blob: f6765ce81156fab97dad52b594ee9507f36b681a [file] [log] [blame]
/******************************************************************************
* Copyright (c) 2004, 2008 IBM Corporation
* All rights reserved.
* This program and the accompanying materials
* are made available under the terms of the BSD License
* which accompanies this distribution, and is available at
* http://www.opensource.org/licenses/bsd-license.php
*
* Contributors:
* IBM Corporation - initial implementation
*****************************************************************************/
/*
*
******************************************************************************
* reference:
* Broadcom 57xx
* Host Programmer Interface Specification for the
* NetXtreme Family of Highly-Integrated Media Access Controllers
*/
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <byteorder.h>
#include <helpers.h>
#include <netdriver.h>
#include "bcm57xx.h"
/*
* local defines
******************************************************************************
*/
// #define BCM_VLAN_TAG ( (uint32_t) 0x1 )
// number of tx/rx rings
// NOTE: 5714 only uses 1 rx/tx ring, but memory
// for the other rings is cleaned anyways for
// sanity & future use
#define BCM_MAX_TX_RING 16
#define BCM_MAX_RXRET_RING 16
#define BCM_MAX_RXPROD_RCB 3
// bd descriptions
#define BCM_RXPROD_RING_SIZE 512 // don't change
#define BCM_RXRET_RING_SIZE 512 // don't change
#define BCM_TX_RING_SIZE 512 // don't change
#define BCM_BUF_SIZE 1536 // don't change
#define BCM_MTU_MAX_LEN 1522
#define BCM_MAX_RX_BUF 64
#define BCM_MAX_TX_BUF 16
// number of MAC addresses in NIC
#define BCM_NUM_MAC_ADDR 4
#define BCM_NUM_MAC5704_ADDR 12
// offset of mac address field(s) in bcm register space
#define MAC5704_ADDR_OFFS ( (uint16_t) 0x0530 )
// offset of NIC memory start address from base address
#define BCM_MEMORY_OFFS ( (uint64_t) 0x8000 )
// offset of statistics block in NIC memory
#define BCM_STATISTIC_OFFS ( (uint64_t) 0x0300 )
// size of statistic block in NIC memory
#define BCM_STATISTIC_SIZE 0x800
// offsets of NIC rx/tx rings in NIC memory
#define BCM_NIC_TX_OFFS ( (uint16_t) 0x4000 )
#define BCM_NIC_RX_OFFS ( (uint16_t) 0x6000 )
#define BCM_NIC_TX_SIZE ( (uint16_t) ( ( BCM_TX_RING_SIZE * BCM_RCB_SIZE_u16 ) / 4 ) )
// device mailboxes
#define BCM_FW_MBX ( (uint16_t) 0x0b50 )
#define BCM_FW_MBX_CMD ( (uint16_t) 0x0b78 )
#define BCM_FW_MBX_LEN ( (uint16_t) 0x0b7c )
#define BCM_FW_MBX_DATA ( (uint16_t) 0x0b80 )
#define BCM_NICDRV_STATE_MBX ( (uint16_t) 0x0c04 )
// device mailbox commands
#define BCM_NICDRV_ALIVE ( (uint32_t) 0x00000001 )
#define BCM_NICDRV_PAUSE_FW ( (uint32_t) 0x00000002 )
// device values
#define BCM_MAGIC_NUMBER ( (uint32_t) 0x4b657654 )
// device states
#define NIC_FWDRV_STATE_START ( (uint32_t) 0x00000001 )
#define NIC_FWDRV_STATE_START_DONE ( (uint32_t) 0x80000001 )
#define NIC_FWDRV_STATE_UNLOAD ( (uint32_t) 0x00000002 )
#define NIC_FWDRV_STATE_UNLOAD_DONE ( (uint32_t) 0x80000002 )
#define NIC_FWDRV_STATE_SUSPEND ( (uint32_t) 0x00000004 )
// timer prescaler value
#define BCM_TMR_PRESCALE ( (uint32_t) 0x41 )
// offset of transmit rcb's in NIC memory
#define BCM_TX_RCB_OFFS ( (uint16_t) 0x0100 )
// offset of receive return rcb's in NIC memory
#define BCM_RXRET_RCB_OFFS ( (uint16_t) 0x0200 )
// register offsets for ring indices
#define TX_PROD_IND ( (uint16_t) 0x0304 )
#define TX_CONS_IND ( (uint16_t) 0x3cc0 )
#define RXPROD_PROD_IND ( (uint16_t) 0x026c )
#define RXPROD_CONS_IND ( (uint16_t) 0x3c54 )
#define RXRET_PROD_IND ( (uint16_t) 0x3c80 )
#define RXRET_CONS_IND ( (uint16_t) 0x0284 )
// NIC producer index only needed for initialization
#define TX_NIC_PROD_IND ( (uint16_t) 0x0384 )
/*
* predefined register values used during initialization
* may be adapted by user
*/
#define DMA_RW_CTRL_VAL_5714 ( (uint32_t) 0x76144000 )
#define DMA_RW_CTRL_VAL ( (uint32_t) 0x760F0000 )
#define TX_MAC_LEN_VAL ( (uint32_t) 0x00002620 )
#define RX_LST_PLC_CFG_VAL ( (uint32_t) 0x00000109 )
#define RX_LST_PLC_STAT_EN_VAL ( (uint32_t) 0x007e000f )
#define NVM_ADDR_MSK ( (uint32_t) 0x000fffff )
// Number of Receive Rules /w or /wo SOL enabled
#define RX_RULE_CFG_VAL ( (uint32_t) 0x00000008 )
#define NUM_RX_RULE ( (uint32_t) 16 )
#define NUM_RX_RULE_ASF ( (uint32_t) ( NUM_RX_RULE - 4 ) )
// RCB register offsets
#define BCM_RXPROD_RCB_JUM ( (uint16_t) 0x2440 )
#define BCM_RXPROD_RCB_STD ( (uint16_t) 0x2450 )
#define BCM_RXPROD_RCB_MIN ( (uint16_t) 0x2460 )
// macros needed for new addressing method
#define BCM_RCB_HOSTADDR_HI_u16( rcb ) ( (uint16_t) rcb + 0x00 )
#define BCM_RCB_HOSTADDR_LOW_u16( rcb ) ( (uint16_t) rcb + 0x04 )
#define BCM_RCB_LENFLAG_u16( rcb ) ( (uint16_t) rcb + 0x08 )
#define BCM_RCB_NICADDR_u16( rcb ) ( (uint16_t) rcb + 0x0c )
#define BCM_RCB_SIZE_u16 ( (uint16_t) 0x0010 )
// RCB flags
#define RCB_FLAG_RING_DISABLED BIT32( 1 )
// BCM device ID masks
#define BCM_DEV_5714 ( (uint64_t) 0x1 )
#define BCM_DEV_5704 ( (uint64_t) 0x2 )
#define BCM_DEV_5703 ( (uint64_t) 0x4 )
#define BCM_DEV_SERDES ( (uint64_t) 0x80000000 )
#define BCM_DEV_COPPER ( (uint64_t) 0x40000000 )
#define IS_5714 ( ( bcm_device_u64 & BCM_DEV_5714 ) != 0 )
#define IS_5704 ( ( bcm_device_u64 & BCM_DEV_5704 ) != 0 )
#define IS_5703 ( ( bcm_device_u64 & BCM_DEV_5703 ) != 0 )
#define IS_SERDES ( ( bcm_device_u64 & BCM_DEV_SERDES ) != 0 )
#define IS_COPPER_PHY ( ( bcm_device_u64 & BCM_DEV_COPPER ) != 0 )
#define BUFFERED_FLASH_PAGE_POS 9
#define BUFFERED_FLASH_BYTE_ADDR_MASK ((<<BUFFERED_FLASH_PAGE_POS) - 1)
#define BUFFERED_FLASH_PAGE_SIZE 264
#define BUFFERED_FLASH_PHY_SIZE 512
#define MANUFACTURING_INFO_SIZE 140
#define CRC32_POLYNOMIAL 0xEDB88320
/*
* local types
******************************************************************************
*/
typedef struct {
uint32_t m_dev_u32;
uint64_t m_devmsk_u64;
} bcm_dev_t;
/*
* BCM common data structures
* BCM57xx Programmer's Guide: Section 5
*/
/*
* 64bit host address in a way the NIC is able to understand it
*/
typedef struct {
uint32_t m_hi_u32;
uint32_t m_lo_u32;
} bcm_addr64_t;
/*
* ring control block
*/
typedef struct {
bcm_addr64_t m_hostaddr_st;
uint32_t m_lenflags_u32; // upper 16b: len, lower 16b: flags
uint32_t m_nicaddr_u32;
} bcm_rcb_t;
/*
* tx buffer descriptor
*/
typedef struct {
bcm_addr64_t m_hostaddr_st;
uint32_t m_lenflags_u32; // upper 16b: len, lower 16b: flags
uint32_t m_VLANtag_u32; // lower 16b: vtag
} bcm_txbd_t;
/*
* rx buffer descriptor
*/
typedef struct {
bcm_addr64_t m_hostaddr_st;
uint32_t m_idxlen_u32; // upper 16b: idx, lower 16b: len
uint32_t m_typeflags_u32; // upper 16b: type, lower 16b: flags
uint32_t m_chksum_u32; // upper 16b: ip, lower 16b: tcp/udp
uint32_t m_errvlan_u32; // upper 16b: err, lower 16b: vlan tag
uint32_t m_reserved_u32;
uint32_t m_opaque_u32;
} bcm_rxbd_t;
/*
* bcm status block
* NOTE: in fact the status block is not used and configured
* so that it is not updated by the NIC. Still it has to be
* set up so the NIC is satisfied
*/
typedef struct {
uint32_t m_st_word_u32;
uint32_t m_st_tag_u32;
uint16_t m_rxprod_cons_u16;
uint16_t m_unused_u16;
uint32_t m_unused_u32;
uint16_t m_tx_cons_u16;
uint16_t m_rxret_prod_u16;
} bcm_status_t;
/*
* local constants
******************************************************************************
*/
static const bcm_dev_t bcm_dev[] = {
{ 0x166b, BCM_DEV_5714 },
{ 0x1668, BCM_DEV_5714 },
{ 0x1669, BCM_DEV_5714 },
{ 0x166a, BCM_DEV_5714 },
{ 0x1648, BCM_DEV_5704 },
{ 0x1649, BCM_DEV_5704 | BCM_DEV_SERDES },
{ 0x16a8, BCM_DEV_5704 | BCM_DEV_SERDES },
{ 0x16a7, BCM_DEV_5703 | BCM_DEV_SERDES },
{ 0x16c7, BCM_DEV_5703 | BCM_DEV_SERDES },
{ 0 , 0 }
};
/*
* local variables
******************************************************************************
*/
static uint64_t bcm_device_u64;
static uint32_t bcm_rxret_ring_sz;
static uint64_t bcm_baseaddr_u64;
static uint64_t bcm_memaddr_u64;
/*
* rings & their buffers
*/
// the rings made of buffer descriptors
static bcm_txbd_t bcm_tx_ring[BCM_TX_RING_SIZE];
static bcm_rxbd_t bcm_rxprod_ring[BCM_RXPROD_RING_SIZE];
static bcm_rxbd_t bcm_rxret_ring[BCM_RXRET_RING_SIZE*2];
// the buffers used in the rings
static uint8_t bcm_tx_buffer_pu08[BCM_MAX_TX_BUF][BCM_BUF_SIZE];
static uint8_t bcm_rx_buffer_pu08[BCM_MAX_RX_BUF][BCM_BUF_SIZE];
// tx ring index of first/last bd
static uint32_t bcm_tx_start_u32;
static uint32_t bcm_tx_stop_u32;
static uint32_t bcm_tx_bufavail_u32;
/*
* status block
*/
static bcm_status_t bcm_status;
/*
* implementation
******************************************************************************
*/
/*
* global functions
******************************************************************************
*/
/*
* local helper functions
******************************************************************************
*/
#if 0
static char *
memcpy( char *dest, const char *src, size_t n )
{
char *ret = dest;
while( n-- ) {
*dest++ = *src++;
}
return( ret );
}
#endif
static char *
memset_ci( char *dest, int c, size_t n )
{
char *ret = dest;
while( n-- ) {
wr08( dest, c );
dest++;
}
return( ret );
}
#if 0
static char *
memset( char *dest, int c, size_t n )
{
char *ret = dest;
while( n-- ) {
*dest++ = (char) c;
}
return( ret );
}
#endif
static uint32_t
bcm_nvram_logical_to_physical_address(uint32_t address)
{
uint32_t page_no = address / BUFFERED_FLASH_PAGE_SIZE;
uint32_t page_addr = address % BUFFERED_FLASH_PAGE_SIZE;
return (page_no << BUFFERED_FLASH_PAGE_POS) + page_addr;
}
/*
* read/write functions to access NIC registers & memory
* NOTE: all functions are executed with cache inhibitation (dead slow :-) )
*/
static uint32_t
bcm_read_mem32( uint16_t f_offs_u16 )
{ // caution: shall only be used after initialization!
return rd32( bcm_memaddr_u64 + (uint64_t) f_offs_u16 );
}
/* not used so far
static uint16_t
bcm_read_mem16( uint16_t f_offs_u16 )
{ // caution: shall only be used after initialization!
return rd16( bcm_memaddr_u64 + (uint64_t) f_offs_u16 );
}*/
/* not used so far
static uint8_t
bcm_read_mem08( uint16_t f_offs_u16 )
{ // caution: shall only be used after initialization!
return rd08( bcm_memaddr_u64 + (uint64_t) f_offs_u16 );
}*/
static uint32_t
bcm_read_reg32_indirect( uint16_t f_offs_u16 )
{ // caution: shall only be used after initialization!
SLOF_pci_config_write32(REG_BASE_ADDR_REG, f_offs_u16);
/*snk_kernel_interface->pci_config_write( bcm_pcicfg_puid,
4,
bcm_pcicfg_bus,
bcm_pcicfg_devfn,
REG_BASE_ADDR_REG,
f_offs_u16 );*/
return bswap_32(SLOF_pci_config_read32(REG_DATA_REG));
/*return (uint32_t) bswap_32( snk_kernel_interface->pci_config_read( bcm_pcicfg_puid,
4,
bcm_pcicfg_bus,
bcm_pcicfg_devfn,
REG_DATA_REG ) ) ;*/
}
static uint32_t
bcm_read_reg32( uint16_t f_offs_u16 )
{ // caution: shall only be used after initialization!
if(f_offs_u16 >= 0x200 && f_offs_u16 <0x400)
return bcm_read_reg32_indirect( f_offs_u16 + 0x5600 );
return rd32( bcm_baseaddr_u64 + (uint64_t) f_offs_u16 );
}
static uint16_t
bcm_read_reg16( uint16_t f_offs_u16 )
{ // caution: shall only be used after initialization!
return rd16( bcm_baseaddr_u64 + (uint64_t) f_offs_u16 );
}
/* not used so far
static uint8_t
bcm_read_reg08( uint16_t f_offs_u16 )
{ // caution: shall only be used after initialization!
return rd08( bcm_baseaddr_u64 + (uint64_t) f_offs_u16 );
}*/
static void
bcm_write_mem32_indirect( uint16_t f_offs_u16, uint32_t f_val_u32 )
{ // caution: shall only be used after initialization!
