blob: 9acc6fbe20fcfd348e644e66f6901965645d2642 [file] [log] [blame]
/** @file
Copyright (c) 2021, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
#include "CcExitTd.h"
#include <Library/CcExitLib.h>
#include <Library/BaseMemoryLib.h>
#include <IndustryStandard/Tdx.h>
#include <IndustryStandard/InstructionParsing.h>
#include "CcInstruction.h"
#define TDX_MMIO_READ 0
#define TDX_MMIO_WRITE 1
typedef union {
struct {
UINT32 Eax;
UINT32 Edx;
} Regs;
UINT64 Val;
} MSR_DATA;
typedef union {
UINT8 Val;
struct {
UINT8 B : 1;
UINT8 X : 1;
UINT8 R : 1;
UINT8 W : 1;
} Bits;
} REX;
typedef union {
UINT8 Val;
struct {
UINT8 Rm : 3;
UINT8 Reg : 3;
UINT8 Mod : 2;
} Bits;
} MODRM;
typedef struct {
UINT64 Regs[4];
} CPUID_DATA;
/**
Handle an CPUID event.
Use the TDVMCALL instruction to handle cpuid #ve
@param[in, out] Regs x64 processor context
@param[in] Veinfo VE Info
@retval 0 Event handled successfully
@return New exception value to propagate
**/
STATIC
UINT64
EFIAPI
CpuIdExit (
IN EFI_SYSTEM_CONTEXT_X64 *Regs,
IN TDCALL_VEINFO_RETURN_DATA *Veinfo
)
{
CPUID_DATA CpuIdData;
UINT64 Status;
Status = TdVmCallCpuid (Regs->Rax, Regs->Rcx, &CpuIdData);
if (Status == 0) {
Regs->Rax = CpuIdData.Regs[0];
Regs->Rbx = CpuIdData.Regs[1];
Regs->Rcx = CpuIdData.Regs[2];
Regs->Rdx = CpuIdData.Regs[3];
}
return Status;
}
/**
Handle an IO event.
Use the TDVMCALL instruction to handle either an IO read or an IO write.
@param[in, out] Regs x64 processor context
@param[in] Veinfo VE Info
@retval 0 Event handled successfully
@return New exception value to propagate
**/
STATIC
UINT64
EFIAPI
IoExit (
IN OUT EFI_SYSTEM_CONTEXT_X64 *Regs,
IN TDCALL_VEINFO_RETURN_DATA *Veinfo
)
{
BOOLEAN Write;
UINTN Size;
UINTN Port;
UINT64 Val;
UINT64 RepCnt;
UINT64 Status;
Val = 0;
Status = 0;
Write = Veinfo->ExitQualification.Io.Direction ? FALSE : TRUE;
Size = Veinfo->ExitQualification.Io.Size + 1;
Port = Veinfo->ExitQualification.Io.Port;
if (Veinfo->ExitQualification.Io.String) {
//
// If REP is set, get rep-cnt from Rcx
//
RepCnt = Veinfo->ExitQualification.Io.Rep ? Regs->Rcx : 1;
while (RepCnt) {
Val = 0;
if (Write == TRUE) {
CopyMem (&Val, (VOID *)Regs->Rsi, Size);
Regs->Rsi += Size;
}
Status = TdVmCall (EXIT_REASON_IO_INSTRUCTION, Size, Write, Port, Val, (Write ? NULL : &Val));
if (Status != 0) {
break;
}
if (Write == FALSE) {
CopyMem ((VOID *)Regs->Rdi, &Val, Size);
Regs->Rdi += Size;
}
if (Veinfo->ExitQualification.Io.Rep) {
Regs->Rcx -= 1;
}
RepCnt -= 1;
}
} else {
if (Write == TRUE) {
CopyMem (&Val, (VOID *)&Regs->Rax, Size);
}
Status = TdVmCall (EXIT_REASON_IO_INSTRUCTION, Size, Write, Port, Val, (Write ? NULL : &Val));
if ((Status == 0) && (Write == FALSE)) {
CopyMem ((VOID *)&Regs->Rax, &Val, Size);
}
}
return Status;
}
/**
Handle an READ MSR event.
