/** @file | |
Construct MP Services Protocol on top of the EMU Thread protocol. | |
This code makes APs show up in the emulator. PcdEmuApCount is the | |
number of APs the emulator should produce. | |
The MP Services Protocol provides a generalized way of performing following tasks: | |
- Retrieving information of multi-processor environment and MP-related status of | |
specific processors. | |
- Dispatching user-provided function to APs. | |
- Maintain MP-related processor status. | |
The MP Services Protocol must be produced on any system with more than one logical | |
processor. | |
The Protocol is available only during boot time. | |
MP Services Protocol is hardware-independent. Most of the logic of this protocol | |
is architecturally neutral. It abstracts the multi-processor environment and | |
status of processors, and provides interfaces to retrieve information, maintain, | |
and dispatch. | |
MP Services Protocol may be consumed by ACPI module. The ACPI module may use this | |
protocol to retrieve data that are needed for an MP platform and report them to OS. | |
MP Services Protocol may also be used to program and configure processors, such | |
as MTRR synchronization for memory space attributes setting in DXE Services. | |
MP Services Protocol may be used by non-CPU DXE drivers to speed up platform boot | |
by taking advantage of the processing capabilities of the APs, for example, using | |
APs to help test system memory in parallel with other device initialization. | |
Diagnostics applications may also use this protocol for multi-processor. | |
Copyright (c) 2006 - 2012, Intel Corporation. All rights reserved.<BR> | |
Portitions Copyright (c) 2011, Apple Inc. All rights reserved. | |
SPDX-License-Identifier: BSD-2-Clause-Patent | |
**/ | |
#include "CpuDriver.h" | |
MP_SYSTEM_DATA gMPSystem; | |
EMU_THREAD_THUNK_PROTOCOL *gThread = NULL; | |
EFI_EVENT gReadToBootEvent; | |
BOOLEAN gReadToBoot = FALSE; | |
UINTN gPollInterval; | |
BOOLEAN | |
IsBSP ( | |
VOID | |
) | |
{ | |
EFI_STATUS Status; | |
UINTN ProcessorNumber; | |
Status = CpuMpServicesWhoAmI (&mMpServicesTemplate, &ProcessorNumber); | |
if (EFI_ERROR (Status)) { | |
return FALSE; | |
} | |
return (gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0; | |
} | |
VOID | |
SetApProcedure ( | |
IN PROCESSOR_DATA_BLOCK *Processor, | |
IN EFI_AP_PROCEDURE Procedure, | |
IN VOID *ProcedureArgument | |
) | |
{ | |
gThread->MutexLock (Processor->ProcedureLock); | |
Processor->Parameter = ProcedureArgument; | |
Processor->Procedure = Procedure; | |
gThread->MutexUnlock (Processor->ProcedureLock); | |
} | |
EFI_STATUS | |
GetNextBlockedNumber ( | |
OUT UINTN *NextNumber | |
) | |
{ | |
UINTN Number; | |
PROCESSOR_STATE ProcessorState; | |
PROCESSOR_DATA_BLOCK *Data; | |
for (Number = 0; Number < gMPSystem.NumberOfProcessors; Number++) { | |
Data = &gMPSystem.ProcessorData[Number]; | |
if ((Data->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0) { | |
// Skip BSP | |
continue; | |
} | |
gThread->MutexLock (Data->StateLock); | |
ProcessorState = Data->State; | |
gThread->MutexUnlock (Data->StateLock); | |
if (ProcessorState == CPU_STATE_BLOCKED) { | |
*NextNumber = Number; | |
return EFI_SUCCESS; | |
} | |
} | |
return EFI_NOT_FOUND; | |
} | |
/** | |
* Calculated and stalled the interval time by BSP to check whether | |
* the APs have finished. | |
* | |
* @param[in] Timeout The time limit in microseconds for | |
* APs to return from Procedure. | |
* | |
* @retval StallTime Time of execution stall. | |
**/ | |
UINTN | |
CalculateAndStallInterval ( | |
IN UINTN Timeout | |
) | |
{ | |
UINTN StallTime; | |
if (Timeout < gPollInterval && Timeout != 0) { | |
StallTime = Timeout; | |
} else { | |
StallTime = gPollInterval; | |
} | |
gBS->Stall (StallTime); | |
return StallTime; | |
} | |
/** | |
This service retrieves the number of logical processor in the platform | |
and the number of those logical processors that are enabled on this boot. | |
This service may only be called from the BSP. | |
This function is used to retrieve the following information: | |
- The number of logical processors that are present in the system. | |
- The number of enabled logical processors in the system at the instant | |
this call is made. | |
Because MP Service Protocol provides services to enable and disable processors | |
dynamically, the number of enabled logical processors may vary during the | |
course of a boot session. | |
If this service is called from an AP, then EFI_DEVICE_ERROR is returned. | |
If NumberOfProcessors or NumberOfEnabledProcessors is NULL, then | |
EFI_INVALID_PARAMETER is returned. Otherwise, the total number of processors | |
is returned in NumberOfProcessors, the number of currently enabled processor | |
is returned in NumberOfEnabledProcessors, and EFI_SUCCESS is returned. | |
@param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL | |
instance. | |
@param[out] NumberOfProcessors Pointer to the total number of logical | |
processors in the system, including the BSP | |
and disabled APs. | |
@param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical | |
processors that exist in system, including | |
the BSP. | |
@retval EFI_SUCCESS The number of logical processors and enabled | |
logical processors was retrieved. | |
@retval EFI_DEVICE_ERROR The calling processor is an AP. | |
@retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL. | |
@retval EFI_INVALID_PARAMETER NumberOfEnabledProcessors is NULL. | |
**/ | |
EFI_STATUS | |
EFIAPI | |
CpuMpServicesGetNumberOfProcessors ( | |
IN EFI_MP_SERVICES_PROTOCOL *This, | |
OUT UINTN *NumberOfProcessors, | |
OUT UINTN *NumberOfEnabledProcessors | |
) | |
{ | |
if ((NumberOfProcessors == NULL) || (NumberOfEnabledProcessors == NULL)) { | |
return EFI_INVALID_PARAMETER; | |
} | |
if (!IsBSP ()) { | |
return EFI_DEVICE_ERROR; | |