SLOF_pci_config_write32(MEM_BASE_ADDR_REG, f_offs_u16);
/*snk_kernel_interface->pci_config_write( bcm_pcicfg_puid,
4,
bcm_pcicfg_bus,
bcm_pcicfg_devfn,
MEM_BASE_ADDR_REG,
f_offs_u16 );*/
SLOF_pci_config_write32(MEM_DATA_REG, bswap_32(f_val_u32));
/*snk_kernel_interface->pci_config_write( bcm_pcicfg_puid,
4,
bcm_pcicfg_bus,
bcm_pcicfg_devfn,
MEM_DATA_REG,
bswap_32 ( f_val_u32 ) );*/
}
static void
bcm_write_mem32( uint16_t f_offs_u16, uint32_t f_val_u32 )
{ // caution: shall only be used after initialization!
if(f_offs_u16 >= BCM_RXRET_RCB_OFFS &&
f_offs_u16 < BCM_RXRET_RCB_OFFS + (BCM_MAX_RXRET_RING*BCM_RCB_SIZE_u16))
bcm_write_mem32_indirect( f_offs_u16, f_val_u32 );
else if(f_offs_u16 >= BCM_TX_RCB_OFFS &&
f_offs_u16 < BCM_TX_RCB_OFFS + (BCM_MAX_TX_RING*BCM_RCB_SIZE_u16))
bcm_write_mem32_indirect( f_offs_u16, f_val_u32 );
else
wr32( bcm_memaddr_u64 + (uint64_t) f_offs_u16, f_val_u32 );
}
/* not used so far
static void
bcm_write_mem16( uint16_t f_offs_u16, uint16_t f_val_u16 )
{ // caution: shall only be used after initialization!
wr16( bcm_memaddr_u64 + (uint64_t) f_offs_u16, f_val_u16 );
}*/
/* not used so far
static void
bcm_write_mem08( uint16_t f_offs_u16, uint8_t f_val_u08 )
{ // caution: shall only be used after initialization!
wr08( bcm_memaddr_u64 + (uint64_t) f_offs_u16, f_val_u08 );
}*/
static void
bcm_write_reg32_indirect( uint16_t f_offs_u16, uint32_t f_val_u32 )
{ // caution: shall only be used after initialization!
SLOF_pci_config_write32(REG_BASE_ADDR_REG, f_offs_u16);
/*snk_kernel_interface->pci_config_write( bcm_pcicfg_puid,
4,
bcm_pcicfg_bus,
bcm_pcicfg_devfn,
REG_BASE_ADDR_REG,
f_offs_u16 );*/
SLOF_pci_config_write32(REG_DATA_REG, bswap_32(f_val_u32));
/*snk_kernel_interface->pci_config_write( bcm_pcicfg_puid,
4,
bcm_pcicfg_bus,
bcm_pcicfg_devfn,
REG_DATA_REG,
bswap_32 ( f_val_u32 ) );*/
}
static void
bcm_write_reg32( uint16_t f_offs_u16, uint32_t f_val_u32 )
{ // caution: shall only be used after initialization!
if(f_offs_u16 >= 0x200 && f_offs_u16 <0x400)
bcm_write_reg32_indirect( f_offs_u16 + 0x5600, f_val_u32 );
else
wr32( bcm_baseaddr_u64 + (uint64_t) f_offs_u16, f_val_u32 );
}
static void
bcm_write_reg16( uint16_t f_offs_u16, uint16_t f_val_u16 )
{ // caution: shall only be used after initialization!
wr16( bcm_baseaddr_u64 + (uint64_t) f_offs_u16, f_val_u16 );
}
/* not used so far
static void
bcm_write_reg08( uint16_t f_offs_u16, uint8_t f_val_u08 )
{ // caution: shall only be used after initialization!
wr08( bcm_baseaddr_u64 + (uint64_t) f_offs_u16, f_val_u08 );
}*/
static void
bcm_setb_reg32( uint16_t f_offs_u16, uint32_t f_mask_u32 )
{
uint32_t v;
v = bcm_read_reg32( f_offs_u16 );
v |= f_mask_u32;
bcm_write_reg32( f_offs_u16, v );
}
/* not used so far
static void
bcm_setb_reg16( uint16_t f_offs_u16, uint16_t f_mask_u16 )
{
uint16_t v;
v = rd16( bcm_baseaddr_u64 + (uint64_t) f_offs_u16 );
v |= f_mask_u16;
wr16( bcm_baseaddr_u64 + (uint64_t) f_offs_u16, v );
}*/
/* not used so far
static void
bcm_setb_reg08( uint16_t f_offs_u16, uint8_t f_mask_u08 )
{
uint8_t v;
v = rd08( bcm_baseaddr_u64 + (uint64_t) f_offs_u16 );
v |= f_mask_u08;
wr08( bcm_baseaddr_u64 + (uint64_t) f_offs_u16, v );
}*/
static void
bcm_clrb_reg32( uint16_t f_offs_u16, uint32_t f_mask_u32 )
{
uint32_t v;
v = bcm_read_reg32( f_offs_u16 );
v &= ~f_mask_u32;
bcm_write_reg32( f_offs_u16, v );
}
static void
bcm_clrb_reg16( uint16_t f_offs_u16, uint16_t f_mask_u16 )
{
uint16_t v;
v = bcm_read_reg16( f_offs_u16 );
v &= ~f_mask_u16;
bcm_write_reg16( f_offs_u16, v );
}
/* not used so far
static void
bcm_clrb_reg08( uint16_t f_offs_u16, uint8_t f_mask_u08 )
{
uint8_t v;
v = rd08( bcm_baseaddr_u64 + (uint64_t) f_offs_u16 );
v &= ~f_mask_u32;
wr08( bcm_baseaddr_u64 + (uint64_t) f_offs_u16, v );
}*/
static void
bcm_clr_wait_bit32( uint16_t r, uint32_t b )
{
uint32_t i;
bcm_clrb_reg32( r, b );
i = 1000;
while( --i ) {
if( ( bcm_read_reg32( r ) & b ) == 0 ) {
break;
}
SLOF_usleep( 10 );
}
#ifdef BCM_DEBUG
if( ( bcm_read_reg32( r ) & b ) != 0 ) {
printf( "bcm57xx: bcm_clear_wait_bit32 failed (0x%04X)!\n", r );
}
#endif
}
/*
* (g)mii bus access
*/
#if 0
// not used so far
static int32_t
bcm_mii_write16( uint32_t f_reg_u32, uint16_t f_value_u16 )
{
static const uint32_t WR_VAL = ( ( ((uint32_t) 0x1) << 21 ) | BIT32( 29 ) | BIT32( 26 ) );
int32_t l_autopoll_i32 = 0;
uint32_t l_wrval_u32;
uint32_t i;
/*
* only 0x00-0x1f are valid registers
*/
if( f_reg_u32 > (uint32_t) 0x1f ) {
return -1;
}
/*
* disable auto polling if enabled
*/
if( ( bcm_read_reg32( MI_MODE_R ) & BIT32( 4 ) ) != 0 ) {
l_autopoll_i32 = (int32_t) !0;
bcm_clrb_reg32( MI_MODE_R, BIT32( 4 ) );
SLOF_usleep( 40 );
}
/*
* construct & write mi com register value
*/
l_wrval_u32 = ( WR_VAL | ( f_reg_u32 << 16 ) | (uint32_t) f_value_u16 );
bcm_write_reg32( MI_COM_R, l_wrval_u32 );
/*
* wait for transaction to complete
*/
i = 25;
while( ( --i ) &&
( ( bcm_read_reg32( MI_COM_R ) & BIT32( 29 ) ) != 0 ) ) {
SLOF_usleep( 10 );
}
/*
* re-enable auto polling if necessary
*/
if( l_autopoll_i32 ) {
bcm_setb_reg32( MI_MODE_R, BIT32( 4 ) );
}
// return on error
if( i == 0 ) {
return -1;
}
return 0;
}
#endif
static int32_t
bcm_mii_read16( uint32_t f_reg_u32, uint16_t *f_value_pu16 )
{
static const uint32_t RD_VAL = ( ( ((uint32_t) 0x1) << 21 ) | BIT32( 29 ) | BIT32( 27 ) );
int32_t l_autopoll_i32 = 0;
uint32_t l_rdval_u32;
uint32_t i;
uint16_t first_not_busy;
/*
* only 0x00-0x1f are valid registers
*/
if( f_reg_u32 > (uint32_t) 0x1f ) {
return -1;
}
/*
* disable auto polling if enabled
*/
if( ( bcm_read_reg32( MI_MODE_R ) & BIT32( 4 ) ) != 0 ) {
l_autopoll_i32 = ( int32_t ) !0;
bcm_clrb_reg32( MI_MODE_R, BIT32( 4 ) );
SLOF_usleep( 40 );
}
/*
* construct & write mi com register value
*/
l_rdval_u32 = ( RD_VAL | ( f_reg_u32 << 16 ) );
bcm_write_reg32( MI_COM_R, l_rdval_u32 );
/*
* wait for transaction to complete
* ERRATA workaround: must read two "not busy" states to indicate transaction complete
*/
i = 25;
first_not_busy = 0;
l_rdval_u32 = bcm_read_reg32( MI_COM_R );
while( ( --i ) &&
( (first_not_busy == 0) || ( ( l_rdval_u32 & BIT32( 29 ) ) != 0 ) ) ) {
/* Is this the first clear BUSY state? */
if ( ( l_rdval_u32 & BIT32( 29 ) ) == 0 )
first_not_busy++;
SLOF_usleep( 10 );
l_rdval_u32 = bcm_read_reg32( MI_COM_R );
}
/*
* re-enable autopolling if necessary
*/
if( l_autopoll_i32 ) {
bcm_setb_reg32( MI_MODE_R, BIT32( 4 ) );
}
/*
* return on read transaction error
* (check read failed bit)
*/
if( ( i == 0 ) ||
( ( l_rdval_u32 & BIT32( 28 ) ) != 0 ) ) {
return -1;
}
/*
* return read value
*/
*f_value_pu16 = (uint16_t) ( l_rdval_u32 & (uint32_t) 0xffff );
return 0;
}
/*
* ht2000 dump (not complete)
*/
#if 0
static void
bcm_dump( void )
{
uint32_t i, j;
printf( "*** DUMP ***********************************************************************\n\n" );
printf( "* PCI Configuration Registers:\n" );
for( i = 0, j = 0; i < 0x40; i += 4 ) {
printf( "%04X: %08X ", i, bcm_read_reg32( i ) );
if( ( ++j & 0x3 ) == 0 ) {
printf( "\n" );
}
}
printf( "\n* Private PCI Configuration Registers:\n" );
for( i = 0x68, j = 0; i < 0x88; i += 4 ) {
printf( "%04X: %08X ", i, bcm_read_reg32( i ) );
if( ( ++j & 0x3 ) == 0 ) {
printf( "\n" );
}
}
printf( "\n* VPD Config:\n" );
printf( "%04X: %08X \n", 0x94, bcm_read_reg32( 0x94 ) );
printf( "\n* Dual MAC Control Registers:\n" );
for( i = 0xb8, j = 0; i < 0xd0; i += 4 ) {
printf( "%04X: %08X ", i, bcm_read_reg32( i ) );
if( ( ++j & 0x3 ) == 0 ) {
printf( "\n" );
}
}
printf( "\n* Ethernet MAC Control Registers:\n" );
for( i = 0x400, j = 0; i < 0x590; i += 4 ) {
printf( "%04X: %08X ", i, bcm_read_reg32( i ) );
if( ( ++j & 0x3 ) == 0 ) {
printf( "\n" );
}
}
printf( "\n* Send Data Initiator Control:\n" );
for( i = 0xc00, j = 0; i < 0xc10; i += 4 ) {
printf( "%04X: %08X ", i, bcm_read_reg32( i ) );
if( ( ++j & 0x3 ) == 0 ) {
printf( "\n" );
}
}
printf( "\n* Send Data Completion Control:\n" );
printf( "%04X: %08X ", 0x1000, bcm_read_reg32( 0x1000 ) );
printf( "%04X: %08X \n", 0x1008, bcm_read_reg32( 0x1008 ) );
printf( "\n* Send BD Ring Selector Control:\n" );
printf( "%04X: %08X ", 0x1400, bcm_read_reg32( 0x1400 ) );
printf( "%04X: %08X ", 0x1404, bcm_read_reg32( 0x1404 ) );
printf( "%04X: %08X \n", 0x1408, bcm_read_reg32( 0x1408 ) );
printf( "\n* Send BD Initiator Control:\n" );
printf( "%04X: %08X ", 0x1800, bcm_read_reg32( 0x1800 ) );
printf( "%04X: %08X \n", 0x1804, bcm_read_reg32( 0x1804 ) );
printf( "\n* Send BD Completion Control:\n" );
printf( "%04X: %08X ", 0x1c00, bcm_read_reg32( 0x1c00 ) );
printf( "\n* Receive List Placement Control:\n" );
for( i = 0x2000, j = 0; i < 0x2020; i += 4 ) {
printf( "%04X: %08X ", i, bcm_read_reg32( i ) );
if( ( ++j & 0x3 ) == 0 ) {
printf( "\n" );
}
}
printf( "\n* Receive Data & Receive BD Initiator Control:\n" );
printf( "%04X: %08X ", 0x2400, bcm_read_reg32( 0x2400 ) );
printf( "%04X: %08X \n", 0x2404, bcm_read_reg32( 0x2404 ) );
printf( "\n* Jumbo Receive BD Ring RCB:\n" );
for( i = 0x2440, j = 0; i < 0x2450; i += 4 ) {
printf( "%04X: %08X ", i, bcm_read_reg32( i ) );
if( ( ++j & 0x3 ) == 0 ) {
printf( "\n" );
}
}
printf( "\n* Standard Receive BD Ring RCB:\n" );
for( i = 0x2450, j = 0; i < 0x2460; i += 4 ) {
printf( "%04X: %08X ", i, bcm_read_reg32( i ) );
if( ( ++j & 0x3 ) == 0 ) {
printf( "\n" );
}
}
printf( "\n* Mini Receive BD Ring RCB:\n" );
for( i = 0x2460, j = 0; i < 0x2470; i += 4 ) {
printf( "%04X: %08X ", i, bcm_read_reg32( i ) );
if( ( ++j & 0x3 ) == 0 ) {
printf( "\n" );
}
}
printf( "\nRDI Timer Mode Register:\n" );
printf( "%04X: %08X \n", 0x24f0, bcm_read_reg32( 0x24f0 ) );
printf( "\n* Receive BD Initiator Control:\n" );
for( i = 0x2c00, j = 0; i < 0x2c20; i += 4 ) {
printf( "%04X: %08X ", i, bcm_read_reg32( i ) );
if( ( ++j & 0x3 ) == 0 ) {
printf( "\n" );
}
}
printf( "\n* Receive BD Completion Control:\n" );