Use the TDVMCALL instruction to handle msr read
@param[in, out] Regs x64 processor context
@param[in] Veinfo VE Info
@retval 0 Event handled successfully
@return New exception value to propagate
**/
STATIC
UINT64
ReadMsrExit (
IN OUT EFI_SYSTEM_CONTEXT_X64 *Regs,
IN TDCALL_VEINFO_RETURN_DATA *Veinfo
)
{
MSR_DATA Data;
UINT64 Status;
Status = TdVmCall (EXIT_REASON_MSR_READ, Regs->Rcx, 0, 0, 0, &Data);
if (Status == 0) {
Regs->Rax = Data.Regs.Eax;
Regs->Rdx = Data.Regs.Edx;
}
return Status;
}
/**
Handle an WRITE MSR event.
Use the TDVMCALL instruction to handle msr write
@param[in, out] Regs x64 processor context
@param[in] Veinfo VE Info
@retval 0 Event handled successfully
@return New exception value to propagate
**/
STATIC
UINT64
WriteMsrExit (
IN OUT EFI_SYSTEM_CONTEXT_X64 *Regs,
IN TDCALL_VEINFO_RETURN_DATA *Veinfo
)
{
UINT64 Status;
MSR_DATA Data;
Data.Regs.Eax = (UINT32)Regs->Rax;
Data.Regs.Edx = (UINT32)Regs->Rdx;
Status = TdVmCall (EXIT_REASON_MSR_WRITE, Regs->Rcx, Data.Val, 0, 0, NULL);
return Status;
}
STATIC
VOID
EFIAPI
TdxDecodeInstruction (
IN UINT8 *Rip,
IN UINT32 Length
)
{
UINTN i;
DEBUG ((DEBUG_INFO, "TDX: #TD[EPT] instruction (%p):", Rip));
for (i = 0; i < MIN (15, Length); i++) {
DEBUG ((DEBUG_INFO, "%02x ", Rip[i]));
}
DEBUG ((DEBUG_INFO, "\n"));
}
#define TDX_DECODER_BUG_ON(x) \
if ((x)) { \
TdxDecodeInstruction(Rip); \
TdVmCall(TDVMCALL_HALT, 0, 0, 0, 0, 0); \
CpuDeadLoop (); \
}
/**
* Tdx MMIO access via TdVmcall.
*
* @param MmioSize Size of the MMIO access
* @param ReadOrWrite Read or write operation
* @param GuestPA Guest physical address
* @param Val Pointer to the value which is read or written
* @retval EFI_SUCCESS Successfully access the mmio
* @retval Others Other errors as indicated
*/
STATIC
EFI_STATUS
TdxMmioReadWrite (
IN UINT32 MmioSize,
IN UINT32 ReadOrWrite,
IN UINT64 GuestPA,
IN UINT64 *Val
)
{
UINT64 TdStatus;
if ((MmioSize != 1) && (MmioSize != 2) && (MmioSize != 4) && (MmioSize != 8)) {
DEBUG ((DEBUG_ERROR, "%a: Invalid MmioSize - %d\n", __func__, MmioSize));
return EFI_INVALID_PARAMETER;
}
if (Val == NULL) {
return EFI_INVALID_PARAMETER;
}
TdStatus = 0;
if (ReadOrWrite == TDX_MMIO_READ) {
TdStatus = TdVmCall (TDVMCALL_MMIO, MmioSize, TDX_MMIO_READ, GuestPA, 0, Val);
} else if (ReadOrWrite == TDX_MMIO_WRITE) {
TdStatus = TdVmCall (TDVMCALL_MMIO, MmioSize, TDX_MMIO_WRITE, GuestPA, *Val, 0);
} else {
return EFI_INVALID_PARAMETER;
}
if (TdStatus != 0) {
DEBUG ((DEBUG_ERROR, "%a: TdVmcall failed with %llx\n", __func__, TdStatus));
return EFI_ABORTED;
}
return EFI_SUCCESS;
}
typedef struct {
UINT8 OpCode;
UINT32 Bytes;
EFI_PHYSICAL_ADDRESS Address;
UINT64 Val;
UINT64 *Register;
UINT32 ReadOrWrite;
} MMIO_EXIT_PARSED_INSTRUCTION;
/**
* Parse the MMIO instructions.
