## @file | |
# PCD DXE driver manage database contains all dynamic PCD entries and produce the implementation of PCD protocol. | |
# | |
# This version PCD DXE depends on the external PCD database binary file, not built in PCD data base. | |
# There are two PCD Protocols as follows: | |
# 1) PCD_PROTOCOL | |
# It is EDKII implementation which support Dynamic/DynamicEx type Pcds. | |
# 2) EFI_PCD_PROTOCOL | |
# It is defined by PI specification 1.2, Vol 3 which only support dynamicEx | |
# type Pcd. | |
# | |
# For dynamicEx type PCD, it is compatible between PCD_PROTOCOL and EFI_PCD_PROTOCOL. | |
# PCD DXE driver will produce above two protocols at same time. | |
# | |
# PCD database is generated as the separate binary image at build time. The binary image | |
# will be intergrated into Firmware volume together with PCD driver. | |
# | |
# //////////////////////////////////////////////////////////////////////////////// | |
# // // | |
# // Introduction of PCD database // | |
# // // | |
# //////////////////////////////////////////////////////////////////////////////// | |
# | |
# 1, Introduction | |
# PCD database hold all dynamic type PCD information. The structure of PEI PCD | |
# database is generated by build tools according to dynamic PCD usage for | |
# specified platform. | |
# | |
# 2, Dynamic Type PCD | |
# Dynamic type PCD is used for the configuration/setting which value is determined | |
# dynamic. In contrast, the value of static type PCD (FeatureFlag, FixedPcd, | |
# PatchablePcd) is fixed in final generated FD image in build time. | |
# | |
# 2.1 The "dynamic" determination means one of below cases: | |
# a) The PCD setting value is produced by someone driver and consumed by | |
# other driver in execution time. | |
# b) The PCD setting value is set/get by user from FrontPage. | |
# c) The PCD setting value is produced by platform OEM vendor in specified area. | |
# | |
# 2.2 According to module distribution way, dynamic PCD could be classfied as: | |
# a) Dynamic: | |
# If module is released in source code and will be built with platform | |
# DSC, the dynamic PCD used by this module can be accessed as: | |
# PcdGetxx(PcdSampleDynamicPcd); | |
# In building platform, build tools will translate PcdSampleDynamicPcd to | |
# pair of {Token Space Guid: Token Number} for this PCD. | |
# b) DynamicEx: | |
# If module is release as binary and will not pariticpate platform building, | |
# the dynamic PCD used by this module need be accessed as: | |
# PcdGetxxEx(gEfiMyTokenspaceGuid, PcdSampleDynamicPcd) | |
# Developer need explicity gives {Token Space Guid:Token Number} as parameter | |
# in writting source code. | |
# | |
# 2.3 According to PCD value's storage method, dynamic PCD could be classfied as: | |
# a) Default Storage: | |
# - The PCD value is stored in PCD database maintained by PCD driver in boot | |
# time memory. | |
# - This type is used for communication between PEIM/DXE driver, DXE/DXE | |
# driver. But all set/get value will be losted after boot-time memory | |
# is turn off. | |
# - [PcdsDynamicDefault] is used as section name for this type PCD in | |
# platform DSC file. [PcdsDynamicExDefault] is used for dynamicEx type PCD. | |
# | |
# b) Variable Storage: | |
# - The PCD value is stored in variable area. | |
# - As default storage type, this type PCD could be used for PEI/DXE driver | |
# communication. But beside it, this type PCD could also be used to store | |
# the value associate with a HII setting via variable interface. | |
# - In PEI phase, the PCD value could only be got but can not be set due | |
# to variable area is readonly. | |
# - [PcdsDynamicHii] is used as section name for this type PCD in platform | |
# DSC file. [PcdsDynamicExHii] is for dynamicEx type PCD. | |
# | |
# c) OEM specificed storage area: | |
# - The PCD value is stored in OEM specified area which base