} | |
*NumberOfProcessors = gMPSystem.NumberOfProcessors; | |
*NumberOfEnabledProcessors = gMPSystem.NumberOfEnabledProcessors; | |
return EFI_SUCCESS; | |
} | |
/** | |
Gets detailed MP-related information on the requested processor at the | |
instant this call is made. This service may only be called from the BSP. | |
This service retrieves detailed MP-related information about any processor | |
on the platform. Note the following: | |
- The processor information may change during the course of a boot session. | |
- The information presented here is entirely MP related. | |
Information regarding the number of caches and their sizes, frequency of operation, | |
slot numbers is all considered platform-related information and is not provided | |
by this service. | |
@param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL | |
instance. | |
@param[in] ProcessorNumber The handle number of processor. | |
@param[out] ProcessorInfoBuffer A pointer to the buffer where information for | |
the requested processor is deposited. | |
@retval EFI_SUCCESS Processor information was returned. | |
@retval EFI_DEVICE_ERROR The calling processor is an AP. | |
@retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL. | |
@retval EFI_NOT_FOUND The processor with the handle specified by | |
ProcessorNumber does not exist in the platform. | |
**/ | |
EFI_STATUS | |
EFIAPI | |
CpuMpServicesGetProcessorInfo ( | |
IN EFI_MP_SERVICES_PROTOCOL *This, | |
IN UINTN ProcessorNumber, | |
OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer | |
) | |
{ | |
if (ProcessorInfoBuffer == NULL) { | |
return EFI_INVALID_PARAMETER; | |
} | |
if (!IsBSP ()) { | |
return EFI_DEVICE_ERROR; | |
} | |
if (ProcessorNumber >= gMPSystem.NumberOfProcessors) { | |
return EFI_NOT_FOUND; | |
} | |
CopyMem (ProcessorInfoBuffer, &gMPSystem.ProcessorData[ProcessorNumber], sizeof (EFI_PROCESSOR_INFORMATION)); | |
return EFI_SUCCESS; | |
} | |
/** | |
This service executes a caller provided function on all enabled APs. APs can | |
run either simultaneously or one at a time in sequence. This service supports | |
both blocking and non-blocking requests. The non-blocking requests use EFI | |
events so the BSP can detect when the APs have finished. This service may only | |
be called from the BSP. | |
This function is used to dispatch all the enabled APs to the function specified | |
by Procedure. If any enabled AP is busy, then EFI_NOT_READY is returned | |
immediately and Procedure is not started on any AP. | |
If SingleThread is TRUE, all the enabled APs execute the function specified by | |
Procedure one by one, in ascending order of processor handle number. Otherwise, | |
all the enabled APs execute the function specified by Procedure simultaneously. | |
If WaitEvent is NULL, execution is in blocking mode. The BSP waits until all | |
APs finish or TimeoutInMicroseconds expires. Otherwise, execution is in non-blocking | |
mode, and the BSP returns from this service without waiting for APs. If a | |
non-blocking mode is requested after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT | |
is signaled, then EFI_UNSUPPORTED must be returned. | |
If the timeout specified by TimeoutInMicroseconds expires before all APs return | |
from Procedure, then Procedure on the failed APs is terminated. All enabled APs | |
are always available for further calls to EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() | |
and EFI_MP_SERVICES_PROTOCOL.StartupThisAP(). If FailedCpuList is not NULL, its | |
content points to the list of processor handle numbers in which Procedure was | |
terminated. | |
Note: It is the responsibility of the consumer of the EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() | |
to make sure that the nature of the code that is executed on the BSP and the | |
dispatched APs is well controlled. The MP Services Protocol does not guarantee | |
that the Procedure function is MP-safe. Hence, the tasks that can be run in | |
parallel are limited to certain independent tasks and well-controlled exclusive | |
code. EFI services and protocols may not be called by APs unless otherwise | |
specified. | |
In blocking execution mode, BSP waits until all APs finish or | |
TimeoutInMicroseconds expires. | |
In non-blocking execution mode, BSP is freed to return to the caller and then | |
proceed to the next task without having to wait for APs. The following | |
sequence needs to occur in a non-blocking execution mode: | |
-# The caller that intends to use this MP Services Protocol in non-blocking | |
mode creates WaitEvent by calling the EFI CreateEvent() service. The caller | |
invokes EFI_MP_SERVICES_PROTOCOL.StartupAllAPs(). If the parameter WaitEvent | |
is not NULL, then StartupAllAPs() executes in non-blocking mode. It requests | |
the function specified by Procedure to be started on all the enabled APs, | |
and releases the BSP to continue with other tasks. | |
-# The caller can use the CheckEvent() and WaitForEvent() services to check | |
the state of the WaitEvent created in step 1. | |
-# When the APs complete their task or TimeoutInMicroSecondss expires, the MP | |
Service signals WaitEvent by calling the EFI SignalEvent() function. If | |
FailedCpuList is not NULL, its content is available when WaitEvent is | |
signaled. If all APs returned from Procedure prior to the timeout, then | |
FailedCpuList is set to NULL. If not all APs return from Procedure before | |
the timeout, then FailedCpuList is filled in with the list of the failed | |
APs. The buffer is allocated by MP Service Protocol using AllocatePool(). | |
It is the caller's responsibility to free the buffer with FreePool() service. | |
-# This invocation of SignalEvent() function informs the caller that invoked | |
EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() that either all the APs completed | |