*
* @param Regs Pointer to the EFI_SYSTEM_CONTEXT_X64 which includes the instructions
* @param InstructionData Pointer to the CC_INSTRUCTION_DATA
* @param ParsedInstruction Pointer to the parsed instruction data
*
* @retval EFI_SUCCESS Successfully parsed the instructions
* @retval Others Other error as indicated
*/
STATIC
EFI_STATUS
ParseMmioExitInstructions (
IN OUT EFI_SYSTEM_CONTEXT_X64 *Regs,
IN OUT CC_INSTRUCTION_DATA *InstructionData,
OUT MMIO_EXIT_PARSED_INSTRUCTION *ParsedInstruction
)
{
EFI_STATUS Status;
UINT8 OpCode;
UINT8 SignByte;
UINT32 Bytes;
EFI_PHYSICAL_ADDRESS Address;
UINT64 Val;
UINT64 *Register;
UINT32 ReadOrWrite;
Address = 0;
Bytes = 0;
Register = NULL;
Status = EFI_SUCCESS;
Val = 0;
Status = CcInitInstructionData (InstructionData, NULL, Regs);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "%a: Initialize InstructionData failed! (%r)\n", __func__, Status));
return Status;
}
OpCode = *(InstructionData->OpCodes);
if (OpCode == TWO_BYTE_OPCODE_ESCAPE) {
OpCode = *(InstructionData->OpCodes + 1);
}
switch (OpCode) {
//
// MMIO write (MOV reg/memX, regX)
//
case 0x88:
Bytes = 1;
//
// fall through
//
case 0x89:
CcDecodeModRm (Regs, InstructionData);
Bytes = ((Bytes != 0) ? Bytes :
(InstructionData->DataSize == Size16Bits) ? 2 :
(InstructionData->DataSize == Size32Bits) ? 4 :
(InstructionData->DataSize == Size64Bits) ? 8 :
0);
if (InstructionData->Ext.ModRm.Mod == 3) {
DEBUG ((DEBUG_ERROR, "%a: Parse Ext.ModRm.Mod error! (OpCode: 0x%x)\n", __func__, OpCode));
return EFI_UNSUPPORTED;
}
Address = InstructionData->Ext.RmData;
Val = InstructionData->Ext.RegData;
ReadOrWrite = TDX_MMIO_WRITE;
break;
//
// MMIO write (MOV moffsetX, aX)
//
case 0xA2:
Bytes = 1;
//
// fall through
//
case 0xA3:
Bytes = ((Bytes != 0) ? Bytes :
(InstructionData->DataSize == Size16Bits) ? 2 :
(InstructionData->DataSize == Size32Bits) ? 4 :
(InstructionData->DataSize == Size64Bits) ? 8 :
0);
InstructionData->ImmediateSize = (UINTN)(1 << InstructionData->AddrSize);
InstructionData->End += InstructionData->ImmediateSize;
CopyMem (&Address, InstructionData->Immediate, InstructionData->ImmediateSize);
Val = Regs->Rax;
ReadOrWrite = TDX_MMIO_WRITE;
break;
//
// MMIO write (MOV reg/memX, immX)
//
case 0xC6:
Bytes = 1;
//
// fall through
//
case 0xC7:
CcDecodeModRm (Regs, InstructionData);
Bytes = ((Bytes != 0) ? Bytes :
(InstructionData->DataSize == Size16Bits) ? 2 :
(InstructionData->DataSize == Size32Bits) ? 4 :
(InstructionData->DataSize == Size64Bits) ? 8 :
0);
InstructionData->ImmediateSize = Bytes;
InstructionData->End += Bytes;
Val = 0;
CopyMem (&Val, InstructionData->Immediate, InstructionData->ImmediateSize);
Address = InstructionData->Ext.RmData;
ReadOrWrite = TDX_MMIO_WRITE;
break;
//
// MMIO read (MOV regX, reg/memX)
//
case 0x8A:
Bytes = 1;
//
// fall through
//
case 0x8B:
CcDecodeModRm (Regs, InstructionData);
Bytes = ((Bytes != 0) ? Bytes :
(InstructionData->DataSize == Size16Bits) ? 2 :
(InstructionData->DataSize == Size32Bits) ? 4 :
(InstructionData->DataSize == Size64Bits) ? 8 :
0);
if (InstructionData->Ext.ModRm.Mod == 3) {
//
// NPF on two register operands???