address is | |
# specified by PCD setting - PcdVpdBaseAddress64 or PcdVpdBaseAddress. | |
# - The area is read only for PEI and DXE phase. | |
# - [PcdsDynamicVpd] is used as section name for this type PCD in platform | |
# DSC file. [PcdsDynamicExVpd] is for dynamicex type PCD. | |
# | |
# 2.4 When and how to use dynamic PCD | |
# Module developer do not care the used PCD is dynamic or static when writting | |
# source code/INF. Dynamic PCD and dynamic type is pointed by platform integrator | |
# in platform DSC file. Please ref section 2.3 to get matching between dynamic | |
# PCD type and section name in DSC file. | |
# | |
# 3, PCD database: | |
# Although dynamic PCD could be in different storage type as above description, | |
# but the basic information and default value for all dynamic PCD is hold | |
# by PCD database maintained by PEI/DXE driver. | |
# | |
# As the whole EFI BIOS boot path is divided into PEI/DXE phase, the PCD database | |
# also is divided into Pei/Dxe database maintaied by PcdPeim/PcdDxe driver separatly. | |
# To make PcdPeim's driver image smaller, PEI PCD database only hold all dynamic | |
# PCD information used in PEI phase or use in both PEI/DXE phase. And DXE PCD | |
# database contains all PCDs used in PEI/DXE phase in memory. | |
# | |
# Build tool will generate PCD database into the separate binary file for | |
# PEI/DXE PCD driver according to dynamic PCD section in platform DSC file. | |
# | |
# 3.1 PcdPeim and PcdDxe | |
# PEI PCD database is maintained by PcdPeim driver run from flash. PcdPeim driver | |
# build guid hob in temporary memory and copy the binary data base from flash | |
# to temporary memory for PEI PCD database. | |
# DXE PCD database is maintained by PcdDxe driver.At entry point of PcdDxe driver, | |
# a new PCD database is allocated in boot-time memory which including all | |
# PEI PCD and DXE PCD entry. | |
# | |
# Pcd driver should run as early as possible before any other driver access | |
# dynamic PCD's value. PEI/DXE "Apriori File" mechanism make it possible by | |
# making PcdPeim/PcdDxe as first dispatching driver in PEI/DXE phase. | |
# | |
# 3.2 Token space Guid/Token number, Platform token, Local token number | |
# Dynamic PCD | |
# +-----------+ +---------+ | |
# |TokenSpace | |Platform | | |
# | Guid | build tool | Token | | |
# | + +-------------->| Number | | |
# | Token | +---------+`._ | |
# | Number | `. | |
# +-----------+ `. +------+ | |
# `-|Local | | |
# |Token | | |
# DynamicEx PCD ,-|Number| | |
# +-----------+ ,-' +------+ | |
# |TokenSpace | ,-' | |
# | Guid | _,-' | |
# | + +.' | |
# | Token | | |
# | Number | | |
# +-----------+ | |
# | |
# | |
# 3.2.1 Pair of Token space guid + Token number | |
# Any type PCD is identified by pair of "TokenSpaceGuid + TokeNumber". But it | |
# is not easy maintained by PCD driver, and hashed token number will make | |
# searching slowly. | |
# | |
# 3.2.2 Platform Token Number | |
# "Platform token number" concept is introduced for mapping to a pair of | |
# "TokenSpaceGuid + TokenNumber". The platform token number is generated by | |
# build tool in autogen.h and all of them are continual in a platform scope | |
# started from 1.(0 meaning invalid internal token number) | |
# With auto-generated "platform token number", PcdGet(PcdSampleDynamicPcd) | |
# in source code is translated to LibPcdGet(_PCD_TOKEN_PcdSampleDynamicPcd) | |
# in autogen.h. | |
# Notes: The mapping between pair of "tokenspace guid + token number" and | |
# "internal token number" need build tool establish, so "platform token number" | |
# mechanism is not suitable for binary module which use DynamicEx type PCD. | |
# To access a dynamicEx type PCD, pair of "token space guid/token number" all need | |
# to be specificed for PcdSet/PcdGet accessing macro. | |
# | |
# Platform Token Number is started from 1, and inceased