIo, PassThru, Slot, Rca, IsDdr, BusMode->BusWidth);
if (EFI_ERROR (Status)) {
return Status;
}
return EmmcSwitchBusTiming (PciIo, PassThru, Slot, Rca, BusMode->DriverStrength, BusMode->BusTiming, BusMode->ClockFreq);
}
/**
Switch to the HS200 timing. This function assumes that eMMC bus is still in legacy mode.
Refer to EMMC Electrical Standard Spec 5.1 Section 6.6.8 and SD Host Controller
Simplified Spec 3.0 Figure 2-29 for details.
@param[in] PciIo A pointer to the EFI_PCI_IO_PROTOCOL instance.
@param[in] PassThru A pointer to the EFI_SD_MMC_PASS_THRU_PROTOCOL instance.
@param[in] Slot The slot number of the SD card to send the command to.
@param[in] Rca The relative device address to be assigned.
@param[in] BusMode Pointer to SD_MMC_BUS_SETTINGS structure containing bus settings.
@retval EFI_SUCCESS The operation is done correctly.
@retval Others The operation fails.
**/
EFI_STATUS
EmmcSwitchToHS200 (
IN EFI_PCI_IO_PROTOCOL *PciIo,
IN EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru,
IN UINT8 Slot,
IN UINT16 Rca,
IN SD_MMC_BUS_SETTINGS *BusMode
)
{
EFI_STATUS Status;
if ((BusMode->BusTiming != SdMmcMmcHs200) ||
((BusMode->BusWidth != 4) && (BusMode->BusWidth != 8)))
{
return EFI_INVALID_PARAMETER;
}
Status = EmmcSwitchBusWidth (PciIo, PassThru, Slot, Rca, FALSE, BusMode->BusWidth);
if (EFI_ERROR (Status)) {
return Status;
}
Status = EmmcSwitchBusTiming (PciIo, PassThru, Slot, Rca, BusMode->DriverStrength, BusMode->BusTiming, BusMode->ClockFreq);
if (EFI_ERROR (Status)) {
return Status;
}
Status = EmmcTuningClkForHs200 (PciIo, PassThru, Slot, BusMode->BusWidth);
return Status;
}
/**
Switch to the HS400 timing. This function assumes that eMMC bus is still in legacy mode.
Refer to EMMC Electrical Standard Spec 5.1 Section 6.6.8 and SD Host Controller
Simplified Spec 3.0 Figure 2-29 for details.
@param[in] PciIo A pointer to the EFI_PCI_IO_PROTOCOL instance.
@param[in] PassThru A pointer to the EFI_SD_MMC_PASS_THRU_PROTOCOL instance.
@param[in] Slot The slot number of the SD card to send the command to.
@param[in] Rca The relative device address to be assigned.
@param[in] BusMode Pointer to SD_MMC_BUS_SETTINGS structure containing bus settings.
@retval EFI_SUCCESS The operation is done correctly.
@retval Others The operation fails.
**/
EFI_STATUS
EmmcSwitchToHS400 (
IN EFI_PCI_IO_PROTOCOL *PciIo,
IN EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru,
IN UINT8 Slot,
IN UINT16 Rca,
IN SD_MMC_BUS_SETTINGS *BusMode
)
{
EFI_STATUS Status;
SD_MMC_BUS_SETTINGS Hs200BusMode;
UINT32 HsFreq;
if ((BusMode->BusTiming != SdMmcMmcHs400) ||
(BusMode->BusWidth != 8))
{
return EFI_INVALID_PARAMETER;
}
Hs200BusMode.BusTiming = SdMmcMmcHs200;
Hs200BusMode.BusWidth = BusMode->BusWidth;
Hs200BusMode.ClockFreq = BusMode->ClockFreq;
Hs200BusMode.DriverStrength = BusMode->DriverStrength;
Status = EmmcSwitchToHS200 (PciIo, PassThru, Slot, Rca, &Hs200BusMode);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Set to High Speed timing and set the clock frequency to a value less than or equal to 52MHz.