//
DEBUG ((DEBUG_ERROR, "%a: Parse Ext.ModRm.Mod error! (OpCode: 0x%x)\n", __func__, OpCode));
return EFI_UNSUPPORTED;
}
Address = InstructionData->Ext.RmData;
ReadOrWrite = TDX_MMIO_READ;
Register = CcGetRegisterPointer (Regs, InstructionData->Ext.ModRm.Reg);
if (Register == NULL) {
return EFI_ABORTED;
}
if (Bytes == 4) {
//
// Zero-extend for 32-bit operation
//
*Register = 0;
}
break;
//
// MMIO read (MOV aX, moffsetX)
//
case 0xA0:
Bytes = 1;
//
// fall through
//
case 0xA1:
Bytes = ((Bytes != 0) ? Bytes :
(InstructionData->DataSize == Size16Bits) ? 2 :
(InstructionData->DataSize == Size32Bits) ? 4 :
(InstructionData->DataSize == Size64Bits) ? 8 :
0);
InstructionData->ImmediateSize = (UINTN)(1 << InstructionData->AddrSize);
InstructionData->End += InstructionData->ImmediateSize;
Address = 0;
CopyMem (
&Address,
InstructionData->Immediate,
InstructionData->ImmediateSize
);
if (Bytes == 4) {
//
// Zero-extend for 32-bit operation
//
Regs->Rax = 0;
}
Register = &Regs->Rax;
ReadOrWrite = TDX_MMIO_READ;
break;
//
// MMIO read w/ zero-extension ((MOVZX regX, reg/memX)
//
case 0xB6:
Bytes = 1;
//
// fall through
//
case 0xB7:
CcDecodeModRm (Regs, InstructionData);
Bytes = (Bytes != 0) ? Bytes : 2;
Address = InstructionData->Ext.RmData;
Register = CcGetRegisterPointer (Regs, InstructionData->Ext.ModRm.Reg);
if (Register == NULL) {
return EFI_ABORTED;
}
SetMem (Register, (UINTN)(1 << InstructionData->DataSize), 0);
ReadOrWrite = TDX_MMIO_READ;
break;
//
// MMIO read w/ sign-extension (MOVSX regX, reg/memX)
//
case 0xBE:
Bytes = 1;
//
// fall through
//
case 0xBF:
CcDecodeModRm (Regs, InstructionData);
Bytes = (Bytes != 0) ? Bytes : 2;
Address = InstructionData->Ext.RmData;
if (Bytes == 1) {
UINT8 *Data;
Data = (UINT8 *)&Val;
SignByte = ((*Data & BIT7) != 0) ? 0xFF : 0x00;
} else {
UINT16 *Data;
Data = (UINT16 *)&Val;
SignByte = ((*Data & BIT15) != 0) ? 0xFF : 0x00;
}
Register = CcGetRegisterPointer (Regs, InstructionData->Ext.ModRm.Reg);
if (Register == NULL) {
return EFI_ABORTED;
}
SetMem (Register, (UINTN)(1 << InstructionData->DataSize), SignByte);
ReadOrWrite = TDX_MMIO_READ;
break;
default:
DEBUG ((DEBUG_ERROR, "%a: Invalid MMIO opcode (%x)\n", __func__, OpCode));
Status = EFI_UNSUPPORTED;
}
if (!EFI_ERROR (Status)) {
ParsedInstruction->OpCode = OpCode;
ParsedInstruction->Address = Address;
ParsedInstruction->Bytes = Bytes;
ParsedInstruction->Register = Register;
ParsedInstruction->Val = Val;
ParsedInstruction->ReadOrWrite = ReadOrWrite;
}
return Status;
}
/**
Handle an MMIO event.