the specified task or a timeout occurred. The contents of FailedCpuList | |
can be examined to determine which APs did not complete the specified task | |
prior to the timeout. | |
@param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL | |
instance. | |
@param[in] Procedure A pointer to the function to be run on | |
enabled APs of the system. See type | |
EFI_AP_PROCEDURE. | |
@param[in] SingleThread If TRUE, then all the enabled APs execute | |
the function specified by Procedure one by | |
one, in ascending order of processor handle | |
number. If FALSE, then all the enabled APs | |
execute the function specified by Procedure | |
simultaneously. | |
@param[in] WaitEvent The event created by the caller with CreateEvent() | |
service. If it is NULL, then execute in | |
blocking mode. BSP waits until all APs finish | |
or TimeoutInMicroseconds expires. If it's | |
not NULL, then execute in non-blocking mode. | |
BSP requests the function specified by | |
Procedure to be started on all the enabled | |
APs, and go on executing immediately. If | |
all return from Procedure, or TimeoutInMicroseconds | |
expires, this event is signaled. The BSP | |
can use the CheckEvent() or WaitForEvent() | |
services to check the state of event. Type | |
EFI_EVENT is defined in CreateEvent() in | |
the Unified Extensible Firmware Interface | |
Specification. | |
@param[in] TimeoutInMicrosecsond Indicates the time limit in microseconds for | |
APs to return from Procedure, either for | |
blocking or non-blocking mode. Zero means | |
infinity. If the timeout expires before | |
all APs return from Procedure, then Procedure | |
on the failed APs is terminated. All enabled | |
APs are available for next function assigned | |
by EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() | |
or EFI_MP_SERVICES_PROTOCOL.StartupThisAP(). | |
If the timeout expires in blocking mode, | |
BSP returns EFI_TIMEOUT. If the timeout | |
expires in non-blocking mode, WaitEvent | |
is signaled with SignalEvent(). | |
@param[in] ProcedureArgument The parameter passed into Procedure for | |
all APs. | |
@param[out] FailedCpuList If NULL, this parameter is ignored. Otherwise, | |
if all APs finish successfully, then its | |
content is set to NULL. If not all APs | |
finish before timeout expires, then its | |
content is set to address of the buffer | |
holding handle numbers of the failed APs. | |
The buffer is allocated by MP Service Protocol, | |
and it's the caller's responsibility to | |
free the buffer with FreePool() service. | |
In blocking mode, it is ready for consumption | |
when the call returns. In non-blocking mode, | |
it is ready when WaitEvent is signaled. The | |
list of failed CPU is terminated by | |
END_OF_CPU_LIST. | |
@retval EFI_SUCCESS In blocking mode, all APs have finished before | |
the timeout expired. | |
@retval EFI_SUCCESS In non-blocking mode, function has been dispatched | |
to all enabled APs. | |
@retval EFI_UNSUPPORTED A non-blocking mode request was made after the | |
UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was | |
signaled. | |
@retval EFI_DEVICE_ERROR Caller processor is AP. | |
@retval EFI_NOT_STARTED No enabled APs exist in the system. | |
@retval EFI_NOT_READY Any enabled APs are busy. | |
@retval EFI_TIMEOUT In blocking mode, the timeout expired before | |
all enabled APs have finished. | |
@retval EFI_INVALID_PARAMETER Procedure is NULL. | |
**/ | |
EFI_STATUS | |
EFIAPI | |
CpuMpServicesStartupAllAps ( | |
IN EFI_MP_SERVICES_PROTOCOL *This, | |
IN EFI_AP_PROCEDURE Procedure, | |
IN BOOLEAN SingleThread, | |
IN EFI_EVENT WaitEvent OPTIONAL, | |
IN UINTN TimeoutInMicroseconds, | |
IN VOID *ProcedureArgument OPTIONAL, | |
OUT UINTN **FailedCpuList OPTIONAL | |
) | |
{ | |
EFI_STATUS Status; | |
PROCESSOR_DATA_BLOCK *ProcessorData; | |
UINTN Number; | |
UINTN NextNumber; | |
PROCESSOR_STATE APInitialState; | |
PROCESSOR_STATE ProcessorState; | |
UINTN Timeout; | |
if (!IsBSP ()) { | |
return EFI_DEVICE_ERROR; | |
} | |
if (gMPSystem.NumberOfProcessors == 1) { | |
return EFI_NOT_STARTED; | |
} | |
if (Procedure == NULL) { | |
return EFI_INVALID_PARAMETER; | |
} | |
if ((WaitEvent != NULL) && gReadToBoot) { | |
return EFI_UNSUPPORTED; | |
} | |
for (Number = 0; Number < gMPSystem.NumberOfProcessors; Number++) { | |
ProcessorData = &gMPSystem.ProcessorData[Number]; | |
if ((ProcessorData->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) { | |
// Skip BSP | |
continue; | |
} | |
if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) { | |
// Skip Disabled processors | |
continue; | |
} | |
gThread->MutexLock(ProcessorData->StateLock); | |
if (ProcessorData->State != CPU_STATE_IDLE) { | |
gThread->MutexUnlock (ProcessorData->StateLock); | |
return EFI_NOT_READY; | |
} | |
gThread->MutexUnlock(ProcessorData->StateLock); | |
} | |
if (FailedCpuList != NULL) { | |
gMPSystem.FailedList = AllocatePool ((gMPSystem.NumberOfProcessors + 1) * sizeof (UINTN)); | |
if (gMPSystem.FailedList == NULL) { | |
return EFI_OUT_OF_RESOURCES; | |
} | |
SetMemN (gMPSystem.FailedList, (gMPSystem.NumberOfProcessors + 1) * sizeof (UINTN), END_OF_CPU_LIST); | |
gMPSystem.FailedListIndex = 0; | |
*FailedCpuList = gMPSystem.FailedList; | |
} | |
Timeout = TimeoutInMicroseconds; | |
ProcessorData = NULL; | |
gMPSystem.FinishCount = 0; | |
gMPSystem.StartCount = 0; | |
gMPSystem.SingleThread = SingleThread; | |
APInitialState = CPU_STATE_READY; | |
for (Number = 0; Number < gMPSystem.NumberOfProcessors; Number++) { | |
ProcessorData = &gMPSystem.ProcessorData[Number]; | |
if ((ProcessorData->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) { | |
// Skip BSP | |
continue; | |
} | |
if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) { | |
// Skip Disabled processors | |
gMPSystem.FailedList[gMPSystem.FailedListIndex++] = Number; | |
continue; | |
} | |
// | |