// This step is necessary to be able to switch Bus into 8 bit DDR mode which is unsupported in HS200.
//
HsFreq = BusMode->ClockFreq < 52 ? BusMode->ClockFreq : 52;
Status = EmmcSwitchBusTiming (PciIo, PassThru, Slot, Rca, BusMode->DriverStrength, SdMmcMmcHsSdr, HsFreq);
if (EFI_ERROR (Status)) {
return Status;
}
Status = EmmcSwitchBusWidth (PciIo, PassThru, Slot, Rca, TRUE, BusMode->BusWidth);
if (EFI_ERROR (Status)) {
return Status;
}
return EmmcSwitchBusTiming (PciIo, PassThru, Slot, Rca, BusMode->DriverStrength, BusMode->BusTiming, BusMode->ClockFreq);
}
/**
Check if passed BusTiming is supported in both controller and card.
@param[in] Private Pointer to controller private data
@param[in] SlotIndex Index of the slot in the controller
@param[in] ExtCsd Pointer to the card's extended CSD
@param[in] BusTiming Bus timing to check
@retval TRUE Both card and controller support given BusTiming
@retval FALSE Card or controller doesn't support given BusTiming
**/
BOOLEAN
EmmcIsBusTimingSupported (
IN SD_MMC_HC_PRIVATE_DATA *Private,
IN UINT8 SlotIndex,
IN EMMC_EXT_CSD *ExtCsd,
IN SD_MMC_BUS_MODE BusTiming
)
{
BOOLEAN Supported;
SD_MMC_HC_SLOT_CAP *Capabilities;
Capabilities = &Private->Capability[SlotIndex];
Supported = FALSE;
switch (BusTiming) {
case SdMmcMmcHs400:
if ((((ExtCsd->DeviceType & (BIT6 | BIT7)) != 0) && (Capabilities->Hs400 != 0)) && (Capabilities->BusWidth8 != 0)) {
Supported = TRUE;
}
break;
case SdMmcMmcHs200:
if ((((ExtCsd->DeviceType & (BIT4 | BIT5)) != 0) && (Capabilities->Sdr104 != 0))) {
Supported = TRUE;
}
break;
case SdMmcMmcHsDdr:
if ((((ExtCsd->DeviceType & (BIT2 | BIT3)) != 0) && (Capabilities->Ddr50 != 0))) {
Supported = TRUE;
}
break;
case SdMmcMmcHsSdr:
if ((((ExtCsd->DeviceType & BIT1) != 0) && (Capabilities->HighSpeed != 0))) {
Supported = TRUE;
}
break;
case SdMmcMmcLegacy:
if ((ExtCsd->DeviceType & BIT0) != 0) {
Supported = TRUE;
}
break;
default:
ASSERT (FALSE);
}
return Supported;
}
/**
Get the target bus timing to set on the link. This function
will try to select highest bus timing supported by card, controller
and the driver.
@param[in] Private Pointer to controller private data
@param[in] SlotIndex Index of the slot in the controller
@param[in] ExtCsd Pointer to the card's extended CSD
@return Bus timing value that should be set on link
**/
SD_MMC_BUS_MODE
EmmcGetTargetBusTiming (
IN SD_MMC_HC_PRIVATE_DATA *Private,
IN UINT8 SlotIndex,
IN EMMC_EXT_CSD *ExtCsd
)
{
SD_MMC_BUS_MODE BusTiming;
//
// We start with highest bus timing that this driver currently supports and
// return as soon as we find supported timing.
//
BusTiming = SdMmcMmcHs400;
while (BusTiming > SdMmcMmcLegacy) {
if (EmmcIsBusTimingSupported (Private, SlotIndex, ExtCsd, BusTiming)) {
break;
}
BusTiming--;
}
return BusTiming;
}
/**
Check if the passed bus width is supported by controller and card.