Use the TDVMCALL instruction to handle either an mmio read or an mmio write.
@param[in, out] Regs x64 processor context
@param[in] Veinfo VE Info
@retval 0 Event handled successfully
**/
STATIC
UINT64
EFIAPI
MmioExit (
IN OUT EFI_SYSTEM_CONTEXT_X64 *Regs,
IN TDCALL_VEINFO_RETURN_DATA *Veinfo
)
{
UINT64 TdStatus;
EFI_STATUS Status;
TD_RETURN_DATA TdReturnData;
UINT8 Gpaw;
UINT64 Val;
UINT64 TdSharedPageMask;
CC_INSTRUCTION_DATA InstructionData;
MMIO_EXIT_PARSED_INSTRUCTION ParsedInstruction;
TdStatus = TdCall (TDCALL_TDINFO, 0, 0, 0, &TdReturnData);
if (TdStatus == TDX_EXIT_REASON_SUCCESS) {
Gpaw = (UINT8)(TdReturnData.TdInfo.Gpaw & 0x3f);
TdSharedPageMask = 1ULL << (Gpaw - 1);
} else {
DEBUG ((DEBUG_ERROR, "%a: TDCALL failed with status=%llx\n", __func__, TdStatus));
goto FatalError;
}
if ((Veinfo->GuestPA & TdSharedPageMask) == 0) {
DEBUG ((DEBUG_ERROR, "%a: EPT-violation #VE on private memory is not allowed!", __func__));
goto FatalError;
}
Status = ParseMmioExitInstructions (Regs, &InstructionData, &ParsedInstruction);
if (EFI_ERROR (Status)) {
goto FatalError;
}
if (Veinfo->GuestPA != (ParsedInstruction.Address | TdSharedPageMask)) {
DEBUG ((
DEBUG_ERROR,
"%a: Address is not correct! (%d: 0x%llx != 0x%llx)\n",
__func__,
ParsedInstruction.OpCode,
Veinfo->GuestPA,
ParsedInstruction.Address
));
goto FatalError;
}
if (ParsedInstruction.ReadOrWrite == TDX_MMIO_WRITE ) {
Status = TdxMmioReadWrite (ParsedInstruction.Bytes, TDX_MMIO_WRITE, Veinfo->GuestPA, &ParsedInstruction.Val);
} else if (ParsedInstruction.ReadOrWrite == TDX_MMIO_READ) {
Val = 0;
Status = TdxMmioReadWrite (ParsedInstruction.Bytes, TDX_MMIO_READ, Veinfo->GuestPA, &Val);
if (!EFI_ERROR (Status)) {
CopyMem (ParsedInstruction.Register, &Val, ParsedInstruction.Bytes);
}
} else {
goto FatalError;
}
if (EFI_ERROR (Status)) {
goto FatalError;
}
//
// We change instruction length to reflect true size so handler can
// bump rip
//
Veinfo->ExitInstructionLength = (UINT32)(CcInstructionLength (&InstructionData));
TdxDecodeInstruction ((UINT8 *)Regs->Rip, Veinfo->ExitInstructionLength);
return 0;
FatalError:
TdVmCall (TDVMCALL_HALT, 0, 0, 0, 0, 0);
CpuDeadLoop ();
return 0;
}
/**
Handle a #VE exception.
Performs the necessary processing to handle a #VE exception.
@param[in, out] ExceptionType Pointer to an EFI_EXCEPTION_TYPE to be set
as value to use on error.