// Get APs prepared, and put failing APs into FailedCpuList | |
// if "SingleThread", only 1 AP will put to ready state, other AP will be put to ready | |
// state 1 by 1, until the previous 1 finished its task | |
// if not "SingleThread", all APs are put to ready state from the beginning | |
// | |
gThread->MutexLock(ProcessorData->StateLock); | |
ASSERT (ProcessorData->State == CPU_STATE_IDLE); | |
ProcessorData->State = APInitialState; | |
gThread->MutexUnlock (ProcessorData->StateLock); | |
gMPSystem.StartCount++; | |
if (SingleThread) { | |
APInitialState = CPU_STATE_BLOCKED; | |
} | |
} | |
if (WaitEvent != NULL) { | |
for (Number = 0; Number < gMPSystem.NumberOfProcessors; Number++) { | |
ProcessorData = &gMPSystem.ProcessorData[Number]; | |
if ((ProcessorData->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) { | |
// Skip BSP | |
continue; | |
} | |
if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) { | |
// Skip Disabled processors | |
continue; | |
} | |
gThread->MutexLock (ProcessorData->StateLock); | |
ProcessorState = ProcessorData->State; | |
gThread->MutexUnlock (ProcessorData->StateLock); | |
if (ProcessorState == CPU_STATE_READY) { | |
SetApProcedure (ProcessorData, Procedure, ProcedureArgument); | |
} | |
} | |
// | |
// Save data into private data structure, and create timer to poll AP state before exiting | |
// | |
gMPSystem.Procedure = Procedure; | |
gMPSystem.ProcedureArgument = ProcedureArgument; | |
gMPSystem.WaitEvent = WaitEvent; | |
gMPSystem.Timeout = TimeoutInMicroseconds; | |
gMPSystem.TimeoutActive = (BOOLEAN)(TimeoutInMicroseconds != 0); | |
Status = gBS->SetTimer ( | |
gMPSystem.CheckAllAPsEvent, | |
TimerPeriodic, | |
gPollInterval | |
); | |
return Status; | |
} | |
while (TRUE) { | |
for (Number = 0; Number < gMPSystem.NumberOfProcessors; Number++) { | |
ProcessorData = &gMPSystem.ProcessorData[Number]; | |
if ((ProcessorData->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) { | |
// Skip BSP | |
continue; | |
} | |
if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) { | |
// Skip Disabled processors | |
continue; | |
} | |
gThread->MutexLock (ProcessorData->StateLock); | |
ProcessorState = ProcessorData->State; | |
gThread->MutexUnlock (ProcessorData->StateLock); | |
switch (ProcessorState) { | |
case CPU_STATE_READY: | |
SetApProcedure (ProcessorData, Procedure, ProcedureArgument); | |
break; | |
case CPU_STATE_FINISHED: | |
gMPSystem.FinishCount++; | |
if (SingleThread) { | |
Status = GetNextBlockedNumber (&NextNumber); | |
if (!EFI_ERROR (Status)) { | |
gThread->MutexLock (gMPSystem.ProcessorData[NextNumber].StateLock); | |
gMPSystem.ProcessorData[NextNumber].State = CPU_STATE_READY; | |
gThread->MutexUnlock (gMPSystem.ProcessorData[NextNumber].StateLock); | |
} | |
} | |
gThread->MutexLock (ProcessorData->StateLock); | |
ProcessorData->State = CPU_STATE_IDLE; | |
gThread->MutexUnlock (ProcessorData->StateLock); | |
break; | |
default: | |
break; | |
} | |
} | |
if (gMPSystem.FinishCount == gMPSystem.StartCount) { | |
Status = EFI_SUCCESS; | |
goto Done; | |
} | |
if ((TimeoutInMicroseconds != 0) && (Timeout == 0)) { | |
Status = EFI_TIMEOUT; | |
goto Done; | |
} | |
Timeout -= CalculateAndStallInterval (Timeout); | |
} | |
Done: | |
if (FailedCpuList != NULL) { | |
if (gMPSystem.FailedListIndex == 0) { | |
FreePool (*FailedCpuList); | |
*FailedCpuList = NULL; | |
} | |
} | |
return EFI_SUCCESS; | |
} | |
/** | |
This service lets the caller get one enabled AP to execute a caller-provided | |
function. The caller can request the BSP to either wait for the completion | |
of the AP or just proceed with the next task by using the EFI event mechanism. | |
See EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() for more details on non-blocking | |
execution support. This service may only be called from the BSP. | |
This function is used to dispatch one enabled AP to the function specified by | |
Procedure passing in the argument specified by ProcedureArgument. If WaitEvent | |
is NULL, execution is in blocking mode. The BSP waits until the AP finishes or | |
TimeoutInMicroSecondss expires. Otherwise, execution is in non-blocking mode. | |
BSP proceeds to the next task without waiting for the AP. If a non-blocking mode | |
is requested after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled, | |
then EFI_UNSUPPORTED must be returned. | |
If the timeout specified by TimeoutInMicroseconds expires before the AP returns | |
from Procedure, then execution of Procedure by the AP is terminated. The AP is | |
available for subsequent calls to EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() and | |
EFI_MP_SERVICES_PROTOCOL.StartupThisAP(). | |
@param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL | |
instance. | |
@param[in] Procedure A pointer to the function to be run on | |
enabled APs of the system. See type | |
EFI_AP_PROCEDURE. | |
@param[in] ProcessorNumber The handle number of the AP. The range is | |
from 0 to the total number of logical | |
processors minus 1. The total number of | |
logical processors can be retrieved by | |
EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). | |
@param[in] WaitEvent The event created by the caller with CreateEvent() | |
service. If it is NULL, then execute in | |
blocking mode. BSP waits until all APs finish | |
or TimeoutInMicroseconds expires. If it's | |
not NULL, then execute in non-blocking mode. | |
BSP requests the function specified by | |
Procedure to be started on all the enabled | |
APs, and go on executing immediately. If | |
all return from Procedure or TimeoutInMicroseconds | |
expires, this event is signaled. The BSP | |
can use the CheckEvent() or WaitForEvent() | |
services to check the state of event. Type | |
EFI_EVENT is defined in CreateEvent() in | |
the Unified Extensible Firmware Interface | |
Specification. | |