for( i = 0x3000, j = 0; i < 0x3014; i += 4 ) {
printf( "%04X: %08X ", i, bcm_read_reg32( i ) );
if( ( ++j & 0x3 ) == 0 ) {
printf( "\n" );
}
}
}
#endif
/*
* NVRAM access
*/
static int
bcm_nvram_lock( void )
{
int i;
/*
* Acquire NVRam lock (REQ0) & wait for arbitration won (ARB0_WON)
*/
// bcm_setb_reg32( SW_ARB_R, BIT32( 0 ) );
bcm_setb_reg32( SW_ARB_R, BIT32( 1 ) );
i = 2000;
while( ( --i ) &&
// ( bcm_read_reg32( SW_ARB_R ) & BIT32( 8 ) ) == 0 ) {
( bcm_read_reg32( SW_ARB_R ) & BIT32( 9 ) ) == 0 ) {
SLOF_msleep( 1 );
}
// return on error
if( i == 0 ) {
#ifdef BCM_DEBUG
printf("bcm57xx: failed to lock nvram");
#endif
return -1;
}
return 0;
}
static void
bcm_nvram_unlock( void )
{
/*
* release NVRam lock (CLR0)
*/
// bcm_setb_reg32( SW_ARB_R, BIT32( 4 ) );
bcm_setb_reg32( SW_ARB_R, BIT32( 5 ) );
}
static void
bcm_nvram_init( void )
{
/*
* enable access to NVRAM registers
*/
if(IS_5714) {
bcm_setb_reg32( NVM_ACC_R, BIT32( 1 ) | BIT32( 0 ) );
}
/*
* disable bit-bang method 19& disable interface bypass
*/
bcm_clrb_reg32( NVM_CFG1_R, BIT32( 31 ) | BIT32( 3 ) | BIT32( 2 ) | BIT32( 14 ) | BIT32( 16 ) );
bcm_setb_reg32( NVM_CFG1_R, BIT32 ( 13 ) | BIT32 ( 17 ));
/*
* enable Auto SEEPROM Access
*/
bcm_setb_reg32( MISC_LOCAL_CTRL_R, BIT32 ( 24 ) );
/*
* NVRAM write enable
*/
bcm_setb_reg32( MODE_CTRL_R, BIT32 ( 21 ) );
}
static int32_t
bcm_nvram_read( uint32_t f_addr_u32, uint32_t *f_val_pu32, uint32_t lock )
{
uint32_t i;
/*
* parameter check
*/
if( f_addr_u32 > NVM_ADDR_MSK ) {
return -1;
}
/*
* Acquire NVRam lock (REQ0) & wait for arbitration won (ARB0_WON)
*/
if( lock && (bcm_nvram_lock() == -1) ) {
return -1;
}
/*
* setup address to read
*/
bcm_write_reg32( NVM_ADDR_R,
bcm_nvram_logical_to_physical_address(f_addr_u32) );
// bcm_write_reg32( NVM_ADDR_R, f_addr_u32 );
/*
* get the command going
*/
bcm_write_reg32( NVM_COM_R, BIT32( 8 ) | BIT32( 7 ) |
BIT32( 4 ) | BIT32( 3 ) );
/*
* wait for command completion
*/
i = 2000;
while( ( --i ) &&
( ( bcm_read_reg32( NVM_COM_R ) & BIT32( 3 ) ) == 0 ) ) {
SLOF_msleep( 1 );
}
/*
* read back data if no error
*/
if( i != 0 ) {
/*
* read back data
*/
*f_val_pu32 = bcm_read_reg32( NVM_READ_R );
}
if(lock)
bcm_nvram_unlock();
// error
if( i == 0 ) {
#ifdef BCM_DEBUG
printf("bcm57xx: reading from NVRAM failed\n");
#endif
return -1;
}
// success
return 0;
}
static int32_t
bcm_nvram_write( uint32_t f_addr_u32, uint32_t f_value_u32, uint32_t lock )
{
uint32_t i;
/*
* parameter check
*/
if( f_addr_u32 > NVM_ADDR_MSK ) {
return -1;
}
/*
* Acquire NVRam lock (REQ0) & wait for arbitration won (ARB0_WON)
*/
if( lock && (bcm_nvram_lock() == -1) ) {
return -1;
}
/*
* setup address to write
*/
bcm_write_reg32( NVM_ADDR_R, bcm_nvram_logical_to_physical_address( f_addr_u32 ) );
/*
* setup write data
*/
bcm_write_reg32( NVM_WRITE_R, f_value_u32 );
/*
* get the command going
*/
bcm_write_reg32( NVM_COM_R, BIT32( 8 ) | BIT32( 7 ) |
BIT32( 5 ) | BIT32( 4 ) | BIT32( 3 ) );
/*
* wait for command completion
*/
i = 2000;
while( ( --i ) &&
( ( bcm_read_reg32( NVM_COM_R ) & BIT32( 3 ) ) == 0 ) ) {
SLOF_msleep( 1 );
}
/*
* release NVRam lock (CLR0)
*/
if(lock)
bcm_nvram_unlock();
// error
if( i == 0 ) {
#ifdef BCM_DEBUG
printf("bcm57xx: writing to NVRAM failed\n");
#endif
return -1;
}
// success
return 0;
}
/*
* PHY initialization
*/
static int32_t
bcm_mii_phy_init( void )
{
static const uint32_t PHY_STAT_R = (uint32_t) 0x01;
static const uint32_t AUX_STAT_R = (uint32_t) 0x19;
static const uint32_t MODE_GMII = BIT32( 3 );
static const uint32_t MODE_MII = BIT32( 2 );
static const uint32_t NEG_POLARITY = BIT32( 10 );
static const uint32_t MII_MSK = ( MODE_GMII | MODE_MII );
static const uint16_t GIGA_ETH = ( BIT16( 10 ) | BIT16( 9 ) );
int32_t i;
uint16_t v;
/*
* enable MDI communication
*/
bcm_write_reg32( MDI_CTRL_R, (uint32_t) 0x0 );
/*
* check link up
*/
i = 2500;
do {
SLOF_msleep( 1 );
// register needs to be read twice!
bcm_mii_read16( PHY_STAT_R, &v );
bcm_mii_read16( PHY_STAT_R, &v );
} while( ( --i ) &&
( ( v & BIT16( 2 ) ) == 0 ) );
if( i == 0 ) {
#ifdef BCM_DEBUG
printf( "bcm57xx: link is down\n" );
#endif
return -1;
}
#ifdef BCM_DEBUG
printf( "bcm57xx: link is up\n" );
#endif
if( !IS_COPPER_PHY ) {
return 0;
}
/*
* setup GMII or MII interface
*/
i = bcm_read_reg32( ETH_MAC_MODE_R );
/*
* read status register twice, since the first
* read fails once between here and the moon...
*/
bcm_mii_read16( AUX_STAT_R, &v );
bcm_mii_read16( AUX_STAT_R, &v );
if( ( v & GIGA_ETH ) == GIGA_ETH ) {
#ifdef BCM_DEBUG
printf( "bcm57xx: running PHY in GMII mode (1000BaseT)\n" );
#endif
// GMII device
if( ( i & MII_MSK ) != MODE_GMII ) {
i &= ~MODE_MII;
i |= MODE_GMII;
}
} else {
#ifdef BCM_DEBUG
printf( "bcm57xx: running PHY in MII mode (10/100BaseT)\n" );
#endif
// MII device
if( ( i & MII_MSK ) != MODE_MII ) {
i &= ~MODE_GMII;
i |= MODE_MII;
}
}
if( IS_5704 && !IS_SERDES ) {
#ifdef BCM_DEBUG
printf( "bcm57xx: set the link ready signal for 5704C to negative polarity\n" );
#endif
i |= NEG_POLARITY; // set the link ready signal for 5704C to negative polarity
}
bcm_write_reg32( ETH_MAC_MODE_R, i );
return 0;
}
static int32_t
bcm_tbi_phy_init( void )
{
int32_t i;
#if 0
/*
* set TBI mode full duplex
*/
bcm_clrb_reg32( ETH_MAC_MODE_R, BIT32( 1 ) );
bcm_setb_reg32( ETH_MAC_MODE_R, BIT32( 2 ) | BIT32( 3 ) );
/*
* enable MDI communication
*/
bcm_write_reg32( MDI_CTRL_R, (uint32_t) 0x0 );
/* Disable link change interrupt. */
bcm_write_reg32( ETH_MAC_EVT_EN_R, 0 );
/*
* set link polarity
*/
bcm_clrb_reg32( ETH_MAC_MODE_R, BIT32( 10 ) );
/*
* wait for sync/config changes
*/
for( i = 0; i < 100; i++ ) {
bcm_write_reg32( ETH_MAC_STAT_R,
BIT32( 3 ) | BIT32( 4 ) );
SLOF_usleep( 20 );
if( ( bcm_read_reg32( ETH_MAC_STAT_R ) &
( BIT32( 3 ) | BIT32( 4 ) ) ) == 0 ) {
break;
}
}
#endif
/*
* wait for sync to come up
*/
for( i = 0; i < 100; i++ ) {
if( ( bcm_read_reg32( ETH_MAC_STAT_R ) & BIT32( 0 ) ) != 0 ) {
break;
}
SLOF_usleep( 20 );
}
if( ( bcm_read_reg32( ETH_MAC_STAT_R ) & BIT32( 0 ) ) == 0) {
#ifdef BCM_DEBUG
printf( "bcm57xx: link is down\n" );
#endif
return -1;
}
#if 0
/*
* clear all attentions
*/
bcm_write_reg32( ETH_MAC_STAT_R, (uint32_t) ~0 );
#endif
#ifdef BCM_DEBUG
printf( "bcm57xx: link is up\n" );
#endif
return 0;
}
static int32_t
bcm_phy_init( void )
{
static const uint16_t SRAM_HW_CFG = (uint16_t) 0x0b58;
uint32_t l_val_u32;
int32_t l_ret_i32 = 0;
/*
* get HW configuration from SRAM
*/
l_val_u32 = bcm_read_mem32( SRAM_HW_CFG );
l_val_u32 &= ( BIT32( 5 ) | BIT32( 4 ) );
switch( l_val_u32 ) {
case 0x10: {
#ifdef BCM_DEBUG
printf( "bcm57xx: copper PHY detected\n" );
#endif
bcm_device_u64 |= BCM_DEV_COPPER;
l_ret_i32 = bcm_mii_phy_init();
} break;
case 0x20: {
#ifdef BCM_DEBUG
printf( "bcm57xx: fiber PHY detected\n" );
#endif
if( !IS_SERDES ) {
#ifdef BCM_DEBUG
printf( "bcm57xx: running PHY in gmii/mii mode\n" );
#endif
l_ret_i32 = bcm_mii_phy_init();
} else {
#ifdef BCM_DEBUG
printf( "bcm57xx: running PHY in tbi mode\n" );
#endif
l_ret_i32 = bcm_tbi_phy_init();
}
} break;
default: {
#ifdef BCM_DEBUG
printf( "bcm57xx: unknown PHY type detected, terminating\n" );
#endif
l_ret_i32 = -1;
}
}
return l_ret_i32;
}
/*
* ring initialization
*/
static void
bcm_init_rxprod_ring( void )
{
uint32_t v;
uint32_t i;
/*
* clear out the whole rx prod ring for sanity
*/
memset( (void *) &bcm_rxprod_ring,
0,
BCM_RXPROD_RING_SIZE * sizeof( bcm_rxbd_t ) );
mb();
/*
* assign buffers & indices to the ring members
*/
for( i = 0; i < BCM_MAX_RX_BUF; i++ ) {
bcm_rxprod_ring[i].m_hostaddr_st.m_hi_u32 =
(uint32_t) ( (uint64_t) &bcm_rx_buffer_pu08[i] >> 32 );
bcm_rxprod_ring[i].m_hostaddr_st.m_lo_u32 =
(uint32_t) ( (uint64_t) &bcm_rx_buffer_pu08[i] &
(uint64_t) 0xffffffff );
bcm_rxprod_ring[i].m_idxlen_u32 = ( i << 16 );
bcm_rxprod_ring[i].m_idxlen_u32 += BCM_BUF_SIZE;
}
/*
* clear rcb registers & disable rings
* NOTE: mini & jumbo rings are not supported,
* still rcb's are cleaned out for sanity
*/
bcm_write_reg32( BCM_RCB_LENFLAG_u16( BCM_RXPROD_RCB_JUM ), RCB_FLAG_RING_DISABLED );
bcm_write_reg32( BCM_RCB_HOSTADDR_HI_u16( BCM_RXPROD_RCB_JUM ), 0 );
bcm_write_reg32( BCM_RCB_HOSTADDR_LOW_u16( BCM_RXPROD_RCB_JUM ), 0 );
bcm_write_reg32( BCM_RCB_NICADDR_u16( BCM_RXPROD_RCB_JUM ), 0 );
bcm_write_reg32( BCM_RCB_LENFLAG_u16( BCM_RXPROD_RCB_STD ), RCB_FLAG_RING_DISABLED );
bcm_write_reg32( BCM_RCB_HOSTADDR_HI_u16( BCM_RXPROD_RCB_STD ), 0 );
bcm_write_reg32( BCM_RCB_HOSTADDR_LOW_u16( BCM_RXPROD_RCB_STD ), 0 );
bcm_write_reg32( BCM_RCB_NICADDR_u16( BCM_RXPROD_RCB_STD ), 0 );
bcm_write_reg32( BCM_RCB_LENFLAG_u16( BCM_RXPROD_RCB_MIN ), RCB_FLAG_RING_DISABLED );
bcm_write_reg32( BCM_RCB_HOSTADDR_HI_u16( BCM_RXPROD_RCB_MIN ), 0 );
bcm_write_reg32( BCM_RCB_HOSTADDR_LOW_u16( BCM_RXPROD_RCB_MIN ), 0 );
bcm_write_reg32( BCM_RCB_NICADDR_u16( BCM_RXPROD_RCB_MIN ), 0 );
/*
* clear rx producer index of std producer ring
*/
bcm_write_reg32( RXPROD_PROD_IND, 0 );
/*
* setup rx standard rcb using recommended NIC addr (hard coded)
*/
bcm_write_reg32( BCM_RCB_HOSTADDR_HI_u16( BCM_RXPROD_RCB_STD ),
(uint32_t) ( (uint64_t) &bcm_rxprod_ring >> 32 ) );
bcm_write_reg32( BCM_RCB_HOSTADDR_LOW_u16( BCM_RXPROD_RCB_STD ),
(uint32_t) ( (uint64_t) &bcm_rxprod_ring & (uint64_t) 0xffffffff ) );
bcm_write_reg32( BCM_RCB_NICADDR_u16( BCM_RXPROD_RCB_STD ),
(uint32_t) BCM_NIC_RX_OFFS );
if( IS_5704 || IS_5703 ) {
// 5704: length field = max buffer len
v = (uint32_t) BCM_BUF_SIZE << 16;
} else {
// 5714: length field = number of ring entries
v = (uint32_t) BCM_RXPROD_RING_SIZE << 16;
}
v &= (uint32_t) ~RCB_FLAG_RING_DISABLED;
bcm_write_reg32( BCM_RCB_LENFLAG_u16( BCM_RXPROD_RCB_STD ), v );
}
static void
bcm_init_rxret_ring( void )
{
uint32_t i;
uint16_t v;
/*
* clear out the whole rx ret ring for sanity
*/
memset( (void *) &bcm_rxret_ring,
0,
2 * BCM_RXRET_RING_SIZE * sizeof( bcm_rxbd_t ) );