@param[in, out] SystemContext Pointer to EFI_SYSTEM_CONTEXT
@retval EFI_SUCCESS Exception handled
@retval EFI_UNSUPPORTED #VE not supported, (new) exception value to
propagate provided
@retval EFI_PROTOCOL_ERROR #VE handling failed, (new) exception value to
propagate provided
**/
EFI_STATUS
EFIAPI
CcExitHandleVe (
IN OUT EFI_EXCEPTION_TYPE *ExceptionType,
IN OUT EFI_SYSTEM_CONTEXT SystemContext
)
{
UINT64 Status;
TD_RETURN_DATA ReturnData;
EFI_SYSTEM_CONTEXT_X64 *Regs;
Regs = SystemContext.SystemContextX64;
Status = TdCall (TDCALL_TDGETVEINFO, 0, 0, 0, &ReturnData);
ASSERT (Status == 0);
if (Status != 0) {
DEBUG ((DEBUG_ERROR, "#VE happened. TDGETVEINFO failed with Status = 0x%llx\n", Status));
TdVmCall (TDVMCALL_HALT, 0, 0, 0, 0, 0);
CpuDeadLoop ();
}
switch (ReturnData.VeInfo.ExitReason) {
case EXIT_REASON_CPUID:
Status = CpuIdExit (Regs, &ReturnData.VeInfo);
DEBUG ((
DEBUG_VERBOSE,
"CPUID #VE happened, ExitReasion is %d, ExitQualification = 0x%x.\n",
ReturnData.VeInfo.ExitReason,
ReturnData.VeInfo.ExitQualification.Val
));
break;
case EXIT_REASON_HLT:
Status = TdVmCall (EXIT_REASON_HLT, 0, 0, 0, 0, 0);
break;
case EXIT_REASON_IO_INSTRUCTION:
Status = IoExit (Regs, &ReturnData.VeInfo);
DEBUG ((
DEBUG_VERBOSE,
"IO_Instruction #VE happened, ExitReasion is %d, ExitQualification = 0x%x.\n",
ReturnData.VeInfo.ExitReason,
ReturnData.VeInfo.ExitQualification.Val
));
break;
case EXIT_REASON_MSR_READ:
Status = ReadMsrExit (Regs, &ReturnData.VeInfo);
DEBUG ((
DEBUG_VERBOSE,
"RDMSR #VE happened, ExitReasion is %d, ExitQualification = 0x%x. Regs->Rcx=0x%llx, Status = 0x%llx\n",
ReturnData.VeInfo.ExitReason,
ReturnData.VeInfo.ExitQualification.Val,
Regs->Rcx,
Status
));
break;
case EXIT_REASON_MSR_WRITE:
Status = WriteMsrExit (Regs, &ReturnData.VeInfo);
DEBUG ((
DEBUG_VERBOSE,
"WRMSR #VE happened, ExitReasion is %d, ExitQualification = 0x%x. Regs->Rcx=0x%llx, Status = 0x%llx\n",
ReturnData.VeInfo.ExitReason,
ReturnData.VeInfo.ExitQualification.Val,
Regs->Rcx,
Status
));
break;
case EXIT_REASON_EPT_VIOLATION:
Status = MmioExit (Regs, &ReturnData.VeInfo);
DEBUG ((
DEBUG_VERBOSE,
"MMIO #VE happened, ExitReasion is %d, ExitQualification = 0x%x.\n",
ReturnData.VeInfo.ExitReason,
ReturnData.VeInfo.ExitQualification.Val
));
break;
case EXIT_REASON_VMCALL:
case EXIT_REASON_MWAIT_INSTRUCTION:
case EXIT_REASON_MONITOR_INSTRUCTION:
case EXIT_REASON_WBINVD:
case EXIT_REASON_RDPMC:
case EXIT_REASON_INVD:
/* Handle as nops. */
break;
default:
DEBUG ((
DEBUG_ERROR,
"Unsupported #VE happened, ExitReason is %d, ExitQualification = 0x%x.\n",
ReturnData.VeInfo.ExitReason,
ReturnData.VeInfo.ExitQualification.Val
));
ASSERT (FALSE);
CpuDeadLoop ();
}
if (Status) {
DEBUG ((
DEBUG_ERROR,
"#VE Error (0x%llx) returned from host, ExitReason is %d, ExitQualification = 0x%x.\n",
Status,
ReturnData.VeInfo.ExitReason,
ReturnData.VeInfo.ExitQualification.Val
));
TdVmCall (TDVMCALL_HALT, 0, 0, 0, 0, 0);
CpuDeadLoop ();
}
SystemContext.SystemContextX64->Rip += ReturnData.VeInfo.ExitInstructionLength;
return EFI_SUCCESS;
}