@param[in] TimeoutInMicrosecsond Indicates the time limit in microseconds for | |
APs to return from Procedure, either for | |
blocking or non-blocking mode. Zero means | |
infinity. If the timeout expires before | |
all APs return from Procedure, then Procedure | |
on the failed APs is terminated. All enabled | |
APs are available for next function assigned | |
by EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() | |
or EFI_MP_SERVICES_PROTOCOL.StartupThisAP(). | |
If the timeout expires in blocking mode, | |
BSP returns EFI_TIMEOUT. If the timeout | |
expires in non-blocking mode, WaitEvent | |
is signaled with SignalEvent(). | |
@param[in] ProcedureArgument The parameter passed into Procedure for | |
all APs. | |
@param[out] Finished If NULL, this parameter is ignored. In | |
blocking mode, this parameter is ignored. | |
In non-blocking mode, if AP returns from | |
Procedure before the timeout expires, its | |
content is set to TRUE. Otherwise, the | |
value is set to FALSE. The caller can | |
determine if the AP returned from Procedure | |
by evaluating this value. | |
@retval EFI_SUCCESS In blocking mode, specified AP finished before | |
the timeout expires. | |
@retval EFI_SUCCESS In non-blocking mode, the function has been | |
dispatched to specified AP. | |
@retval EFI_UNSUPPORTED A non-blocking mode request was made after the | |
UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was | |
signaled. | |
@retval EFI_DEVICE_ERROR The calling processor is an AP. | |
@retval EFI_TIMEOUT In blocking mode, the timeout expired before | |
the specified AP has finished. | |
@retval EFI_NOT_READY The specified AP is busy. | |
@retval EFI_NOT_FOUND The processor with the handle specified by | |
ProcessorNumber does not exist. | |
@retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP or disabled AP. | |
@retval EFI_INVALID_PARAMETER Procedure is NULL. | |
**/ | |
EFI_STATUS | |
EFIAPI | |
CpuMpServicesStartupThisAP ( | |
IN EFI_MP_SERVICES_PROTOCOL *This, | |
IN EFI_AP_PROCEDURE Procedure, | |
IN UINTN ProcessorNumber, | |
IN EFI_EVENT WaitEvent OPTIONAL, | |
IN UINTN TimeoutInMicroseconds, | |
IN VOID *ProcedureArgument OPTIONAL, | |
OUT BOOLEAN *Finished OPTIONAL | |
) | |
{ | |
UINTN Timeout; | |
if (!IsBSP ()) { | |
return EFI_DEVICE_ERROR; | |
} | |
if (Procedure == NULL) { | |
return EFI_INVALID_PARAMETER; | |
} | |
if (ProcessorNumber >= gMPSystem.NumberOfProcessors) { | |
return EFI_NOT_FOUND; | |
} | |
if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0) { | |
return EFI_INVALID_PARAMETER; | |
} | |
if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) { | |
return EFI_INVALID_PARAMETER; | |
} | |
gThread->MutexLock(gMPSystem.ProcessorData[ProcessorNumber].StateLock); | |
if (gMPSystem.ProcessorData[ProcessorNumber].State != CPU_STATE_IDLE) { | |
gThread->MutexUnlock(gMPSystem.ProcessorData[ProcessorNumber].StateLock); | |
return EFI_NOT_READY; | |
} | |
gThread->MutexUnlock(gMPSystem.ProcessorData[ProcessorNumber].StateLock); | |
if ((WaitEvent != NULL) && gReadToBoot) { | |
return EFI_UNSUPPORTED; | |
} | |
Timeout = TimeoutInMicroseconds; | |
gMPSystem.StartCount = 1; | |
gMPSystem.FinishCount = 0; | |
SetApProcedure (&gMPSystem.ProcessorData[ProcessorNumber], Procedure, ProcedureArgument); | |
if (WaitEvent != NULL) { | |
// Non Blocking | |
gMPSystem.WaitEvent = WaitEvent; | |
gBS->SetTimer ( | |
gMPSystem.ProcessorData[ProcessorNumber].CheckThisAPEvent, | |
TimerPeriodic, | |
gPollInterval | |
); | |
return EFI_SUCCESS; | |
} | |
// Blocking | |
while (TRUE) { | |
gThread->MutexLock (gMPSystem.ProcessorData[ProcessorNumber].StateLock); | |
if (gMPSystem.ProcessorData[ProcessorNumber].State == CPU_STATE_FINISHED) { | |
gMPSystem.ProcessorData[ProcessorNumber].State = CPU_STATE_IDLE; | |
gThread->MutexUnlock (gMPSystem.ProcessorData[ProcessorNumber].StateLock); | |
break; | |
} | |
gThread->MutexUnlock (gMPSystem.ProcessorData[ProcessorNumber].StateLock); | |
if ((TimeoutInMicroseconds != 0) && (Timeout == 0)) { | |
return EFI_TIMEOUT; | |
} | |
Timeout -= CalculateAndStallInterval (Timeout); | |
} | |
return EFI_SUCCESS; | |
} | |
/** | |
This service switches the requested AP to be the BSP from that point onward. | |
This service changes the BSP for all purposes. This call can only be performed | |
by the current BSP. | |
This service switches the requested AP to be the BSP from that point onward. | |
This service changes the BSP for all purposes. The new BSP can take over the | |
execution of the old BSP and continue seamlessly from where the old one left | |
off. This service may not be supported after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT | |
is signaled. | |
If the BSP cannot be switched prior to the return from this service, then | |
EFI_UNSUPPORTED must be returned. | |
@param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance. | |
@param[in] ProcessorNumber The handle number of AP that is to become the new | |
BSP. The range is from 0 to the total number of | |
logical processors minus 1. The total number of | |
logical processors can be retrieved by | |
EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). | |
@param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an | |
enabled AP. Otherwise, it will be disabled. | |
@retval EFI_SUCCESS BSP successfully switched. | |
@retval EFI_UNSUPPORTED Switching the BSP cannot be completed prior to | |
this service returning. | |
@retval EFI_UNSUPPORTED Switching the BSP is not supported. | |
@retval EFI_SUCCESS The calling processor is an AP. | |
@retval EFI_NOT_FOUND The processor with the handle specified by | |
ProcessorNumber does not exist. | |
@retval EFI_INVALID_PARAMETER ProcessorNumber specifies the current BSP or | |
a disabled AP. | |
@retval EFI_NOT_READY The specified AP is busy. | |
**/ | |
EFI_STATUS | |
EFIAPI | |