@param[in] Private Pointer to controller private data
@param[in] SlotIndex Index of the slot in the controller
@param[in] BusTiming Bus timing set on the link
@param[in] BusWidth Bus width to check
@retval TRUE Passed bus width is supported in current bus configuration
@retval FALSE Passed bus width is not supported in current bus configuration
**/
BOOLEAN
EmmcIsBusWidthSupported (
IN SD_MMC_HC_PRIVATE_DATA *Private,
IN UINT8 SlotIndex,
IN SD_MMC_BUS_MODE BusTiming,
IN UINT16 BusWidth
)
{
if ((BusWidth == 8) && (Private->Capability[SlotIndex].BusWidth8 != 0)) {
return TRUE;
} else if ((BusWidth == 4) && (BusTiming != SdMmcMmcHs400)) {
return TRUE;
} else if ((BusWidth == 1) && ((BusTiming == SdMmcMmcHsSdr) || (BusTiming == SdMmcMmcLegacy))) {
return TRUE;
}
return FALSE;
}
/**
Get the target bus width to be set on the bus.
@param[in] Private Pointer to controller private data
@param[in] SlotIndex Index of the slot in the controller
@param[in] ExtCsd Pointer to card's extended CSD
@param[in] BusTiming Bus timing set on the bus
@return Bus width to be set on the bus
**/
UINT8
EmmcGetTargetBusWidth (
IN SD_MMC_HC_PRIVATE_DATA *Private,
IN UINT8 SlotIndex,
IN EMMC_EXT_CSD *ExtCsd,
IN SD_MMC_BUS_MODE BusTiming
)
{
UINT8 BusWidth;
UINT8 PreferredBusWidth;
PreferredBusWidth = Private->Slot[SlotIndex].OperatingParameters.BusWidth;
if ((PreferredBusWidth != EDKII_SD_MMC_BUS_WIDTH_IGNORE) &&
EmmcIsBusWidthSupported (Private, SlotIndex, BusTiming, PreferredBusWidth))
{
BusWidth = PreferredBusWidth;
} else if (EmmcIsBusWidthSupported (Private, SlotIndex, BusTiming, 8)) {
BusWidth = 8;
} else if (EmmcIsBusWidthSupported (Private, SlotIndex, BusTiming, 4)) {
BusWidth = 4;
} else {
BusWidth = 1;
}
return BusWidth;
}
/**
Get the target clock frequency to be set on the bus.
@param[in] Private Pointer to controller private data
@param[in] SlotIndex Index of the slot in the controller
@param[in] ExtCsd Pointer to card's extended CSD
@param[in] BusTiming Bus timing to be set on the bus
@return Value of the clock frequency to be set on bus in MHz
**/
UINT32
EmmcGetTargetClockFreq (
IN SD_MMC_HC_PRIVATE_DATA *Private,
IN UINT8 SlotIndex,
IN EMMC_EXT_CSD *ExtCsd,
IN SD_MMC_BUS_MODE BusTiming
)
{
UINT32 PreferredClockFreq;
UINT32 MaxClockFreq;
PreferredClockFreq = Private->Slot[SlotIndex].OperatingParameters.ClockFreq;
switch (BusTiming) {
case SdMmcMmcHs400:
case SdMmcMmcHs200:
MaxClockFreq = 200;
break;
case SdMmcMmcHsSdr:
case SdMmcMmcHsDdr:
MaxClockFreq = 52;
break;
default:
MaxClockFreq = 26;
break;
}
if ((PreferredClockFreq != EDKII_SD_MMC_CLOCK_FREQ_IGNORE) && (PreferredClockFreq < MaxClockFreq)) {
return PreferredClockFreq;
} else {
return MaxClockFreq;
}
}
/**
Get the driver strength to be set on bus.