mb();
/*
* setup return ring size dependent on installed device
*/
bcm_rxret_ring_sz = BCM_RXRET_RING_SIZE;
if( IS_5704 || IS_5703 ) {
bcm_rxret_ring_sz *= 2;
}
/*
* clear rcb memory & disable rings
* NOTE: 5714 only supports one return ring,
* still all possible rcb's are cleaned out for sanity
*/
v = BCM_RXRET_RCB_OFFS;
for( i = 0; i < BCM_MAX_RXRET_RING; i++ ) {
bcm_write_mem32( BCM_RCB_LENFLAG_u16( v ), RCB_FLAG_RING_DISABLED );
bcm_write_mem32( BCM_RCB_HOSTADDR_HI_u16( v ), 0 );
bcm_write_mem32( BCM_RCB_HOSTADDR_LOW_u16( v ), 0 );
bcm_write_mem32( BCM_RCB_NICADDR_u16( v ), 0 );
v += BCM_RCB_SIZE_u16;
}
/*
* clear rx consumer index of return ring
*/
bcm_write_reg32( RXRET_CONS_IND, 0 );
/*
* setup rx ret rcb
* NOTE: NIC address not aplicable in return rings
*/
bcm_write_mem32( BCM_RCB_HOSTADDR_HI_u16( BCM_RXRET_RCB_OFFS ),
(uint32_t) ( (uint64_t) &bcm_rxret_ring >> 32 ) );
bcm_write_mem32( BCM_RCB_HOSTADDR_LOW_u16( BCM_RXRET_RCB_OFFS ),
(uint32_t) ( (uint64_t) &bcm_rxret_ring &
(uint64_t) 0xffffffff ) );
bcm_write_mem32( BCM_RCB_NICADDR_u16( BCM_RXRET_RCB_OFFS ), 0 );
i = bcm_rxret_ring_sz;
i <<= 16;
i &= (uint32_t) ~RCB_FLAG_RING_DISABLED;
bcm_write_reg32( BCM_RCB_LENFLAG_u16( BCM_RXRET_RCB_OFFS ), i );
}
static void
bcm_init_tx_ring( void )
{
uint32_t i;
uint16_t v;
/*
* clear out the whole tx ring for sanity
*/
memset( (void *) &bcm_tx_ring,
0,
BCM_TX_RING_SIZE * sizeof( bcm_txbd_t ) );
mb();
/*
* assign buffers to the ring members & setup invariant flags
*/
for( i = 0; i < BCM_MAX_TX_BUF; i++ ) {
bcm_tx_ring[i].m_hostaddr_st.m_hi_u32 =
(uint32_t) ( (uint64_t) &bcm_tx_buffer_pu08[i] >> 32 );
bcm_tx_ring[i].m_hostaddr_st.m_lo_u32 =
(uint32_t) ( (uint64_t) &bcm_tx_buffer_pu08[i] &
(uint64_t) 0xffffffff );
// flags: indicate last packet & coal now
// -last packet is always true (only one send packet supported)
// -coal now needed to always get the consumed bd's (since
// only a few bd's are set up which permanently are recycled)
bcm_tx_ring[i].m_lenflags_u32 = ( BIT32( 2 ) | BIT32( 7 ) );
bcm_tx_ring[i].m_VLANtag_u32 = (uint32_t) 0; // not used
}
/*
* clear rcb memory & disable rings
* NOTE: 5714 only supports one send ring,
* still all possible rcb's are cleaned out for sanity
*/
v = BCM_TX_RCB_OFFS;
for( i = 0; i < BCM_MAX_TX_RING; i++ ) {
bcm_write_mem32( BCM_RCB_LENFLAG_u16( v ), RCB_FLAG_RING_DISABLED );
bcm_write_mem32( BCM_RCB_HOSTADDR_HI_u16( v ), 0 );
bcm_write_mem32( BCM_RCB_HOSTADDR_LOW_u16( v ), 0 );
bcm_write_mem32( BCM_RCB_NICADDR_u16( v ), 0 );
v += BCM_RCB_SIZE_u16;
}
/*
* clear host/nic producer indices
*/
bcm_write_reg32( TX_NIC_PROD_IND, 0 );
bcm_write_reg32( TX_PROD_IND, 0 );
/*
* setup tx rcb using recommended NIC addr (hard coded)
*/
bcm_write_mem32( BCM_RCB_HOSTADDR_HI_u16( BCM_TX_RCB_OFFS ),
(uint32_t) ( (uint64_t) &bcm_tx_ring >> 32 ) );
bcm_write_mem32( BCM_RCB_HOSTADDR_LOW_u16( BCM_TX_RCB_OFFS ),
(uint32_t) ( (uint64_t) &bcm_tx_ring &
(uint64_t) 0xffffffff ) );
bcm_write_mem32( BCM_RCB_NICADDR_u16( BCM_TX_RCB_OFFS ),
(uint32_t) BCM_NIC_TX_OFFS );
if( IS_5704 || IS_5703 ) {
// 5704: length field = max buffer len
i = (uint32_t) BCM_BUF_SIZE << 16;
} else {
// 5714: length field = number of ring entries
i = (uint32_t) BCM_TX_RING_SIZE << 16;
}
i &= ( uint32_t ) ~RCB_FLAG_RING_DISABLED;
bcm_write_mem32( BCM_RCB_LENFLAG_u16( BCM_TX_RCB_OFFS ), i );
/*
* remember the next bd index to be used
* & number of available buffers
*/
bcm_tx_stop_u32 = BCM_MAX_TX_BUF;
bcm_tx_bufavail_u32 = BCM_MAX_TX_BUF;
}
static int32_t
bcm_mac_init( uint8_t *f_mac_pu08 )
{
static const uint16_t MEM_MAC_LO = (uint16_t) 0x0c18;
static const uint16_t MEM_MAC_HI = (uint16_t) 0x0c14;
uint32_t NVR_MAC_LO = (uint16_t) 0x80;
uint32_t NVR_MAC_HI = (uint16_t) 0x7c;
bcm_addr64_t l_mac_st;
uint32_t i;
uint32_t v;
/*
* Use MAC address from device tree if possible
*/
for( i = 0, v = 0; i < 6; i++ ) {
v += (uint32_t) f_mac_pu08[i];
}
if( v != 0 ) {
l_mac_st.m_hi_u32 = ( ( (uint32_t) f_mac_pu08[0]) << 8 );
l_mac_st.m_hi_u32 |= ( ( (uint32_t) f_mac_pu08[1]) << 0 );
l_mac_st.m_lo_u32 = ( ( (uint32_t) f_mac_pu08[2]) << 24 );
l_mac_st.m_lo_u32 |= ( ( (uint32_t) f_mac_pu08[3]) << 16 );
l_mac_st.m_lo_u32 |= ( ( (uint32_t) f_mac_pu08[4]) << 8 );
l_mac_st.m_lo_u32 |= ( ( (uint32_t) f_mac_pu08[5]) << 0 );
} else {
/*
* try to read MAC address from MAC mailbox
*/
l_mac_st.m_hi_u32 = bcm_read_mem32( MEM_MAC_HI );
if( ( l_mac_st.m_hi_u32 >> 16 ) == (uint32_t) 0x484b ) {
l_mac_st.m_hi_u32 &= (uint32_t) 0xffff;
l_mac_st.m_lo_u32 = bcm_read_mem32( MEM_MAC_LO );
} else {
int32_t l_err_i32;
/*
* otherwise retrieve MAC address from NVRam
*/
if( ( bcm_read_reg32( MAC_FUNC_R ) & BIT32( 2 ) ) != 0 ) {
// secondary MAC is in use, address in NVRAM changes
NVR_MAC_LO += 0x50;
NVR_MAC_HI += 0x50;
}
l_err_i32 = bcm_nvram_read( NVR_MAC_LO, &l_mac_st.m_lo_u32, 1 );
l_err_i32 += bcm_nvram_read( NVR_MAC_HI, &l_mac_st.m_hi_u32, 1 );
// return on read error
if( l_err_i32 < 0 ) {
#ifdef BCM_DEBUG
printf( "bcm57xx: failed to retrieve MAC address\n" );
#endif
return -1;
}
}
}
/*
* write the mac addr into the NIC's register area
*/
bcm_write_reg32( MAC_ADDR_OFFS_HI(0), l_mac_st.m_hi_u32 );
bcm_write_reg32( MAC_ADDR_OFFS_LO(0), l_mac_st.m_lo_u32 );
for( i = 1; i < BCM_NUM_MAC_ADDR; i++ ) {
bcm_write_reg32( MAC_ADDR_OFFS_HI(i), 0 );
bcm_write_reg32( MAC_ADDR_OFFS_LO(i), 0 );
}
/*
* WY 26.01.07
* not needed anymore, s.a.
if( IS_5704 != 0 ) {
v = MAC5704_ADDR_OFFS;
for( i = 0; i < BCM_NUM_MAC5704_ADDR; i++ ) {
bcm_write_reg32( v, l_mac_st.m_hi_u32 );
v += sizeof( uint32_t );
bcm_write_reg32( v, l_mac_st.m_lo_u32 );
v += sizeof( uint32_t );
}
}
*/
/*
* return MAC address as string
*/
f_mac_pu08[0] = (uint8_t) ( ( l_mac_st.m_hi_u32 >> 8 ) & (uint32_t) 0xff );
f_mac_pu08[1] = (uint8_t) ( ( l_mac_st.m_hi_u32 ) & (uint32_t) 0xff );
f_mac_pu08[2] = (uint8_t) ( ( l_mac_st.m_lo_u32 >> 24 ) & (uint32_t) 0xff );
f_mac_pu08[3] = (uint8_t) ( ( l_mac_st.m_lo_u32 >> 16 ) & (uint32_t) 0xff );
f_mac_pu08[4] = (uint8_t) ( ( l_mac_st.m_lo_u32 >> 8 ) & (uint32_t) 0xff );
f_mac_pu08[5] = (uint8_t) ( ( l_mac_st.m_lo_u32 ) & (uint32_t) 0xff );
#ifdef BCM_DEBUG
do {
int32_t i;
printf( "bcm57xx: retrieved MAC address " );
for( i = 0; i < 6; i++ ) {
printf( "%02X", f_mac_pu08[i] );
if( i != 5 ) {
printf( ":" );
}
}
printf( "\n" );
} while( 0 );
#endif
return 0;
}
/*
******************************************************************************
* ASF Firmware
******************************************************************************
*/
#ifdef BCM_DEBUG
#ifdef BCM_SHOW_ASF_REGS
static void
bcm_asf_check_register( void )
{
uint32_t i;
i = bcm_read_reg32( ASF_CTRL_R );
printf( "bcm57xx: ASF control : %x\n", i );
i = bcm_read_reg32( ASF_WATCHDOG_TIMER_R );
printf( "bcm57xx: ASF Watchdog Timer : %x\n", i );
i = bcm_read_reg32( ASF_HEARTBEAT_TIMER_R );
printf( "bcm57xx: ASF Heartbeat Timer : %x\n", i );
i = bcm_read_reg32( ASF_POLL_TIMER_R );
printf( "bcm57xx: ASF Poll Timer : %x\n", i );
i = bcm_read_reg32( POLL_LEGACY_TIMER_R );
printf( "bcm57xx: Poll Legacy Timer : %x\n", i );
i = bcm_read_reg32( RETRANSMISSION_TIMER_R );
printf( "bcm57xx: Retransmission Timer : %x\n", i );
i = bcm_read_reg32( TIME_STAMP_COUNTER_R );
printf( "bcm57xx: Time Stamp Counter : %x\n", i );
i = bcm_read_reg32( RX_CPU_MODE_R );
printf( "bcm57xx: RX RISC Mode : %x\n", i );
i = bcm_read_reg32( RX_CPU_STATE_R );
printf( "bcm57xx: RX RISC State : %x\n", i );
i = bcm_read_reg32( RX_CPU_PC_R );
printf( "bcm57xx: RX RISC Prg. Counter : %x\n", i );
}
#endif
#endif
static int
bcm_fw_halt( void )
{
int i;
bcm_write_mem32( BCM_FW_MBX_CMD, BCM_NICDRV_PAUSE_FW );
bcm_setb_reg32( RX_CPU_EVENT_R, BIT32( 14 ) );
/* Wait for RX cpu to ACK the event. */
for (i = 0; i < 100; i++) {
if(bcm_read_reg32( RX_CPU_EVENT_R ) & BIT32( 14 ))
break;
SLOF_msleep(1);
}
if( i>= 100)
return -1;
return 0;
}
#ifdef BCM_SW_AUTONEG
static void
bcm_sw_autoneg( void ) {
uint32_t i, j, k;
uint32_t SerDesCfg;
uint32_t SgDigControl;
uint32_t SgDigStatus;
uint32_t ExpectedSgDigControl;
int AutoNegJustInitiated = 0;
// step 1: init TX 1000BX Autoneg. Register to zero
bcm_write_reg32(TX_1000BX_AUTONEG_R, 0);
// step 2&3: set TBI mode
bcm_setb_reg32( ETH_MAC_MODE_R, BIT32( 2 ) | BIT32( 3 ) );
SLOF_usleep(10);
// step 4: enable link attention
bcm_setb_reg32( ETH_MAC_EVT_EN_R, BIT32( 12 ) );
// step 5: preserve voltage regulator bits
SerDesCfg = bcm_read_reg32(SERDES_CTRL_R) & ( BIT32( 20 ) | BIT32( 21 )
| BIT32( 22 ) | BIT32( 23 ) );
// step 6: preserve voltage regulator bits
SgDigControl = bcm_read_reg32(HW_AUTONEG_CTRL_R);
// step 7: if device is NOT set-up for auto negotiation, then go to step 26
// goto bcm_setup_phy_step26;
// We want to use auto negotiation
// step 8: we don't want to use flow control
ExpectedSgDigControl = 0x81388400; // no flow control
// step 9: compare SgDigControl with 0x81388400
if(SgDigControl == ExpectedSgDigControl) {
goto bcm_setup_phy_step17;
}
#ifdef BCM_DEBUG
printf("bcm57xx: SgDigControl = %08X\n", SgDigControl);
#endif
// step 10
bcm_write_reg32(SERDES_CTRL_R, SerDesCfg | 0xC011880);
// step 11: restart auto negotiation
bcm_write_reg32(HW_AUTONEG_CTRL_R, ExpectedSgDigControl | BIT32( 30 ) );
// step 12: read back HW_AUTONEG_CTRL_R
bcm_read_reg32(HW_AUTONEG_CTRL_R);
// step 13
SLOF_usleep( 5 );
// step 14,15,16: same as step 11, but don't restart auto neg.
bcm_write_reg32(HW_AUTONEG_CTRL_R, ExpectedSgDigControl);
AutoNegJustInitiated = 1;
goto bcm_setup_phy_step30;
// step 17:
bcm_setup_phy_step17:
if( ( bcm_read_reg32(ETH_MAC_STAT_R) & ( BIT32( 1 ) | BIT32( 0 ) ) ) == 0 ) {
goto bcm_setup_phy_step30;
}
// step 18: Get HW Autoneg. Status
SgDigStatus = bcm_read_reg32(HW_AUTONEG_STAT_R);
// step 19:
if( ( SgDigStatus & BIT32(1) )
&& ( bcm_read_reg32(ETH_MAC_STAT_R) & BIT32(0) ) ) {
// resolve the current flow control?