CpuMpServicesSwitchBSP ( | |
IN EFI_MP_SERVICES_PROTOCOL *This, | |
IN UINTN ProcessorNumber, | |
IN BOOLEAN EnableOldBSP | |
) | |
{ | |
UINTN Index; | |
if (!IsBSP ()) { | |
return EFI_DEVICE_ERROR; | |
} | |
if (ProcessorNumber >= gMPSystem.NumberOfProcessors) { | |
return EFI_NOT_FOUND; | |
} | |
if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) { | |
return EFI_INVALID_PARAMETER; | |
} | |
if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0) { | |
return EFI_INVALID_PARAMETER; | |
} | |
for (Index = 0; Index < gMPSystem.NumberOfProcessors; Index++) { | |
if ((gMPSystem.ProcessorData[Index].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0) { | |
break; | |
} | |
} | |
ASSERT (Index != gMPSystem.NumberOfProcessors); | |
gThread->MutexLock (gMPSystem.ProcessorData[ProcessorNumber].StateLock); | |
if (gMPSystem.ProcessorData[ProcessorNumber].State != CPU_STATE_IDLE) { | |
gThread->MutexUnlock (gMPSystem.ProcessorData[ProcessorNumber].StateLock); | |
return EFI_NOT_READY; | |
} | |
gThread->MutexUnlock (gMPSystem.ProcessorData[ProcessorNumber].StateLock); | |
// Skip for now as we need switch a bunch of stack stuff around and it's complex | |
// May not be worth it? | |
return EFI_NOT_READY; | |
} | |
/** | |
This service lets the caller enable or disable an AP from this point onward. | |
This service may only be called from the BSP. | |
This service allows the caller enable or disable an AP from this point onward. | |
The caller can optionally specify the health status of the AP by Health. If | |
an AP is being disabled, then the state of the disabled AP is implementation | |
dependent. If an AP is enabled, then the implementation must guarantee that a | |
complete initialization sequence is performed on the AP, so the AP is in a state | |
that is compatible with an MP operating system. This service may not be supported | |
after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled. | |
If the enable or disable AP operation cannot be completed prior to the return | |
from this service, then EFI_UNSUPPORTED must be returned. | |
@param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance. | |
@param[in] ProcessorNumber The handle number of AP that is to become the new | |
BSP. The range is from 0 to the total number of | |
logical processors minus 1. The total number of | |
logical processors can be retrieved by | |
EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). | |
@param[in] EnableAP Specifies the new state for the processor for | |
enabled, FALSE for disabled. | |
@param[in] HealthFlag If not NULL, a pointer to a value that specifies | |
the new health status of the AP. This flag | |
corresponds to StatusFlag defined in | |
EFI_MP_SERVICES_PROTOCOL.GetProcessorInfo(). Only | |
the PROCESSOR_HEALTH_STATUS_BIT is used. All other | |
bits are ignored. If it is NULL, this parameter | |
is ignored. | |
@retval EFI_SUCCESS The specified AP was enabled or disabled successfully. | |
@retval EFI_UNSUPPORTED Enabling or disabling an AP cannot be completed | |
prior to this service returning. | |
@retval EFI_UNSUPPORTED Enabling or disabling an AP is not supported. | |
@retval EFI_DEVICE_ERROR The calling processor is an AP. | |
@retval EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber | |
does not exist. | |
@retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP. | |
**/ | |
EFI_STATUS | |
EFIAPI | |
CpuMpServicesEnableDisableAP ( | |
IN EFI_MP_SERVICES_PROTOCOL *This, | |
IN UINTN ProcessorNumber, | |
IN BOOLEAN EnableAP, | |
IN UINT32 *HealthFlag OPTIONAL | |
) | |
{ | |
if (!IsBSP ()) { | |
return EFI_DEVICE_ERROR; | |
} | |
if (ProcessorNumber >= gMPSystem.NumberOfProcessors) { | |
return EFI_NOT_FOUND; | |
} | |
if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0) { | |
return EFI_INVALID_PARAMETER; | |
} | |
gThread->MutexLock (gMPSystem.ProcessorData[ProcessorNumber].StateLock); | |
if (gMPSystem.ProcessorData[ProcessorNumber].State != CPU_STATE_IDLE) { | |
gThread->MutexUnlock (gMPSystem.ProcessorData[ProcessorNumber].StateLock); | |
return EFI_UNSUPPORTED; | |
} | |
gThread->MutexUnlock (gMPSystem.ProcessorData[ProcessorNumber].StateLock); | |
if (EnableAP) { | |
if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0 ) { | |
gMPSystem.NumberOfEnabledProcessors++; | |
} | |
gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag |= PROCESSOR_ENABLED_BIT; | |
} else { | |
if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_ENABLED_BIT) == PROCESSOR_ENABLED_BIT ) { | |
gMPSystem.NumberOfEnabledProcessors--; | |
} | |
gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag &= ~PROCESSOR_ENABLED_BIT; | |
} | |
if (HealthFlag != NULL) { | |
gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag &= ~PROCESSOR_HEALTH_STATUS_BIT; | |
gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag |= (*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT); | |
} | |
return EFI_SUCCESS; | |
} | |
/** | |
This return the handle number for the calling processor. This service may be | |
called from the BSP and APs. | |
This service returns the processor handle number for the calling processor. | |
The returned value is in the range from 0 to the total number of logical | |
processors minus 1. The total number of logical processors can be retrieved | |
with EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). This service may be | |
called from the BSP and APs. If ProcessorNumber is NULL, then EFI_INVALID_PARAMETER | |
is returned. Otherwise, the current processors handle number is returned in | |
ProcessorNumber, and EFI_SUCCESS is returned. | |
@param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance. | |
@param[in] ProcessorNumber The handle number of AP that is to become the new | |
BSP. The range is from 0 to the total number of | |
logical processors minus 1. The total number of | |
logical processors can be retrieved by | |
EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). | |
@retval EFI_SUCCESS The current processor handle number was returned | |
in ProcessorNumber. | |
@retval EFI_INVALID_PARAMETER ProcessorNumber is NULL. | |
**/ | |
EFI_STATUS | |
EFIAPI | |
CpuMpServicesWhoAmI ( | |
IN EFI_MP_SERVICES_PROTOCOL *This, | |
OUT UINTN *ProcessorNumber | |
) | |
{ | |
UINTN Index; | |
UINT64 ProcessorId; | |
if (ProcessorNumber == NULL) { | |
return EFI_INVALID_PARAMETER; | |
} | |
ProcessorId = gThread->Self (); | |
for (Index = 0; Index < gMPSystem.NumberOfProcessors; Index++) { | |
if (gMPSystem.ProcessorData[Index].Info.ProcessorId == ProcessorId) { | |
break; | |
} | |
} | |
*ProcessorNumber = Index; | |
return EFI_SUCCESS; | |
} | |
EFI_MP_SERVICES_PROTOCOL mMpServicesTemplate = { | |
CpuMpServicesGetNumberOfProcessors, | |
CpuMpServicesGetProcessorInfo, | |
CpuMpServicesStartupAllAps, | |
CpuMpServicesStartupThisAP, | |
CpuMpServicesSwitchBSP, | |
CpuMpServicesEnableDisableAP, | |
CpuMpServicesWhoAmI | |
}; | |
/*++ | |
If timeout occurs in StartupAllAps(), a timer is set, which invokes this | |
procedure periodically to check whether all APs have finished. | |
--*/ | |
VOID | |
EFIAPI | |
CpuCheckAllAPsStatus ( | |
IN EFI_EVENT Event, | |
IN VOID *Context | |
) | |
{ | |
UINTN ProcessorNumber; | |
UINTN NextNumber; | |
PROCESSOR_DATA_BLOCK *ProcessorData; | |
PROCESSOR_DATA_BLOCK *NextData; | |
EFI_STATUS Status; | |
PROCESSOR_STATE ProcessorState; | |
UINTN Cpu; | |
BOOLEAN Found; | |
if (gMPSystem.TimeoutActive) { | |
gMPSystem.Timeout -= CalculateAndStallInterval (gMPSystem.Timeout); | |
} | |
for (ProcessorNumber = 0; ProcessorNumber < gMPSystem.NumberOfProcessors; ProcessorNumber++) { | |
ProcessorData = &gMPSystem.ProcessorData[ProcessorNumber]; | |
if ((ProcessorData->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) { | |
// Skip BSP | |
continue; | |
} | |
if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) { | |
// Skip Disabled processors | |
continue; | |
} | |
// This is an Interrupt Service routine. | |
// This can grab a lock that is held in a non-interrupt | |
// context. Meaning deadlock. Which is a bad thing. | |
// So, try lock it. If we can get it, cool, do our thing. | |
// otherwise, just dump out & try again on the next iteration. | |
Status = gThread->MutexTryLock (ProcessorData->StateLock); | |
if (EFI_ERROR(Status)) { | |
return; | |
} | |
ProcessorState = ProcessorData->State; | |
gThread->MutexUnlock (ProcessorData->StateLock); | |
switch (ProcessorState) { | |
case CPU_STATE_FINISHED: | |
if (gMPSystem.SingleThread) { | |
Status = GetNextBlockedNumber (&NextNumber); | |
if (!EFI_ERROR (Status)) { | |
NextData = &gMPSystem.ProcessorData[NextNumber]; | |
gThread->MutexLock (NextData->StateLock); | |
NextData->State = CPU_STATE_READY; | |
gThread->MutexUnlock (NextData->StateLock); | |
SetApProcedure (NextData, gMPSystem.Procedure, gMPSystem.ProcedureArgument); | |
} | |
} | |
gThread->MutexLock (ProcessorData->StateLock); | |
ProcessorData->State = CPU_STATE_IDLE; | |
gThread->MutexUnlock (ProcessorData->StateLock); | |
gMPSystem.FinishCount++; | |
break; | |
default: | |
break; | |
} | |
} | |
if (gMPSystem.TimeoutActive && gMPSystem.Timeout == 0) { | |
// | |
// Timeout | |
// | |
if (gMPSystem.FailedList != NULL) { | |
for (ProcessorNumber = 0; ProcessorNumber < gMPSystem.NumberOfProcessors; ProcessorNumber++) { | |
ProcessorData = &gMPSystem.ProcessorData[ProcessorNumber]; | |
if ((ProcessorData->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) { | |
// Skip BSP | |
continue; | |
} | |
if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) { | |
// Skip Disabled processors | |
continue; | |
} | |
// Mark the | |
Status = gThread->MutexTryLock (ProcessorData->StateLock); | |
if (EFI_ERROR(Status)) { | |
return; | |
} | |
ProcessorState = ProcessorData->State; | |
gThread->MutexUnlock (ProcessorData->StateLock); | |
if (ProcessorState != CPU_STATE_IDLE) { | |
// If we are retrying make sure we don't double count | |
for (Cpu = 0, Found = FALSE; Cpu < gMPSystem.NumberOfProcessors; Cpu++) { | |
if (gMPSystem.FailedList[Cpu] == END_OF_CPU_LIST) { | |
break; | |
} | |
if (gMPSystem.FailedList[ProcessorNumber] == Cpu) { | |
Found = TRUE; | |
break; | |
} | |
} | |
if (!Found) { | |
gMPSystem.FailedList[gMPSystem.FailedListIndex++] = Cpu; | |
} | |
} | |
} | |
} | |
// Force terminal exit | |
gMPSystem.FinishCount = gMPSystem.StartCount; | |
} | |
if (gMPSystem.FinishCount != gMPSystem.StartCount) { | |
return; | |
} | |
gBS->SetTimer ( | |
gMPSystem.CheckAllAPsEvent, | |
TimerCancel, | |
0 | |
); | |
if (gMPSystem.FailedListIndex == 0) { | |
if (gMPSystem.FailedList != NULL) { | |
FreePool (gMPSystem.FailedList); | |
gMPSystem.FailedList = NULL; | |
} | |
} | |
Status = gBS->SignalEvent (gMPSystem.WaitEvent); | |
return ; | |
} | |
VOID | |
EFIAPI | |
CpuCheckThisAPStatus ( | |
IN EFI_EVENT Event, | |
IN VOID *Context | |
) | |
{ | |
EFI_STATUS Status; | |
PROCESSOR_DATA_BLOCK *ProcessorData; | |
PROCESSOR_STATE ProcessorState; | |
ProcessorData = (PROCESSOR_DATA_BLOCK *) Context; | |
// | |
// This is an Interrupt Service routine. | |
// that can grab a lock that is held in a non-interrupt | |
// context. Meaning deadlock. Which is a badddd thing. | |
// So, try lock it. If we can get it, cool, do our thing. | |
// otherwise, just dump out & try again on the next iteration. | |
// | |
Status = gThread->MutexTryLock (ProcessorData->StateLock); | |
if (EFI_ERROR(Status)) { | |
return; | |
} | |
ProcessorState = ProcessorData->State; | |
gThread->MutexUnlock (ProcessorData->StateLock); | |
if (ProcessorState == CPU_STATE_FINISHED) { | |
Status = gBS->SetTimer (ProcessorData->CheckThisAPEvent, TimerCancel, 0); | |
ASSERT_EFI_ERROR (Status); | |
Status = gBS->SignalEvent (gMPSystem.WaitEvent); | |