continuous. From whole | |
# platform scope, there are two zones: PEI Zone and DXE Zone | |
# | Platform Token Number | |
# ----------|---------------------------------------------------------------- | |
# PEI Zone: | 1 ~ PEI_LOCAL_TOKEN_NUMBER | |
# DXE Zone: | (PEI_LOCAL_TOKEN_NUMBER + 1) ~ (PEI_LOCAL_TOKEN_NUMBER + DXE_LOCAL_TOKEN_NUMBER) | |
# | |
# 3.2.3 Local Token Number | |
# To fast searching a PCD entry in PCD database, PCD driver translate | |
# platform token number to local token number via a mapping table. | |
# For binary DynamicEx type PCD, there is a another mapping table to translate | |
# "token space guid + token number" to local token number directly. | |
# Local token number is identifier for all internal interface in PCD PEI/DXE | |
# driver. | |
# | |
# A local token number is a 32-bit value in following meaning: | |
# 32 ------------- 28 ---------- 24 -------- 0 | |
# | PCD type mask | Datum Type | Offset | | |
# +-----------------------------------------+ | |
# where: | |
# PCd type mask: indicate Pcd type from following macro: | |
# PCD_TYPE_DATA | |
# PCD_TYPE_HII | |
# PCD_TYPE_VPD | |
# PCD_TYPE_STRING | |
# Datum Type : indicate PCD vaue type from following macro: | |
# PCD_DATUM_TYPE_POINTER | |
# PCD_DATUM_TYPE_UINT8 | |
# PCD_DATUM_TYPE_UINT16 | |
# PCD_DATUM_TYPE_UINT32 | |
# PCD_DATUM_TYPE_UINT64 | |
# Offset : indicate the related offset of PCD value in PCD database array. | |
# Based on local token number, PCD driver could fast determine PCD type, value | |
# type and get PCD entry from PCD database. | |
# | |
# 3.3 PCD Database binary file | |
# PCD Database binary file will be created at build time as the standalone binary image. | |
# To understand the binary image layout, PCD Database C structure is still generated | |
# as comments by build tools in PCD driver's autogen.h/ | |
# autogen.c file. In generated C structure, following information is stored: | |
# - ExMapTable: This table is used translate a binary dynamicex type PCD's | |
# "tokenguid + token" to local token number. | |
# - LocalTokenNumberTable: | |
# This table stores all local token number in array, use "Internal | |
# token number" as array index to get PCD entry's offset fastly. | |
# - SizeTable: This table stores the size information for all PCD entry. | |
# - GuidTable: This table stores guid value for DynamicEx's token space, | |
# HII type PCD's variable GUID. | |
# - SkuIdTable: TBD | |
# - SystemSkuId: TBD | |
# - PCD value structure: | |
# Every PCD has a value record in PCD database. For different | |
# datum type PCD has different record structure which will be | |
# introduced in 3.3.1 | |
# | |
# In a PCD database structure, there are two major area: Init and UnInit. | |
# Init area is use stored above PCD internal structure such as ExMapTable, | |
# LocalTokenNumberTable etc and the (default) value of PCD which has default | |
# value specified in platform DSC file. | |
# Unint area is used stored the value of PCD which has no default value in | |
# platform DSC file, the value of NULL, 0 specified in platform DSC file can | |
# be seemed as "no default value". | |
# | |
# 3.3.1 Simple Sample PCD Database C Structure | |
# A general sample of PCD database structue is as follows: | |
# typedef struct _PCD_DATABASE { | |
# typedef struct _PCD_DATABASE_INIT { | |
# //===== Following is PCD database internal maintain structures | |
# DYNAMICEX_MAPPING ExMapTable[PEI_EXMAPPING_TABLE_SIZE]; | |
# UINT32 LocalTokenNumberTable[PEI_LOCAL_TOKEN_NUMBER_TABLE_SIZE]; | |
# GUID GuidTable[PEI_GUID_TABLE_SIZE]; | |
# SIZE_INFO SizeTable[PEI_SIZE_TABLE_SIZE]; | |
# UINT8 SkuIdTable[PEI_SKUID_TABLE_SIZE]; | |
# SKU_ID SystemSkuId; | |
# | |
# //===== Following is value structure for PCD with default value | |
# .... | |
# .... | |
# .... | |
# } Init; | |
# typedef struct _PCD_DATABSE_UNINIT { | |