AutoNegJustInitiated = 0;
goto bcm_setup_phy_step30;
}
// step 20
if( SgDigStatus & BIT32(1) ) {
goto bcm_setup_phy_step30;
}
if( AutoNegJustInitiated != 0) {
AutoNegJustInitiated = 0;
goto bcm_setup_phy_step29;
}
// step 21, 22, 23, 24: fallback to 1000Mbps-FullDuplex forced mode
if( ( bcm_read_reg32( MAC_FUNC_R ) & BIT32( 2 ) ) == 0 ) {
// port 0
bcm_write_reg32( SERDES_CTRL_R, 0xC010880 );
}
else { // port 1
bcm_write_reg32( SERDES_CTRL_R, 0x4010880 );
}
// set to 1000Mbps-FullDuplex
bcm_write_reg32(HW_AUTONEG_CTRL_R, 0x1388400);
// read back
bcm_read_reg32(HW_AUTONEG_CTRL_R);
SLOF_usleep( 40 );
// step 25: a little bit reduces...
goto bcm_setup_phy_step30;
// step 26: check if auto negotiation bit is NOT set
// bcm_setup_phy_step26:
if( ( SgDigControl & BIT32(31) )== 0 ) {
printf("No autoneg.\n");
goto bcm_setup_phy_step29;
}
// step 27:
if( ( bcm_read_reg32( MAC_FUNC_R ) & BIT32( 2 ) ) == 0 ) {
// port 0
bcm_write_reg32( SERDES_CTRL_R, 0xC010880 );
}
else { // port 1
bcm_write_reg32( SERDES_CTRL_R, 0x4010880 );
}
// step 28: disable auto neg. and force 1000FD mode
bcm_write_reg32(HW_AUTONEG_CTRL_R, 0x1388400);
// step 29-31: omitted for 5704S
bcm_setup_phy_step29:
bcm_setup_phy_step30:
// step 32: clear link attentions
i = bcm_read_reg32( ETH_MAC_STAT_R ) | BIT32( 3 ) | BIT32( 4 );
k = 100;
do {
bcm_write_reg32( ETH_MAC_STAT_R, i );
j = bcm_read_reg32( ETH_MAC_STAT_R );
if( ( j & BIT32( 3 ) ) != 0 )
i = i & ~(BIT32( 3 ));
if( ( j & BIT32( 4 ) ) != 0 )
i = i & ~(BIT32( 4 ));
--k;
} while( i & k);
// step 33
if( ( bcm_read_reg32( ETH_MAC_STAT_R ) & BIT32( 0 ) ) == 0 ) {
goto bcm_setup_phy_step35;
}
// step 34
i = bcm_read_reg32( ETH_MAC_MODE_R );
i|= BIT32( 17 );
bcm_write_reg32( ETH_MAC_MODE_R, i );
SLOF_usleep( 1 );
i = bcm_read_reg32( ETH_MAC_STAT_R );
i&= ~BIT32( 17 );
bcm_write_reg32( ETH_MAC_STAT_R, i );
// step 35 & 36: done
bcm_setup_phy_step35:
#ifdef BCM_DEBUG
printf("bcm57xx: SetupPhy\n");
#endif
return;
}
#endif
static int
bcm_handle_events( void ) {
#ifdef BCM_DEBUG
#ifdef BCM_SHOW_ASF_REGS
// ASF REGISTER CHECK
// ------------------
// check if watchdog timer expired
if( bcm_read_reg32( ASF_WATCHDOG_TIMER_R ) == 0 ) {
// Show ASF registers
bcm_asf_check_register();
// rearm watchdog timer
bcm_write_reg32( ASF_WATCHDOG_TIMER_R, 5 );
}
#endif
#endif
#ifdef BCM_SW_AUTONEG
// AUTO NEGOTIATION
// ----------------
// Check event for Auto Negotiation
if( ( bcm_read_reg32( ETH_MAC_STAT_R ) &
( BIT32( 12 ) | BIT32( 3 ) | BIT32( 0 ) ) ) != 0 ) {
// link timer procedure
bcm_sw_autoneg();
}
#endif
// ASF FW HEARTBEAT
// ----------------
// check if heartsbeat timer expired
if( bcm_read_reg32( ASF_HEARTBEAT_TIMER_R ) <= 2) {
int i;
// Send heartbeat event
bcm_write_mem32( BCM_FW_MBX_CMD, BCM_NICDRV_ALIVE );
bcm_write_mem32( BCM_FW_MBX_LEN, 4 );
bcm_write_mem32( BCM_FW_MBX_DATA, 5 );
bcm_setb_reg32( RX_CPU_EVENT_R, BIT32( 14 ) );
// Wait for RX cpu to ACK the event.
for (i = 100; i > 0; i--) {
if(bcm_read_reg32( RX_CPU_EVENT_R ) & BIT32( 14 ))
break;
SLOF_msleep(1);
}
if( i == 0) {
#ifdef BCM_DEBUG
printf( "bcm57xx: RX cpu did not acknowledge heartbeat event\n" );
#endif
return -1;
}
// rearm heartbeat timer
bcm_write_reg32( ASF_HEARTBEAT_TIMER_R, 5 );
}
return 0;
}
/*
* interface
******************************************************************************
*/
/*
* bcm_receive
*/
static int
bcm_receive( char *f_buffer_pc, int f_len_i )
{
uint32_t l_rxret_prod_u32 = bcm_read_reg32( RXRET_PROD_IND );
uint32_t l_rxret_cons_u32 = bcm_read_reg32( RXRET_CONS_IND );
uint32_t l_rxprod_prod_u32 = bcm_read_reg32( RXPROD_PROD_IND );
int l_ret_i;
#ifdef BCM_DEBUG
#ifdef BCM_SHOW_RCV_DATA
int i, j;
#endif
#endif
/*
* NOTE: dummy read to ensure data has already been DMA'd is
* done by the indice reads
*/
bcm_handle_events();
/*
* if producer index == consumer index then nothing was received
*/
if( l_rxret_prod_u32 == l_rxret_cons_u32 ) {
return 0;
}
/*
* discard erroneous packets
*/
if( ( bcm_rxret_ring[l_rxret_cons_u32].m_typeflags_u32 & BIT32( 10 ) ) != 0 ) {
#ifdef BCM_DEBUG
printf( "bcm57xx: erroneous frame received\n" );
printf( " : frame discarded\n" );
#endif
l_ret_i = 0;
} else {
/*
* get packet length, throw away checksum (last 4 bytes)
*/
l_ret_i = (int) ( bcm_rxret_ring[l_rxret_cons_u32].m_idxlen_u32 &
(uint32_t) 0xffff ) - (int) 4;
/*
* discard oversized packets
*/
if( l_ret_i > f_len_i ) {
#ifdef BCM_DEBUG
printf( "bcm57xx: receive packet length error:\n" );
printf( " : incoming 0x%X bytes, available buffer 0x%X bytes\n", l_ret_i, f_len_i );
printf( " : frame discarded\n" );
#endif
l_ret_i = 0;
}
}
/*
* copy & update data & indices
*/
if( l_ret_i != 0 ) {
uint64_t l_cpyaddr_u64;
l_cpyaddr_u64 =
( (uint64_t) bcm_rxret_ring[l_rxret_cons_u32].m_hostaddr_st.m_hi_u32 << 32 );
l_cpyaddr_u64 +=
( (uint64_t) bcm_rxret_ring[l_rxret_cons_u32].m_hostaddr_st.m_lo_u32 );
// FIXME:
if(l_cpyaddr_u64 == 0) {
#ifdef BCM_DEBUG
printf("bcm57xx: NULL address\n");
#endif
return 0;
}
//
memcpy( (void *) f_buffer_pc,
(void *) l_cpyaddr_u64,
(size_t) l_ret_i );
}
/*
* replenish bd to producer ring
*/
bcm_rxprod_ring[l_rxprod_prod_u32] =
bcm_rxret_ring[l_rxret_cons_u32];
bcm_rxprod_ring[l_rxprod_prod_u32].m_idxlen_u32 =
( l_rxprod_prod_u32 << 16 );
bcm_rxprod_ring[l_rxprod_prod_u32].m_idxlen_u32 +=
(uint32_t) BCM_BUF_SIZE;
/*
* update producer ring's producer index
*/
l_rxprod_prod_u32 = ( l_rxprod_prod_u32 + 1 ) & ( BCM_RXPROD_RING_SIZE - 1 );
/*
* move to the next bd in return ring
*/
l_rxret_cons_u32 = ( l_rxret_cons_u32 + 1 ) & ( bcm_rxret_ring_sz - 1 );
/*
* synchronize before new indices are send to NIC
*/
mb();
/*
* write back new indices
*/
bcm_write_reg32( RXRET_CONS_IND, l_rxret_cons_u32 );
bcm_write_reg32( RXPROD_PROD_IND, l_rxprod_prod_u32 );
#ifdef BCM_DEBUG
#ifdef BCM_SHOW_RCV
if( l_ret_i != 0 ) {
printf( "bcm57xx: received bytes: %d\n", l_ret_i );
}
#ifdef BCM_SHOW_RCV_DATA
for( i = 0, j = 0; i < l_ret_i; i++ ) {
printf( "%02X ", ( uint32_t ) f_buffer_pc[i] );
if( ( ++j % 0x18 ) == 0 ) {
printf( "\n" );
}
}
if( ( i % 0x18 ) != 0 ) {
printf( "\n" );
}
#endif
#endif
#endif
/*
* return packet length
*/
return l_ret_i;
}
static int
bcm_xmit( char *f_buffer_pc, int f_len_i )
{
uint32_t l_tx_cons_u32 = bcm_read_reg32( TX_CONS_IND );
uint32_t l_tx_prod_u32 = bcm_read_reg32( TX_PROD_IND );
uint64_t l_cpyaddr_u64;
#ifdef BCM_DEBUG
#ifdef BCM_SHOW_XMIT_DATA
int i, j;
#endif
#ifdef BCM_SHOW_IDX
printf( "\n" );
printf( "bcm57xx: TX_PROD_IND : 0x%03X\n", l_tx_prod_u32 );
printf( "bcm57xx: TX_CONS_IND : 0x%03X\n", l_tx_cons_u32 );
printf( "bcm57xx: RXPROD_PROD_IND: 0x%03X\n", bcm_read_reg32( RXPROD_PROD_IND ) );
printf( "bcm57xx: RXPROD_CONS_IND: 0x%03X\n", bcm_read_reg32( RXPROD_CONS_IND ) );
printf( "bcm57xx: RXRET_PROD_IND : 0x%03X\n", bcm_read_reg32( RXRET_PROD_IND ) );
printf( "bcm57xx: RXRET_CONS_IND : 0x%03X\n", bcm_read_reg32( RXRET_CONS_IND ) );
printf( "bcm57xx: available txb : 0x%03X\n", bcm_tx_bufavail_u32 );
#endif
#ifdef BCM_SHOW_STATS
printf( "bcm57xx: bcm_status.m_st_word_u32: %08X\n", bcm_status.m_st_word_u32 );
printf( "bcm57xx: bcm_status.m_st_tag_u32 : %08X\n", bcm_status.m_st_tag_u32 );
printf( "bcm57xx: bcm_status.m_rxprod_cons_u16: %04X\n", ( uint32_t ) bcm_status.m_rxprod_cons_u16 );
printf( "bcm57xx: bcm_status.m_unused_u16: %04X\n", ( uint32_t ) bcm_status.m_unused_u16 );
printf( "bcm57xx: bcm_status.m_unused_u32: %08X\n", bcm_status.m_unused_u32 );
printf( "bcm57xx: bcm_status.m_tx_cons_u16: %04X\n", ( uint32_t ) bcm_status.m_tx_cons_u16 );
printf( "bcm57xx: bcm_status.m_rxret_prod_u16: %04X\n", ( uint32_t ) bcm_status.m_rxret_prod_u16 );
#endif
#endif
bcm_handle_events();
/*
* make all consumed bd's available in the ring again
* this way only a few buffers are needed instead of
* having 512 buffers allocated
*/
while( bcm_tx_start_u32 != l_tx_cons_u32 ) {
bcm_tx_ring[bcm_tx_stop_u32] = bcm_tx_ring[bcm_tx_start_u32];
bcm_tx_stop_u32 = ( bcm_tx_stop_u32 + 1 ) & ( BCM_TX_RING_SIZE - 1 );
bcm_tx_start_u32 = ( bcm_tx_start_u32 + 1 ) & ( BCM_TX_RING_SIZE - 1 );
bcm_tx_bufavail_u32++;
}
/*
* check for tx buffer availability
*/
if( bcm_tx_bufavail_u32 == 0 ) {
#ifdef BCM_DEBUG
printf( "bcm57xx: no more transmit buffers available\n" );
#endif
return 0;
}
/*
* setup next available bd in tx ring
*/
bcm_tx_ring[l_tx_prod_u32].m_lenflags_u32 = ( BIT32( 2 ) | BIT32( 7 ) /*| BIT32( 6 )*/ );
bcm_tx_ring[l_tx_prod_u32].m_lenflags_u32 += ( (uint32_t) f_len_i << 16 );
// bcm_tx_ring[l_tx_prod_u32].m_VLANtag_u32 = BCM_VLAN_TAG;
l_cpyaddr_u64 = ( (uint64_t) bcm_tx_ring[l_tx_prod_u32].m_hostaddr_st.m_hi_u32 << 32 );
l_cpyaddr_u64 += ( (uint64_t) bcm_tx_ring[l_tx_prod_u32].m_hostaddr_st.m_lo_u32 );
#ifdef BCM_DEBUG
#ifdef BCM_SHOW_XMIT_STATS
printf("bcm57xx: xmit: l_cpyaddr_u64: 0x%lx\n", l_cpyaddr_u64 );
printf(" f_buffer_pc : 0x%lx\n", f_buffer_pc );
printf(" f_len_i : %d\n", f_len_i );
#endif
#endif
memcpy( (void *) l_cpyaddr_u64, (void *) f_buffer_pc, (size_t) f_len_i );
/*
* update tx producer index & available buffers
*/
l_tx_prod_u32 = ( l_tx_prod_u32 + 1 ) & ( BCM_TX_RING_SIZE - 1 );
bcm_tx_bufavail_u32--;
/*
* synchronize before new index is send to NIC
*/
mb();
bcm_write_reg32( TX_PROD_IND, l_tx_prod_u32 );
#ifdef BCM_DEBUG
#ifdef BCM_SHOW_XMIT
printf( "bcm57xx: sent bytes: %d\n", f_len_i );
#ifdef BCM_SHOW_XMIT_DATA
for( i = 0, j = 0; i < f_len_i; i++ ) {
printf( "%02X ", ( uint32_t ) f_buffer_pc[i] );
if( ( ++j % 0x18 ) == 0 ) {
printf( "\n" );
}
}
if( ( i % 0x18 ) != 0 ) {
printf( "\n" );
}
#endif
#endif
#ifdef BCM_SHOW_STATS
// coalesce status block now
bcm_setb_reg32( HOST_COAL_MODE_R, BIT32( 3 ) | BIT32( 1 ) );
#endif
#endif
return f_len_i;
}
static int
check_driver( uint16_t vendor_id, uint16_t device_id )
{
uint64_t i;
/*
* checks whether the driver is handling this device
* by verifying vendor & device id