ASSERT_EFI_ERROR (Status); | |
gThread->MutexLock (ProcessorData->StateLock); | |
ProcessorData->State = CPU_STATE_IDLE; | |
gThread->MutexUnlock (ProcessorData->StateLock); | |
} | |
return ; | |
} | |
/*++ | |
This function is called by all processors (both BSP and AP) once and collects MP related data | |
MPSystemData - Pointer to the data structure containing MP related data | |
BSP - TRUE if the CPU is BSP | |
EFI_SUCCESS - Data for the processor collected and filled in | |
--*/ | |
EFI_STATUS | |
FillInProcessorInformation ( | |
IN BOOLEAN BSP, | |
IN UINTN ProcessorNumber | |
) | |
{ | |
gMPSystem.ProcessorData[ProcessorNumber].Info.ProcessorId = gThread->Self (); | |
gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag = PROCESSOR_ENABLED_BIT | PROCESSOR_HEALTH_STATUS_BIT; | |
if (BSP) { | |
gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag |= PROCESSOR_AS_BSP_BIT; | |
} | |
gMPSystem.ProcessorData[ProcessorNumber].Info.Location.Package = (UINT32) ProcessorNumber; | |
gMPSystem.ProcessorData[ProcessorNumber].Info.Location.Core = 0; | |
gMPSystem.ProcessorData[ProcessorNumber].Info.Location.Thread = 0; | |
gMPSystem.ProcessorData[ProcessorNumber].State = BSP ? CPU_STATE_BUSY : CPU_STATE_IDLE; | |
gMPSystem.ProcessorData[ProcessorNumber].Procedure = NULL; | |
gMPSystem.ProcessorData[ProcessorNumber].Parameter = NULL; | |
gMPSystem.ProcessorData[ProcessorNumber].StateLock = gThread->MutexInit (); | |
gMPSystem.ProcessorData[ProcessorNumber].ProcedureLock = gThread->MutexInit (); | |
return EFI_SUCCESS; | |
} | |
VOID * | |
EFIAPI | |
CpuDriverApIdolLoop ( | |
VOID *Context | |
) | |
{ | |
EFI_AP_PROCEDURE Procedure; | |
VOID *Parameter; | |
UINTN ProcessorNumber; | |
PROCESSOR_DATA_BLOCK *ProcessorData; | |
ProcessorNumber = (UINTN)Context; | |
ProcessorData = &gMPSystem.ProcessorData[ProcessorNumber]; | |
ProcessorData->Info.ProcessorId = gThread->Self (); | |
while (TRUE) { | |
// | |
// Make a local copy on the stack to be extra safe | |
// | |
gThread->MutexLock (ProcessorData->ProcedureLock); | |
Procedure = ProcessorData->Procedure; | |
Parameter = ProcessorData->Parameter; | |
gThread->MutexUnlock (ProcessorData->ProcedureLock); | |
if (Procedure != NULL) { | |
gThread->MutexLock (ProcessorData->StateLock); | |
ProcessorData->State = CPU_STATE_BUSY; | |
gThread->MutexUnlock (ProcessorData->StateLock); | |
Procedure (Parameter); | |
gThread->MutexLock (ProcessorData->ProcedureLock); | |
ProcessorData->Procedure = NULL; | |
gThread->MutexUnlock (ProcessorData->ProcedureLock); | |
gThread->MutexLock (ProcessorData->StateLock); | |
ProcessorData->State = CPU_STATE_FINISHED; | |
gThread->MutexUnlock (ProcessorData->StateLock); | |
} | |
// Poll 5 times a seconds, 200ms | |
// Don't want to burn too many system resources doing nothing. | |
gEmuThunk->Sleep (200 * 1000); | |
} | |
return 0; | |
} | |
EFI_STATUS | |
InitializeMpSystemData ( | |
IN UINTN NumberOfProcessors | |
) | |
{ | |
EFI_STATUS Status; | |
UINTN Index; | |
// | |
// Clear the data structure area first. | |
// | |
ZeroMem (&gMPSystem, sizeof (MP_SYSTEM_DATA)); | |
// | |
// First BSP fills and inits all known values, including it's own records. | |
// | |
gMPSystem.NumberOfProcessors = NumberOfProcessors; | |
gMPSystem.NumberOfEnabledProcessors = NumberOfProcessors; | |
gMPSystem.ProcessorData = AllocateZeroPool (gMPSystem.NumberOfProcessors * sizeof (PROCESSOR_DATA_BLOCK)); | |
ASSERT (gMPSystem.ProcessorData != NULL); | |
FillInProcessorInformation (TRUE, 0); | |
Status = gBS->CreateEvent ( | |
EVT_TIMER | EVT_NOTIFY_SIGNAL, | |
TPL_CALLBACK, | |
CpuCheckAllAPsStatus, | |
NULL, | |
&gMPSystem.CheckAllAPsEvent | |
); | |
ASSERT_EFI_ERROR (Status); | |
for (Index = 0; Index < gMPSystem.NumberOfProcessors; Index++) { | |
if ((gMPSystem.ProcessorData[Index].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) { | |
// Skip BSP | |
continue; | |
} | |
FillInProcessorInformation (FALSE, Index); | |
Status = gThread->CreateThread ( | |
(VOID *)&gMPSystem.ProcessorData[Index].Info.ProcessorId, | |
NULL, | |
CpuDriverApIdolLoop, | |
(VOID *)Index | |
); | |
Status = gBS->CreateEvent ( | |
EVT_TIMER | EVT_NOTIFY_SIGNAL, | |
TPL_CALLBACK, | |
CpuCheckThisAPStatus, | |
(VOID *) &gMPSystem.ProcessorData[Index], | |
&gMPSystem.ProcessorData[Index].CheckThisAPEvent | |
); | |
} | |
return EFI_SUCCESS; | |
} | |
/** | |
Invoke a notification event | |
@param Event Event whose notification function is being invoked. | |
@param Context The pointer to the notification function's context, | |
which is implementation-dependent. | |
**/ | |
VOID | |
EFIAPI | |
CpuReadToBootFunction ( | |
IN EFI_EVENT Event, | |
IN VOID *Context | |
) | |
{ | |
gReadToBoot = TRUE; | |
} | |
EFI_STATUS | |
CpuMpServicesInit ( | |
OUT UINTN *MaxCpus | |
) | |
{ | |
EFI_STATUS Status; | |
EFI_HANDLE Handle; | |
EMU_IO_THUNK_PROTOCOL *IoThunk; | |
*MaxCpus = 1; // BSP | |
IoThunk = GetIoThunkInstance (&gEmuThreadThunkProtocolGuid, 0); | |
if (IoThunk != NULL) { | |
Status = IoThunk->Open (IoThunk); | |
if (!EFI_ERROR (Status)) { | |
if (IoThunk->ConfigString != NULL) { | |
*MaxCpus += StrDecimalToUintn (IoThunk->ConfigString); | |
gThread = IoThunk->Interface; | |
} | |
} | |
} | |
if (*MaxCpus == 1) { | |
// We are not MP so nothing to do | |
return EFI_SUCCESS; | |
} | |
gPollInterval = (UINTN) PcdGet64 (PcdEmuMpServicesPollingInterval); | |
Status = InitializeMpSystemData (*MaxCpus); | |
if (EFI_ERROR (Status)) { | |
return Status; | |
} | |
Status = EfiCreateEventReadyToBootEx (TPL_CALLBACK, CpuReadToBootFunction, NULL, &gReadToBootEvent); | |
ASSERT_EFI_ERROR (Status); | |
// | |
// Now install the MP services protocol. | |
// | |
Handle = NULL; | |
Status = gBS->InstallMultipleProtocolInterfaces ( | |
&Handle, | |
&gEfiMpServiceProtocolGuid, &mMpServicesTemplate, | |
NULL | |
); | |
return Status; | |
} | |