@param[in] Private Pointer to controller private data
@param[in] SlotIndex Index of the slot in the controller
@param[in] ExtCsd Pointer to card's extended CSD
@param[in] BusTiming Bus timing set on the bus
@return Value of the driver strength to be set on the bus
**/
EDKII_SD_MMC_DRIVER_STRENGTH
EmmcGetTargetDriverStrength (
IN SD_MMC_HC_PRIVATE_DATA *Private,
IN UINT8 SlotIndex,
IN EMMC_EXT_CSD *ExtCsd,
IN SD_MMC_BUS_MODE BusTiming
)
{
EDKII_SD_MMC_DRIVER_STRENGTH PreferredDriverStrength;
EDKII_SD_MMC_DRIVER_STRENGTH DriverStrength;
PreferredDriverStrength = Private->Slot[SlotIndex].OperatingParameters.DriverStrength;
DriverStrength.Emmc = EmmcDriverStrengthType0;
if ((PreferredDriverStrength.Emmc != EDKII_SD_MMC_DRIVER_STRENGTH_IGNORE) &&
(ExtCsd->DriverStrength & (BIT0 << PreferredDriverStrength.Emmc)))
{
DriverStrength.Emmc = PreferredDriverStrength.Emmc;
}
return DriverStrength;
}
/**
Get the target settings for the bus mode.
@param[in] Private Pointer to controller private data
@param[in] SlotIndex Index of the slot in the controller
@param[in] ExtCsd Pointer to card's extended CSD
@param[out] BusMode Target configuration of the bus
**/
VOID
EmmcGetTargetBusMode (
IN SD_MMC_HC_PRIVATE_DATA *Private,
IN UINT8 SlotIndex,
IN EMMC_EXT_CSD *ExtCsd,
OUT SD_MMC_BUS_SETTINGS *BusMode
)
{
BusMode->BusTiming = EmmcGetTargetBusTiming (Private, SlotIndex, ExtCsd);
BusMode->BusWidth = EmmcGetTargetBusWidth (Private, SlotIndex, ExtCsd, BusMode->BusTiming);
BusMode->ClockFreq = EmmcGetTargetClockFreq (Private, SlotIndex, ExtCsd, BusMode->BusTiming);
BusMode->DriverStrength = EmmcGetTargetDriverStrength (Private, SlotIndex, ExtCsd, BusMode->BusTiming);
}
/**
Switch the high speed timing according to request.
Refer to EMMC Electrical Standard Spec 5.1 Section 6.6.8 and SD Host Controller
Simplified Spec 3.0 Figure 2-29 for details.
@param[in] PciIo A pointer to the EFI_PCI_IO_PROTOCOL instance.
@param[in] PassThru A pointer to the EFI_SD_MMC_PASS_THRU_PROTOCOL instance.
@param[in] Slot The slot number of the SD card to send the command to.
@param[in] Rca The relative device address to be assigned.
@retval EFI_SUCCESS The operation is done correctly.
@retval Others The operation fails.
**/
EFI_STATUS
EmmcSetBusMode (
IN EFI_PCI_IO_PROTOCOL *PciIo,
IN EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru,
IN UINT8 Slot,
IN UINT16 Rca
)
{
EFI_STATUS Status;
EMMC_CSD Csd;
EMMC_EXT_CSD ExtCsd;
SD_MMC_BUS_SETTINGS BusMode;
SD_MMC_HC_PRIVATE_DATA *Private;
Private = SD_MMC_HC_PRIVATE_FROM_THIS (PassThru);
Status = EmmcGetCsd (PassThru, Slot, Rca, &Csd);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "EmmcSetBusMode: GetCsd fails with %r\n", Status));
return Status;
}
Status = EmmcSelect (PassThru, Slot, Rca);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "EmmcSetBusMode: Select fails with %r\n", Status));
return Status;
}
ASSERT (Private->BaseClkFreq[Slot] != 0);
//
// Get Device_Type from EXT_CSD register.