* vendor id 0x14e4 == Broadcom
*/
if( vendor_id != 0x14e4 ) {
#ifdef BCM_DEBUG
printf( "bcm57xx: netdevice not supported, illegal vendor id\n" );
#endif
return -1;
}
for( i = 0; bcm_dev[i].m_dev_u32 != 0; i++ ) {
if( bcm_dev[i].m_dev_u32 == (uint32_t) device_id ) {
// success
break;
}
}
if(bcm_dev[i].m_dev_u32 == 0) {
#ifdef BCM_DEBUG
printf( "bcm57xx: netdevice not supported, illegal device ID\n" );
#endif
return -1;
}
/*
* initialize static variables
*/
bcm_device_u64 = bcm_dev[i].m_devmsk_u64;
bcm_rxret_ring_sz = 0;
bcm_baseaddr_u64 = 0;
bcm_memaddr_u64 = 0;
bcm_tx_start_u32 = 0;
bcm_tx_stop_u32 = 0;
bcm_tx_bufavail_u32 = 0;
return 0;
}
static void
bcm_wol_activate(void)
{
#ifdef BCM_DEBUG
uint16_t reg_pwr_cap;
#endif
uint16_t reg_pwr_crtl;
uint32_t wol_mode;
wol_mode = bcm_read_reg32( WOL_MODE_R );
bcm_write_reg32( WOL_MODE_R, wol_mode | BIT32(0) );
#ifdef BCM_DEBUG
printf( "bcm57xx: WOL activating..." );
#endif
// bcm_write_mem32( BCM_NICDRV_STATE_MBX, NIC_FWDRV_STATE_WOL );
// SLOF_msleep( 100 );
#ifdef BCM_DEBUG
reg_pwr_cap = SLOF_pci_config_read16(0x4a);
/*reg_pwr_cap = snk_kernel_interface->pci_config_read( bcm_pcicfg_puid,
2,
bcm_pcicfg_bus,
bcm_pcicfg_devfn,
0x4a );*/
printf( "bcm57xx: PM Capability Register: %04X\n", reg_pwr_cap );
#endif
/* get curretn power control register */
reg_pwr_crtl = SLOF_pci_config_read16(0x4c);
/*reg_pwr_crtl = snk_kernel_interface->pci_config_read( bcm_pcicfg_puid,
2,
bcm_pcicfg_bus,
bcm_pcicfg_devfn,
0x4c );*/
#ifdef BCM_DEBUG
printf( "bcm57xx: PM Control/Status Register: %04X\n", reg_pwr_crtl );
#endif
/* switch to power state D0 */
reg_pwr_crtl |= 0x8000;
reg_pwr_crtl &= ~(0x0003);
SLOF_pci_config_write16(0x4c, reg_pwr_crtl);
/*snk_kernel_interface->pci_config_write( bcm_pcicfg_puid,
2,
bcm_pcicfg_bus,
bcm_pcicfg_devfn,
0x4c,
reg_pwr_crtl );*/
SLOF_msleep(10);
/*
bcm_write_mem32( BCM_NICDRV_WOL_MBX, BCM_WOL_MAGIC_NUMBER |
NIC_WOLDRV_STATE_SHUTDOWN |
NIC_WOLDRV_WOL |
NIC_WOLDRV_SET_MAGIC_PKT );
*/
/* switch to power state D3hot */
/*
reg_pwr_crtl |= 0x0103;
SLOF_pci_config_write16(0x4c, reg_pwr_crtl);
snk_kernel_interface->pci_config_write( bcm_pcicfg_puid,
2,
bcm_pcicfg_bus,
bcm_pcicfg_devfn,
0x4c,
reg_pwr_crtl );
SLOF_msleep(10);
*/
#ifdef BCM_DEBUG
reg_pwr_crtl = SLOF_pci_config_read16(0x4c);
/*reg_pwr_crtl = snk_kernel_interface->pci_config_read( bcm_pcicfg_puid,
2,
bcm_pcicfg_bus,
bcm_pcicfg_devfn,
0x4c );*/
printf( "bcm57xx: PM Control/Status Register: %04X\n", reg_pwr_crtl );
#endif
#ifdef BCM_DEBUG
printf( "bcm57xx: WOL activated" );
#endif
}
static int
bcm_init( net_driver_t *driver )
{
static const uint32_t lc_Maxwait_u32 = (uint32_t) 1000;
uint32_t l_baseaddrL_u32;
uint32_t l_baseaddrH_u32;
uint32_t i;
uint8_t *mac_addr = driver->mac_addr;
if(driver->running != 0) {
return 0;
}
#ifdef BCM_DEBUG
printf( "bcm57xx: detected device " );
if( IS_5703 ) {
printf( "5703S\n" );
} else if( IS_5704 ) {
printf( "5704" );
if( IS_SERDES ) {
printf( "S\n" );
} else {
printf( "C\n" );
}
} else if( IS_5714 ) {
printf( "5714\n" );
}
#endif
/*
* setup register & memory base addresses of NIC
*/
l_baseaddrL_u32 = (uint32_t) ~0xf &
(uint32_t) SLOF_pci_config_read32(PCI_BAR1_R);
/*l_baseaddrL_u32 = ( (uint32_t) ~0xf &
(uint32_t) snk_kernel_interface->pci_config_read( bcm_pcicfg_puid,
4,
bcm_pcicfg_bus,
bcm_pcicfg_devfn,
PCI_BAR1_R ) );*/
l_baseaddrH_u32 = (uint32_t) SLOF_pci_config_read32(PCI_BAR2_R);
/*l_baseaddrH_u32 =
(uint32_t) snk_kernel_interface->pci_config_read( bcm_pcicfg_puid,
4,
bcm_pcicfg_bus,
bcm_pcicfg_devfn,
PCI_BAR2_R );*/
bcm_baseaddr_u64 = (uint64_t) l_baseaddrH_u32;
bcm_baseaddr_u64 <<= 32;
bcm_baseaddr_u64 += (uint64_t) l_baseaddrL_u32;
bcm_baseaddr_u64 =
(uint64_t) SLOF_translate_my_address((void *)bcm_baseaddr_u64);
/*snk_kernel_interface->translate_addr(((void *)&(bcm_baseaddr_u64)));*/
bcm_memaddr_u64 = bcm_baseaddr_u64 + BCM_MEMORY_OFFS;
#ifdef BCM_DEBUG
printf( "bcm57xx: device's register base high address = 0x%08X\n", l_baseaddrH_u32 );
printf( "bcm57xx: device's register base low address = 0x%08X\n", l_baseaddrL_u32 );
printf( "bcm57xx: device's register address = 0x%llx\n", bcm_baseaddr_u64 );
#endif
/*
* 57xx hardware initialization
* BCM57xx Programmer's Guide: Section 8, "Initialization"
* steps 1 through 101
*/
// step 1: enable bus master & memory space in command reg
i = ( BIT32( 10 ) | BIT32( 2 ) | BIT32( 1 ) );
SLOF_pci_config_write16(PCI_COM_R, i);
/*snk_kernel_interface->pci_config_write( bcm_pcicfg_puid,
2,
bcm_pcicfg_bus,
bcm_pcicfg_devfn,
PCI_COM_R,
( int ) i );*/
// step 2: disable & mask interrupts & enable pci byte/word swapping & enable indirect addressing mode
i = ( BIT32( 8 ) | BIT32( 7 ) | BIT32( 3 ) | BIT32( 2 ) | BIT32( 1 ) | BIT32( 0 ) );
SLOF_pci_config_write32(PCI_MISC_HCTRL_R, i);
/*snk_kernel_interface->pci_config_write( bcm_pcicfg_puid,
4,
bcm_pcicfg_bus,
bcm_pcicfg_devfn,
PCI_MISC_HCTRL_R,
( int ) i );*/
/*
* from now on access may be made through the local
* read/write functions
*/
// step 3: Save ahche line size register
// omitted, because register is not used for 5704
// step 4: acquire the nvram lock
if( bcm_nvram_lock() != 0 ) {
#ifdef BCM_DEBUG
printf( "bcm57xx: locking NVRAM failed\n" );
#endif
return -1;
}
// step 5: prepare the chip for writing TG3_MAGIC_NUMBER
bcm_setb_reg32( MEMARB_MODE_R, BIT32( 1 ) );
i = ( BIT32( 8 ) | BIT32( 7 ) | BIT32( 3 ) | BIT32( 2 ) | BIT32( 1 ) | BIT32( 0 ) );
SLOF_pci_config_write32(PCI_MISC_HCTRL_R, i);
/*snk_kernel_interface->pci_config_write( bcm_pcicfg_puid,
4,
bcm_pcicfg_bus,
bcm_pcicfg_devfn,
PCI_MISC_HCTRL_R,
( int ) i );*/
bcm_write_reg32( MODE_CTRL_R, BIT32( 23 ) | BIT32( 20 ) |
BIT32( 17 ) | BIT32( 16 ) |
BIT32( 14 ) | BIT32( 13 ) |
BIT32( 5 ) | BIT32( 4 ) |
BIT32( 2 ) | BIT32( 1 ) );
// step 6: write TG3_MAGIC_NUMBER
bcm_write_mem32( BCM_FW_MBX, BCM_MAGIC_NUMBER );
// step 7: reset core clocks
if( IS_5714 ) {
bcm_setb_reg32( MISC_CFG_R, BIT32( 26 ) | BIT32( 0 ) );
} else {
bcm_setb_reg32( MISC_CFG_R, BIT32( 0 ) );
}
// step 8
SLOF_msleep( 20 );
// step 9: disable & mask interrupts & enable indirect addressing mode &
// enable pci byte/word swapping initialize the misc host control register
i = ( BIT32( 8 ) | BIT32( 7 ) | BIT32( 3 ) | BIT32( 2 ) | BIT32( 1 ) | BIT32( 0 ) );
SLOF_pci_config_write32(PCI_MISC_HCTRL_R, i);
/*snk_kernel_interface->pci_config_write( bcm_pcicfg_puid,
4,
bcm_pcicfg_bus,
bcm_pcicfg_devfn,
PCI_MISC_HCTRL_R,
( int ) i );*/
// step 10: set but master et cetera
i = ( BIT32( 10 ) | BIT32( 2 ) | BIT32( 1 ) );
SLOF_pci_config_write16(PCI_COM_R, i);
/*snk_kernel_interface->pci_config_write( bcm_pcicfg_puid,
2,
bcm_pcicfg_bus,
bcm_pcicfg_devfn,
PCI_COM_R,
( int ) i );*/
// step 11: disable PCI-X relaxed ordering
bcm_clrb_reg16( PCI_X_COM_R, BIT16( 1 ) );
// step 12: enable the MAC memory arbiter
bcm_setb_reg32( MEMARB_MODE_R, BIT32( 1 ) );
// step 13: omitted, only for BCM5700
// step 14: s. step 10
i = ( BIT32( 8 ) | BIT32( 7 ) | BIT32( 3 ) | BIT32( 2 ) | BIT32( 1 ) | BIT32( 0 ) );
SLOF_pci_config_write32(PCI_MISC_HCTRL_R, i);
/*snk_kernel_interface->pci_config_write( bcm_pcicfg_puid,
4,
bcm_pcicfg_bus,
bcm_pcicfg_devfn,
PCI_MISC_HCTRL_R,
( int ) i );*/
// step 15: set byte swapping (incl. step 27/28/29/30)
// included prohibition of tx/rx interrupts
bcm_write_reg32( MODE_CTRL_R, BIT32( 23 ) | BIT32( 20 ) |
BIT32( 17 ) | BIT32( 16 ) |
BIT32( 14 ) | BIT32( 13 ) |
BIT32( 5 ) | BIT32( 4 ) |
BIT32( 2 ) | BIT32( 1 ) );
// step 16: omitted
i = 1000;
while( ( --i ) &&
( bcm_read_mem32( BCM_FW_MBX ) != ~BCM_MAGIC_NUMBER ) ) {
#ifdef BCM_DEBUG
printf( "." );
#endif
SLOF_msleep( 1 );
}
// return on error
if( bcm_read_mem32( BCM_FW_MBX ) != ~BCM_MAGIC_NUMBER ) {
printf( "bootcode not loaded: %x\n", bcm_read_mem32( BCM_FW_MBX ) );
#ifdef BCM_DEBUG
printf( "failed\n" );
#endif
return -1;
}
// if ASF Firmware enabled
bcm_write_mem32( BCM_NICDRV_STATE_MBX, NIC_FWDRV_STATE_START );
SLOF_msleep( 10 );
// step 17: write ethernet mac mode register
/*
* WY 07.02.07
* omitted for correct SOL function
*/
/*
if( IS_SERDES ) {
bcm_write_reg32( ETH_MAC_MODE_R, (uint32_t) 0xc );
} else {
bcm_write_reg32( ETH_MAC_MODE_R, (uint32_t) 0x0 );
}
*/
// step 18/19: omitted
// step 20: enable hw bugfix for 5704
if( IS_5704 || IS_5703 ) {
bcm_setb_reg32( MSG_DATA_R, BIT32( 26 ) |
BIT32( 28 ) |
BIT32( 29 ) );
}
// step 21: omitted
// step 22: omitted
// step 23: 5704 clear statistics block
if( IS_5703 || IS_5704 ) {
memset_ci( (void *) ( bcm_memaddr_u64 + BCM_STATISTIC_OFFS ),
0,
BCM_STATISTIC_SIZE );
}
// step 24/25: omitted
// step 26: set DMA Read/Write Control register
// NOTE: recommended values from the spec are used here
if( IS_5714 ) {
bcm_write_reg32( DMA_RW_CTRL_R, DMA_RW_CTRL_VAL_5714 );
} else {
uint32_t l_PCIState_u32 = bcm_read_reg32( PCI_STATE_R );
uint32_t l_DMAVal_u32 = DMA_RW_CTRL_VAL;
if( ( l_PCIState_u32 & BIT32( 2 ) ) != 0 ) { // PCI
l_DMAVal_u32 |= (uint32_t) 0x300000;
} else { // PCI-X
l_DMAVal_u32 |= (uint32_t) 0x900000;
if( ( bcm_read_reg32( PCI_CLK_CTRL_R ) & (uint32_t) 0x1f )
>= (uint32_t) 6 ) {
l_DMAVal_u32 |= (uint32_t) 0x4000;
}
}
bcm_write_reg32( DMA_RW_CTRL_R, l_DMAVal_u32 );
}
// step 27/28/29: s. step 14
// step 30: Configure TCP/UDP pseudo header checksum offloading
// already done in step 14: offloading disabled
// step 31: setup timer prescaler
i = bcm_read_reg32( MISC_CFG_R );
i &= (uint32_t) ~0xfe; // clear bits 7-1 first
i |= ( BCM_TMR_PRESCALE << 1 );
bcm_write_reg32( MISC_CFG_R, i );
// step 32: 5703/4 configure Mbuf pool address/length
// step 33: 5703/4 configure MAC DMA resource pool
// step 34: configure MAC memory pool watermarks
// step 35: 5703/4 configure DMA resource watermarks
// using recommended settings (hard coded)
if( IS_5703 || IS_5704 ) {
if( IS_5703 ) {
bcm_write_reg32( MBUF_POOL_ADDR_R, (uint32_t) 0x8000 );
bcm_write_reg32( MBUF_POOL_LEN_R, (uint32_t) 0x18000 );