# //==== Following is value structure for PCD without default value | |
# .... | |
# .... | |
# } UnInit; | |
# } | |
# | |
# 3.3.2 PCD value structure in PCD database C structure | |
# The value's structure is generated by build tool in PCD database C structure. | |
# The PCDs in different datum type has different value structure. | |
# | |
# 3.3.2.1 UINT8/UINT16/UINT32/UINT64 datum type PCD | |
# The C structure for these datum type PCD is just a UINT8/UINT16/UINT32/UINT64 | |
# data member in PCD database, For example: | |
# UINT16 PcdHardwareErrorRecordLevel_d3705011_bc19_4af7_be16_f68030378c15_VariableDefault_0; | |
# Above structure is generated by build tool, the member name is "PcdCName_Guidvalue" | |
# Member type is UINT16 according to PcdHardwareErrorRecordLevel declaration | |
# in DEC file. | |
# | |
# 3.3.2.2 VOID* datum type PCD | |
# The value of VOID* datum type PCD is a UINT8/UINT16 array in PCD database. | |
# | |
# 3.3.2.2.1 VOID* - string type | |
# If the default value for VOID* datum type PCD like L"xxx", the PCD is | |
# used for unicode string, and C structure of this datum type PCD is | |
# UINT16 string array in PCD database, for example: | |
# UINT16 StringTable[29]; | |
# The number of 29 in above sample is max size of a unicode string. | |
# | |
# If the default value for VOID* datum type PCD like "xxx", the PCD is | |
# used for ascii string, and C structure of this datum type PCD is | |
# UINT8 string array in PCD database, for example: | |
# UINT8 StringTable[20]; | |
# The number of 20 in above sample is max size of a ascii string. | |
# | |
# 3.3.2.2.2 VOID* - byte array | |
# If the default value of VOID* datum type PCD like {'0x29', '0x01', '0xf2'} | |
# the PCD is used for byte array. The generated structrue is same as | |
# above ascii string table, | |
# UINT8 StringTable[13]; | |
# The number of 13 in above sample is max size of byte array. | |
# | |
# 3.3.3 Some utility structures in PCD Database | |
# 3.3.3.1 GuidTable | |
# GuidTable array is used to store all related GUID value in PCD database: | |
# - Variable GUID for HII type PCD | |
# - Token space GUID for dynamicex type PCD | |
# | |
# Copyright (c) 2006 - 2018, Intel Corporation. All rights reserved.<BR> | |
# | |
# SPDX-License-Identifier: BSD-2-Clause-Patent | |
# | |
# | |
## | |
[Defines] | |
INF_VERSION = 0x00010005 | |
BASE_NAME = PcdDxe | |
MODULE_UNI_FILE = PcdDxe.uni | |
FILE_GUID = 80CF7257-87AB-47f9-A3FE-D50B76D89541 | |
MODULE_TYPE = DXE_DRIVER | |
VERSION_STRING = 4.0 | |
PCD_IS_DRIVER = DXE_PCD_DRIVER | |
ENTRY_POINT = PcdDxeInit | |
# | |
# The following information is for reference only and not required by the build tools. | |
# | |
# VALID_ARCHITECTURES = IA32 X64 EBC | |
# | |
[Sources] | |
Pcd.c | |
Service.c | |
Service.h | |
[Packages] | |
MdePkg/MdePkg.dec | |
MdeModulePkg/MdeModulePkg.dec | |
[LibraryClasses] | |
UefiRuntimeServicesTableLib | |
BaseMemoryLib | |
UefiBootServicesTableLib | |
MemoryAllocationLib | |
HobLib | |
UefiDriverEntryPoint | |
UefiLib | |
DebugLib | |
BaseLib | |
PcdLib | |
DxeServicesLib | |
[Guids] | |
gPcdDataBaseHobGuid ## SOMETIMES_CONSUMES ## HOB | |
gPcdDataBaseSignatureGuid ## CONSUMES ## GUID # PCD database signature GUID. | |
gEfiMdeModulePkgTokenSpaceGuid ## SOMETIMES_CONSUMES ## GUID | |
[Protocols] | |
gPcdProtocolGuid ## PRODUCES | |
gEfiPcdProtocolGuid ## PRODUCES | |
gGetPcdInfoProtocolGuid ## SOMETIMES_PRODUCES | |
gEfiGetPcdInfoProtocolGuid ## SOMETIMES_PRODUCES | |
## NOTIFY | |
## SOMETIMES_CONSUMES | |
gEdkiiVariableLockProtocolGuid | |
[Pcd] | |
gEfiMdeModulePkgTokenSpaceGuid.PcdVpdBaseAddress ## SOMETIMES_CONSUMES | |
gEfiMdeModulePkgTokenSpaceGuid.PcdVpdBaseAddress64 ## SOMETIMES_CONSUMES | |
gEfiMdeModulePkgTokenSpaceGuid.PcdSetNvStoreDefaultId ## SOMETIMES_CONSUMES | |
[Depex] | |
TRUE | |
[UserExtensions.TianoCore."ExtraFiles"] | |
PcdDxeExtra.uni |