//
Status = EmmcGetExtCsd (PassThru, Slot, &ExtCsd);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "EmmcSetBusMode: GetExtCsd fails with %r\n", Status));
return Status;
}
EmmcGetTargetBusMode (Private, Slot, &ExtCsd, &BusMode);
DEBUG ((
DEBUG_INFO,
"EmmcSetBusMode: Target bus mode: timing = %d, width = %d, clock freq = %d, driver strength = %d\n",
BusMode.BusTiming,
BusMode.BusWidth,
BusMode.ClockFreq,
BusMode.DriverStrength.Emmc
));
if (BusMode.BusTiming == SdMmcMmcHs400) {
Status = EmmcSwitchToHS400 (PciIo, PassThru, Slot, Rca, &BusMode);
} else if (BusMode.BusTiming == SdMmcMmcHs200) {
Status = EmmcSwitchToHS200 (PciIo, PassThru, Slot, Rca, &BusMode);
} else {
//
// Note that EmmcSwitchToHighSpeed is also called for SdMmcMmcLegacy
// bus timing. This is because even though we might not want to
// change the timing itself we still want to allow customization of
// bus parameters such as clock frequency and bus width.
//
Status = EmmcSwitchToHighSpeed (PciIo, PassThru, Slot, Rca, &BusMode);
}
DEBUG ((DEBUG_INFO, "EmmcSetBusMode: Switch to %a %r\n", (BusMode.BusTiming == SdMmcMmcHs400) ? "HS400" : ((BusMode.BusTiming == SdMmcMmcHs200) ? "HS200" : "HighSpeed"), Status));
return Status;
}
/**
Execute EMMC device identification procedure.
Refer to EMMC Electrical Standard Spec 5.1 Section 6.4 for details.
@param[in] Private A pointer to the SD_MMC_HC_PRIVATE_DATA instance.
@param[in] Slot The slot number of the SD card to send the command to.
@retval EFI_SUCCESS There is a EMMC card.
@retval Others There is not a EMMC card.
**/
EFI_STATUS
EmmcIdentification (
IN SD_MMC_HC_PRIVATE_DATA *Private,
IN UINT8 Slot
)
{
EFI_STATUS Status;
EFI_PCI_IO_PROTOCOL *PciIo;
EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru;
UINT32 Ocr;
UINT16 Rca;
UINTN Retry;
PciIo = Private->PciIo;
PassThru = &Private->PassThru;
Status = EmmcReset (PassThru, Slot);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_VERBOSE, "EmmcIdentification: Executing Cmd0 fails with %r\n", Status));
return Status;
}
Ocr = 0;
Retry = 0;
do {
Status = EmmcGetOcr (PassThru, Slot, &Ocr);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_VERBOSE, "EmmcIdentification: Executing Cmd1 fails with %r\n", Status));
return Status;
}
Ocr |= BIT30;
if (Retry++ == 100) {
DEBUG ((DEBUG_VERBOSE, "EmmcIdentification: Executing Cmd1 fails too many times\n"));
return EFI_DEVICE_ERROR;
}
gBS->Stall (10 * 1000);
} while ((Ocr & BIT31) == 0);
Status = EmmcGetAllCid (PassThru, Slot);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_VERBOSE, "EmmcIdentification: Executing Cmd2 fails with %r\n", Status));
return Status;
}
//
// Slot starts from 0 and valid RCA starts from 1.
// Here we takes a simple formula to calculate the RCA.
// Don't support multiple devices on the slot, that is
// shared bus slot feature.
//
Rca = Slot + 1;
Status = EmmcSetRca (PassThru, Slot, Rca);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "EmmcIdentification: Executing Cmd3 fails with %r\n", Status));
return Status;
}
//
// Enter Data Tranfer Mode.
//
DEBUG ((DEBUG_INFO, "EmmcIdentification: Found a EMMC device at slot [%d], RCA [%d]\n", Slot, Rca));
Private->Slot[Slot].CardType = EmmcCardType;
Status = EmmcSetBusMode (PciIo, PassThru, Slot, Rca);
return Status;
}