} else {
bcm_write_reg32( MBUF_POOL_ADDR_R, (uint32_t) 0x10000 );
bcm_write_reg32( MBUF_POOL_LEN_R, (uint32_t) 0x10000 );
}
bcm_write_reg32( DMA_DESC_POOL_ADDR_R, (uint32_t) 0x2000 );
bcm_write_reg32( DMA_DESC_POOL_LEN_R, (uint32_t) 0x2000 );
bcm_write_reg32( DMA_RMBUF_LOW_WMARK_R, (uint32_t) 0x50 );
bcm_write_reg32( MAC_RXMBUF_LOW_WMARK_R, (uint32_t) 0x20 );
bcm_write_reg32( MBUF_HIGH_WMARK_R, (uint32_t) 0x60 );
bcm_write_reg32( DMA_DESC_LOW_WM_R, (uint32_t) 5 );
bcm_write_reg32( DMA_DESC_HIGH_WM_R, (uint32_t) 10 );
} else {
bcm_write_reg32( DMA_RMBUF_LOW_WMARK_R, (uint32_t) 0x00 );
bcm_write_reg32( MAC_RXMBUF_LOW_WMARK_R, (uint32_t) 0x10 );
bcm_write_reg32( MBUF_HIGH_WMARK_R, (uint32_t) 0x60 );
}
// step 35: omitted
// step 36: Configure flow control behaviour
// using recommended settings (hard coded)
bcm_write_reg32( LOW_WMARK_MAX_RXFRAM_R, (uint32_t) 0x02 );
// step 37/38: enable buffer manager & wait for successful start
bcm_setb_reg32( BUF_MAN_MODE_R, BIT32( 2 ) | BIT32( 1 ) );
i = lc_Maxwait_u32;
while( ( --i ) &&
( ( bcm_read_reg32( BUF_MAN_MODE_R ) & BIT32( 1 ) ) == 0 ) ) {
SLOF_usleep( 10 );
}
// return on error
if( i == 0 ) {
#ifdef BCM_DEBUG
printf( "bcm57xx: init step 38: enable buffer manager failed\n" );
#endif
return -1;
}
// step 39: enable internal hardware queues
bcm_write_reg32( FTQ_RES_R, (uint32_t) ~0 );
bcm_write_reg32( FTQ_RES_R, (uint32_t) 0 );
// step 40/41/42: initialize rx producer ring
bcm_init_rxprod_ring();
// step 43: set rx producer ring replenish threshold
// using recommended setting of maximum allocated BD's/8
bcm_write_reg32( STD_RXPR_REP_THR_R, (uint32_t) BCM_MAX_RX_BUF / 8 );
// step 44/45/46: initialize send rings
bcm_init_tx_ring();
bcm_init_rxret_ring();
// steps 47-50 done in ring init functions
// step 51: configure MAC unicast address
bcm_nvram_init();
if( bcm_mac_init( (uint8_t *) mac_addr ) < 0 ) {
#ifdef BCM_DEBUG
printf( "bcm57xx: init step 51: configure MAC unicast address failed\n" );
#endif
return -1;
}
memcpy(driver->mac_addr, mac_addr, 6);
// step 52: configure backoff random seed for transmit
// using recommended algorithm
i = (uint32_t) mac_addr[0] + (uint32_t) mac_addr[1] +
(uint32_t) mac_addr[2] + (uint32_t) mac_addr[3] +
(uint32_t) mac_addr[4] + (uint32_t) mac_addr[5];
i &= (uint32_t) 0x03ff;
bcm_write_reg32( ETH_TX_RND_BO_R, i );
// step 53: configure message transfer unit MTU size
bcm_write_reg32( RX_MTU_SIZE_R, (uint32_t) BCM_MTU_MAX_LEN );
// step 54: configure IPG for transmit
// using recommended value (through #define)
bcm_write_reg32( TX_MAC_LEN_R, TX_MAC_LEN_VAL );
// step 55: configure receive rules
// set RX rule default class
bcm_write_reg32( RX_RULE_CFG_R, RX_RULE_CFG_VAL );
// step 56: configure the number of receive lists
bcm_write_reg32( RX_LST_PLACE_CFG_R, RX_LST_PLC_CFG_VAL );
bcm_write_reg32( RX_LST_PLACE_STAT_EN_R, RX_LST_PLC_STAT_EN_VAL );
/*
// rule 1: accept frames for our MAC address
bcm_write_reg32( RX_RULE_CTRL_R ( 0 ),
BIT32( 31 ) | // enable rule
BIT32( 30 ) | // and with next
BIT32( 26 ) | // split value register
BIT32( 8 ) ); // class 1
bcm_write_reg32( RX_RULE_VAL_R ( 0 ),
(uint32_t) 0xffff0000 |
( bcm_read_reg32( MAC_ADDR_OFFS_HI(0) ) &
(uint32_t) 0xffff ) );
bcm_write_reg32( RX_RULE_CTRL_R ( 1 ),
BIT32( 31 ) | // enable rule
BIT32( 8 ) | // class 1
BIT32( 1 ) ); // offset 2
bcm_write_reg32( RX_RULE_VAL_R ( 1 ),
bcm_read_reg32( MAC_ADDR_OFFS_LO(0) ) );
// rule 2: accept broadcast frames
bcm_write_reg32( RX_RULE_CTRL_R ( 2 ),
BIT32( 31 ) | // enable rule
BIT32( 30 ) | // and with next
BIT32( 26 ) | // split value register
BIT32( 8 ) ); // class 1
bcm_write_reg32( RX_RULE_VAL_R ( 2 ),
(uint32_t) ~0 );
bcm_write_reg32( RX_RULE_CTRL_R ( 3 ),
BIT32( 31 ) | // enable rule
BIT32( 8 ) | // class 1
BIT32( 1 ) ); // offset 2
bcm_write_reg32( RX_RULE_VAL_R ( 3 ),
(uint32_t) ~0 );
*/
for( i=0; i<NUM_RX_RULE_ASF; ++i) {
bcm_write_reg32( RX_RULE_CTRL_R ( i ), 0 );
bcm_write_reg32( RX_RULE_VAL_R ( i ), 0 );
}
// step 57-60: enable rx/tx statistics
// omitted, no need for statistics (so far)
// step 61/62: disable host coalescing engine/wait 20ms
bcm_write_reg32( HOST_COAL_MODE_R, (uint32_t) 0 );
i = lc_Maxwait_u32 * 2;
while( ( --i ) &&
( bcm_read_reg32( HOST_COAL_MODE_R ) != 0 ) ) {
SLOF_usleep( 10 );
}
// return on error
if( i == 0 ) {
#ifdef BCM_DEBUG
printf( "bcm57xx: init step 62: disable host coal. engine failed\n" );
#endif
return -1;
}
// step 63-66: initialize coalescing engine
// NOTE: status block is unused in this driver,
// therefore the coal. engine status block
// automatic update is disabled (by writing
// 0 to every counter
bcm_write_reg32( RX_COAL_TICKS_R, 0 );
bcm_write_reg32( TX_COAL_TICKS_R, 0 );
bcm_write_reg32( RX_COAL_MAX_BD_R, 0 );
bcm_write_reg32( TX_COAL_MAX_BD_R, 0 );
bcm_write_reg32( RX_COAL_TICKS_INT_R, 0 );
bcm_write_reg32( TX_COAL_TICKS_INT_R, 0 );
bcm_write_reg32( RX_COAL_MAX_BD_INT_R, 0 );
bcm_write_reg32( TX_COAL_MAX_BD_INT_R, 0 );
// step 67: initialize host status block address
// NOTE: status block is not needed in this driver,
// still it needs to be set up
i = (uint32_t) ( (uint64_t) &bcm_status >> 32 );
bcm_write_reg32( STB_HOST_ADDR_HI_R, i );
i = (uint32_t) ( (uint64_t) &bcm_status & (uint64_t) 0xffffffff );
bcm_write_reg32( STB_HOST_ADDR_LO_R, i );
// 5704/3 adaption
if( IS_5703 || IS_5704 ) {
// step 68: 5704, for now omitted
// step 69: 5704 set the statistics coalescing tick counter
bcm_write_reg32( STAT_TICK_CNT_R, 0 );
// step 70: 5704 configure statistics block address in NIC memory
// using recommended values (hard coded)
bcm_write_reg32( STAT_NIC_ADDR_R, (uint32_t) 0x300 );
// step 71: 5704 configure status block address in NIC memory
// using recommended values (hard coded)
bcm_write_reg32( STB_NIC_ADDR_R, (uint32_t) 0xb00 );
}
// step 72: enable host coalescing engine
bcm_setb_reg32( HOST_COAL_MODE_R, BIT32( 12 ) | BIT32( 11 ) | BIT32( 1 ) );
// step 73: enable rx bd completion functional block
bcm_write_reg32( RX_BD_COMPL_MODE_R, BIT32( 1 ) | BIT32( 2 ) );
// step 74: enable rx list placement functional block
bcm_write_reg32( RX_LST_PLACE_MODE_R, BIT32( 1 ) );
// 5704/3 adaption
if( IS_5703 || IS_5704 ) {
// step 75: 5704/3 enable receive list selector func block
bcm_write_reg32( RX_LST_SEL_MODE_R, BIT32( 1 ) | BIT32( 2 ) );
}
// step 76: enable DMA engines
bcm_setb_reg32( ETH_MAC_MODE_R, BIT32( 23 ) | BIT32( 22 ) | BIT32( 21 ) );
/*
* WY 26.10.07 This is wrong for 5714, better leave it alone
if( IS_5714 ) {
bcm_setb_reg32( ETH_MAC_MODE_R, BIT32( 20 ) );
}
*/
// step 77: omitted, statistics are not used
// step 78: Configure the General Misc Local Control register
// NOTE: as known so far nothing needs to be done here,
// default values should work fine
//bcm_setb_reg32( MISC_LOCAL_CTRL_R, 0 );
// step 79: clear interrupts in INT_MBX0_R low word
bcm_write_reg32( INT_MBX0_R, 0 );
// 5704/3 adaption
// step 80: 5704/3 enable DMA completion functional block
if( IS_5703 || IS_5704 ) {
bcm_write_reg32( DMA_COMPL_MODE_R, BIT32( 1 ) );
}
// step 81/82: configure write/read DMA mode registers
// disable MSI
bcm_write_reg32( RD_DMA_MODE_R, BIT32( 10 ) | BIT32( 9 ) | BIT32( 8 ) |
BIT32( 7 ) | BIT32( 6 ) | BIT32( 5 ) |
BIT32( 4 ) | BIT32( 3 ) | BIT32( 2 ) |
BIT32( 1 ) );
bcm_write_reg32( WR_DMA_MODE_R, BIT32( 9 ) | BIT32( 8 ) | BIT32( 7 ) |
BIT32( 6 ) | BIT32( 5 ) | BIT32( 4 ) |
BIT32( 3 ) | BIT32( 2 ) | BIT32( 1 ) );
bcm_clrb_reg32( MSI_MODE_R, BIT32( 1 ) );
SLOF_usleep( 100 );
// step 83-91: enable all these functional blocks...
bcm_write_reg32( RX_DAT_COMPL_MODE_R, BIT32( 1 ) | BIT32( 2 ) );
if( IS_5703 || IS_5704 ) {
bcm_write_reg32( MBUF_CLSTR_FREE_MODE_R, BIT32( 1 ) );
}
bcm_write_reg32( TX_DAT_COMPL_MODE_R, BIT32( 1 ) );
bcm_write_reg32( TX_BD_COMPL_MODE_R, BIT32( 1 ) | BIT32( 2 ) );
bcm_write_reg32( RX_BD_INIT_MODE_R, BIT32( 1 ) | BIT32( 2 ) );
bcm_write_reg32( RX_DAT_BD_INIT_MODE_R, BIT32( 1 ) );
bcm_write_reg32( TX_DAT_INIT_MODE_R, BIT32( 1 ) | BIT32( 3 ) );
bcm_write_reg32( TX_BD_INIT_MODE_R, BIT32( 1 ) | BIT32( 2 ) );
bcm_write_reg32( TX_BD_RING_SEL_MODE_R, BIT32( 1 ) | BIT32( 2 ) );
// step 92: omitted
// step 93/94: Enable Tx/Rx MAC
bcm_setb_reg32( TX_MAC_MODE_R, BIT32( 1 ) );
// bcm_setb_reg32( RX_MAC_MODE_R, BIT32( 1 ) | BIT32( 2 ) ); // set BIT32( 8 ) for promiscious mode!
bcm_setb_reg32( RX_MAC_MODE_R, BIT32( 1 ) ); // set BIT32( 8 ) for promiscious mode!
// set BIT32( 10) for VLAN
// step 95: disable auto polling:
// bcm_phy_init takes care of this
// step 96: omitted
// step 97: omitted, may change though, but is not important
// step 98: activate link & enable MAC functional block
// NOTE autopolling is enabled so bit 0 needs not to be set
//bcm_setb_reg32( MI_STATUS_R, BIT32( 0 ) );
// step 99: setup PHY
// return if link is down
if( bcm_phy_init() < 0 ) {
#ifdef BCM_DEBUG
printf( "bcm57xx: init step 99: PHY initialization failed\n" );
#endif
return -1;
}
// step 100: setup multicast filters
bcm_write_reg32( MAC_HASH0_R, (uint32_t) 0 );
bcm_write_reg32( MAC_HASH1_R, (uint32_t) 0 );
bcm_write_reg32( MAC_HASH2_R, (uint32_t) 0 );
bcm_write_reg32( MAC_HASH3_R, (uint32_t) 0 );
/*
// accept all multicast frames
bcm_write_reg32( MAC_HASH0_R, (uint32_t) 0xffffffff );
bcm_write_reg32( MAC_HASH1_R, (uint32_t) 0xffffffff );
bcm_write_reg32( MAC_HASH2_R, (uint32_t) 0xffffffff );
bcm_write_reg32( MAC_HASH3_R, (uint32_t) 0xffffffff );
*/
// step 101: omitted, no interrupts used
// make initial receive buffers available for NIC
// this step has to be done here after RX DMA engine has started (step 94)
bcm_write_reg32( RXPROD_PROD_IND, BCM_MAX_RX_BUF );
// if ASF Firmware enabled
bcm_write_mem32( BCM_NICDRV_STATE_MBX, NIC_FWDRV_STATE_START_DONE );
SLOF_msleep( 10 );
// enable heartbeat timer
bcm_write_reg32( ASF_HEARTBEAT_TIMER_R, 0x5 );
driver->running = 1;
// off we go..
return 0;
}
static int
bcm_reset( void )
{
uint32_t i;
#ifdef BCM_DEBUG
printf( "bcm57xx: resetting controller.." );
#endif
bcm_write_mem32( BCM_FW_MBX, BCM_MAGIC_NUMBER );
if( IS_5714 ) {
bcm_setb_reg32( MISC_CFG_R, BIT32( 26 ) | BIT32( 0 ) );
} else {
bcm_setb_reg32( MISC_CFG_R, BIT32( 0 ) );
}
SLOF_msleep( 20 );
/*
* after reset local read/write functions cannot be used annymore
* until bus master & stuff is set up again
*/
i = ( BIT32( 10 ) | BIT32( 2 ) | BIT32( 1 ) );
SLOF_pci_config_write16(PCI_COM_R, i);
/*snk_kernel_interface->pci_config_write( bcm_pcicfg_puid,
2,
bcm_pcicfg_bus,
bcm_pcicfg_devfn,
PCI_COM_R,
( int ) i );*/
// step 9 & 13: disable & mask interrupts & enable indirect addressing mode &
// enable pci byte/word swapping initialize the misc host control register
i = ( BIT32( 7 ) | BIT32( 5 ) | BIT32( 4 ) |
BIT32( 3 ) | BIT32( 2 ) | BIT32( 1 ) | BIT32( 0 ) );
SLOF_pci_config_write32(PCI_MISC_HCTRL_R, i);
/*snk_kernel_interface->pci_config_write( bcm_pcicfg_puid,
4,
bcm_pcicfg_bus,
bcm_pcicfg_devfn,
PCI_MISC_HCTRL_R,
( int ) i );*/
// step 16: poll for bootcode completion by waiting for the one's
// complement of the magic number previously written
i = 1000;
while( ( --i ) &&
( bcm_read_mem32( BCM_FW_MBX ) != ~BCM_MAGIC_NUMBER ) ) {
#ifdef BCM_DEBUG
printf( "." );
#else
SLOF_msleep( 1 );
#endif
}
// return on error
if( bcm_read_mem32( BCM_FW_MBX ) != ~BCM_MAGIC_NUMBER ) {
#ifdef BCM_DEBUG
printf( "failed\n" );
#endif
return -1;
}
#ifdef BCM_DEBUG
printf( "done\n" );
#endif
return 0;
}
static int
bcm_term( void )
{
uint32_t i;
uint16_t v;
#ifdef BCM_DEBUG
printf( "bcm57xx: driver shutdown.." );
#endif
/*
* halt ASF firmware
*/
bcm_fw_halt();
/*
* unload ASF firmware
*/
bcm_write_mem32( BCM_NICDRV_STATE_MBX, NIC_FWDRV_STATE_UNLOAD );
/*
* disable RX producer rings
*/
bcm_write_reg32( BCM_RCB_LENFLAG_u16( BCM_RXPROD_RCB_JUM ), RCB_FLAG_RING_DISABLED );
bcm_write_reg32( BCM_RCB_HOSTADDR_HI_u16( BCM_RXPROD_RCB_JUM ), 0 );
bcm_write_reg32( BCM_RCB_HOSTADDR_LOW_u16( BCM_RXPROD_RCB_JUM ), 0 );
bcm_write_reg32( BCM_RCB_NICADDR_u16( BCM_RXPROD_RCB_JUM ), 0 );
bcm_write_reg32( BCM_RCB_LENFLAG_u16( BCM_RXPROD_RCB_STD ), RCB_FLAG_RING_DISABLED );
bcm_write_reg32( BCM_RCB_HOSTADDR_HI_u16( BCM_RXPROD_RCB_STD ), 0 );
bcm_write_reg32( BCM_RCB_HOSTADDR_LOW_u16( BCM_RXPROD_RCB_STD ), 0 );
bcm_write_reg32( BCM_RCB_NICADDR_u16( BCM_RXPROD_RCB_STD ), 0 );
bcm_write_reg32( BCM_RCB_LENFLAG_u16( BCM_RXPROD_RCB_MIN ), RCB_FLAG_RING_DISABLED );
bcm_write_reg32( BCM_RCB_HOSTADDR_HI_u16( BCM_RXPROD_RCB_MIN ), 0 );
bcm_write_reg32( BCM_RCB_HOSTADDR_LOW_u16( BCM_RXPROD_RCB_MIN ), 0 );
bcm_write_reg32( BCM_RCB_NICADDR_u16( BCM_RXPROD_RCB_MIN ), 0 );
/*
* disable RX return rings
*/
v = BCM_RXRET_RCB_OFFS;
for( i = 0; i < BCM_MAX_RXRET_RING; i++ ) {
bcm_write_mem32( BCM_RCB_LENFLAG_u16( v ), RCB_FLAG_RING_DISABLED );
bcm_write_mem32( BCM_RCB_HOSTADDR_HI_u16( v ), 0 );
bcm_write_mem32( BCM_RCB_HOSTADDR_LOW_u16( v ), 0 );
bcm_write_mem32( BCM_RCB_NICADDR_u16( v ), 0 );
v += BCM_RCB_SIZE_u16;
}
/*
* disable TX rings
*/
v = BCM_TX_RCB_OFFS;
for( i = 0; i < BCM_MAX_TX_RING; i++ ) {
bcm_write_mem32( BCM_RCB_LENFLAG_u16( v ), RCB_FLAG_RING_DISABLED );
bcm_write_mem32( BCM_RCB_HOSTADDR_HI_u16( v ), 0 );
bcm_write_mem32( BCM_RCB_HOSTADDR_LOW_u16( v ), 0 );
bcm_write_mem32( BCM_RCB_NICADDR_u16( v ), 0 );
v += BCM_RCB_SIZE_u16;
}
/*
* remove receive rules
*/
bcm_write_reg32( RX_RULE_CTRL_R ( 0 ), 0 );
bcm_write_reg32( RX_RULE_VAL_R ( 0 ), 0 );
bcm_write_reg32( RX_RULE_CTRL_R ( 1 ), 0 );
bcm_write_reg32( RX_RULE_VAL_R ( 1 ), 0 );
/*
* shutdown sequence
* BCM57xx Programmer's Guide: Section 8, "Shutdown"
* the enable bit of every state machine of the 57xx
* has to be reset.
*/
/*
* receive path shutdown sequence
*/
bcm_clr_wait_bit32( RX_MAC_MODE_R, BIT32( 1 ) );
bcm_clr_wait_bit32( RX_LST_PLACE_MODE_R, BIT32( 1 ) );
bcm_clr_wait_bit32( RX_BD_INIT_MODE_R, BIT32( 1 ) );
bcm_clr_wait_bit32( RX_DAT_BD_INIT_MODE_R, BIT32( 1 ) );
bcm_clr_wait_bit32( RX_DAT_COMPL_MODE_R, BIT32( 1 ) );
bcm_clr_wait_bit32( RX_BD_COMPL_MODE_R, BIT32( 1 ) );
if( IS_5704 || IS_5703 ) {
bcm_clr_wait_bit32( RX_LST_SEL_MODE_R, BIT32( 1 ) );
}
/*
* transmit path & memory shutdown sequence
*/
bcm_clr_wait_bit32( TX_BD_RING_SEL_MODE_R, BIT32( 1 ) );
bcm_clr_wait_bit32( TX_BD_INIT_MODE_R, BIT32( 1 ) );
bcm_clr_wait_bit32( TX_DAT_INIT_MODE_R, BIT32( 1 ) );
bcm_clr_wait_bit32( RD_DMA_MODE_R, BIT32( 1 ) );
bcm_clr_wait_bit32( TX_DAT_COMPL_MODE_R, BIT32( 1 ) );
if( IS_5704 ) {
bcm_clr_wait_bit32( DMA_COMPL_MODE_R, BIT32( 1 ) );
}
bcm_clr_wait_bit32( TX_BD_COMPL_MODE_R, BIT32( 1 ) );
bcm_clr_wait_bit32( ETH_MAC_MODE_R, BIT32( 21 ) );
bcm_clr_wait_bit32( TX_MAC_MODE_R, BIT32( 1 ) );
bcm_clr_wait_bit32( HOST_COAL_MODE_R, BIT32( 1 ) );
bcm_clr_wait_bit32( WR_DMA_MODE_R, BIT32( 1 ) );
if( IS_5704 || IS_5703 ) {
bcm_clr_wait_bit32( MBUF_CLSTR_FREE_MODE_R, BIT32( 1 ) );
}
bcm_write_reg32( FTQ_RES_R, (uint32_t) ~0 );
bcm_write_reg32( FTQ_RES_R, (uint32_t) 0 );
if( IS_5704 || IS_5703 ) {
bcm_clr_wait_bit32( BUF_MAN_MODE_R, BIT32( 1 ) );
bcm_clr_wait_bit32( MEMARB_MODE_R, BIT32( 1 ) );
}
#ifdef BCM_DEBUG
printf( "done.\n" );
#endif
/*
* controller reset
*/
if( bcm_reset() != 0 ) {
return -1;
}
/*
* restart ASF firmware
*/
bcm_write_mem32( BCM_NICDRV_STATE_MBX, NIC_FWDRV_STATE_UNLOAD );
SLOF_msleep( 10 );
bcm_write_mem32( BCM_NICDRV_STATE_MBX, NIC_FWDRV_STATE_UNLOAD_DONE );
SLOF_msleep( 100 );
bcm_write_mem32( BCM_NICDRV_STATE_MBX, NIC_FWDRV_STATE_START );
SLOF_msleep( 10 );
bcm_write_mem32( BCM_NICDRV_STATE_MBX, NIC_FWDRV_STATE_START_DONE );
/*
* activate Wake-on-LAN
*/
bcm_wol_activate();
/*
* PCI shutdown
*/
bcm_clrb_reg32( PCI_MISC_HCTRL_R, BIT32( 3 ) | BIT32( 2 ) );
/*
* from now on local rw functions cannot be used anymore
*/
// bcm_clrb_reg32( PCI_COM_R, BIT32( 10 ) | BIT32( 2 ) | BIT32( 1 ) );
SLOF_pci_config_write32(PCI_COM_R, BIT32(8) | BIT32(6));
/*snk_kernel_interface->pci_config_write( bcm_pcicfg_puid,
2,
bcm_pcicfg_bus,
bcm_pcicfg_devfn,
PCI_COM_R,
BIT32(8) | BIT32(6) );*/
// no more networking...
return 0;
}
static int
bcm_getmac(uint32_t addr, char mac[6])
{
uint32_t t1, t2;
uint64_t t3;
if (bcm_nvram_read(addr, &t1, 1) != 0)
return -1;
if (bcm_nvram_read(addr+4, &t2, 1) != 0)
return -1;
t3 = ((uint64_t)t1 << 32) + t2;
mac[0] = (t3 >> 40) & 0xFF;
mac[1] = (t3 >> 32) & 0xFF;
mac[2] = (t3 >> 24) & 0xFF;
mac[3] = (t3 >> 16) & 0xFF;
mac[4] = (t3 >> 8) & 0xFF;
mac[5] = (t3 >> 0) & 0xFF;
return 0;
}
static char*
print_itoa(char *text, uint32_t value)
{
if(value >= 10)
text = print_itoa(text, value / 10);
*text = '0' + (value % 10);
++text;
return text;
}
static int
bcm_get_version(char *text)
{
uint32_t t1;
if (bcm_nvram_read(0x94, &t1, 1) != 0)
return -1;
text = print_itoa(text, (t1 >> 8) & 0xFF);
text[0] = '.';
text = print_itoa(&text[1], t1 & 0xFF);
text[0] = '\n';
return 0;
}
static uint32_t
util_gen_crc( char *pcDatabuf, uint32_t ulDatalen, uint32_t ulCrc_in)
{
unsigned char data;
uint32_t idx, bit, crc = ulCrc_in;
for(idx = 0; idx < ulDatalen; idx++) {
data = *pcDatabuf++;
for(bit = 0; bit < 8; bit++, data >>= 1) {
crc = (crc >> 1) ^ (((crc ^ data) & 1) ?
CRC32_POLYNOMIAL : 0);
}
}
return bswap_32(~crc);
}
static int
bcm_setmac(char mac_addr1[6], char mac_addr2[6])
{
uint64_t mac1 = 0, mac2 = 0;
uint32_t manu[MANUFACTURING_INFO_SIZE/4];
int addr, i;
uint32_t crc, val1, val2, val3, val4;
#ifdef BCM_DEBUG
printf("Flashing MAC 1: %02X:%02X:%02X:%02X:%02X:%02X\n",
((unsigned int) mac_addr1[0]) & 0xFF,
((unsigned int) mac_addr1[1]) & 0xFF,
((unsigned int) mac_addr1[2]) & 0xFF,
((unsigned int) mac_addr1[3]) & 0xFF,
((unsigned int) mac_addr1[4]) & 0xFF,
((unsigned int) mac_addr1[5]) & 0xFF);
printf("Flashing MAC 2: %02X:%02X:%02X:%02X:%02X:%02X\n",
((unsigned int) mac_addr2[0]) & 0xFF,
((unsigned int) mac_addr2[1]) & 0xFF,
((unsigned int) mac_addr2[2]) & 0xFF,
((unsigned int) mac_addr2[3]) & 0xFF,
((unsigned int) mac_addr2[4]) & 0xFF,
((unsigned int) mac_addr2[5]) & 0xFF);
#endif
mac1 |= ((uint64_t) mac_addr1[0]) & 0xFF; mac1 = mac1 << 8;
mac1 |= ((uint64_t) mac_addr1[1]) & 0xFF; mac1 = mac1 << 8;
mac1 |= ((uint64_t) mac_addr1[2]) & 0xFF; mac1 = mac1 << 8;
mac1 |= ((uint64_t) mac_addr1[3]) & 0xFF; mac1 = mac1 << 8;
mac1 |= ((uint64_t) mac_addr1[4]) & 0xFF; mac1 = mac1 << 8;
mac1 |= ((uint64_t) mac_addr1[5]) & 0xFF;
mac2 |= ((uint64_t) mac_addr2[0]) & 0xFF; mac2 = mac2 << 8;
mac2 |= ((uint64_t) mac_addr2[1]) & 0xFF; mac2 = mac2 << 8;
mac2 |= ((uint64_t) mac_addr2[2]) & 0xFF; mac2 = mac2 << 8;
mac2 |= ((uint64_t) mac_addr2[3]) & 0xFF; mac2 = mac2 << 8;
mac2 |= ((uint64_t) mac_addr2[4]) & 0xFF; mac2 = mac2 << 8;
mac2 |= ((uint64_t) mac_addr2[5]) & 0xFF;
/* Extract the manufacturing data, starts at 0x74 */
if(bcm_nvram_lock() == -1) {
return -1;
}
addr = 0x74;
for (i = 0; i < (MANUFACTURING_INFO_SIZE/4); i++) {
if (bcm_nvram_read(addr, &manu[i], 0) != 0) {
printf("\nREAD FAILED\n");
bcm_nvram_unlock();
return -1;
}
addr+=4;
}
bcm_nvram_unlock();
/* Store the new MAC address in the manufacturing data */
val1 = mac1 >> 32;
val2 = mac1 & 0xFFFFFFFF;
val3 = mac2 >> 32;
val4 = mac2 & 0xFFFFFFFF;
manu[(0x7C-0x74)/4] = val1;
manu[(0x80-0x74)/4] = val2;
manu[(0xCC-0x74)/4] = val3;
manu[(0xD0-0x74)/4] = val4;
/* Calculate the new manufacturing data CRC */
crc = util_gen_crc(((char *)manu),
MANUFACTURING_INFO_SIZE - 4, 0xFFFFFFFF);
/* Now write the new MAC addresses and CRC */
if ((bcm_nvram_write(0x7C, val1, 1) != 0) ||
(bcm_nvram_write(0x80, val2, 1) != 0) ||
(bcm_nvram_write(0xCC, val3, 1) != 0) ||
(bcm_nvram_write(0xD0, val4, 1) != 0) ||
(bcm_nvram_write(0xFC, crc, 1) != 0) )
{
/* Disastor ! */
#ifdef BCM_DEBUG
printf("failed to write MAC address\n");
#endif
return -1;
}
/* Success !!!! */
return 0;
}
static int
bcm_ioctl( int request, void* data )
{
uint32_t l_baseaddrL_u32;
uint32_t l_baseaddrH_u32;
uint32_t i;
int ret_val = 0;
char mac_addr[6];
ioctl_net_data_t *ioctl_data = (ioctl_net_data_t*) data;
if(request != SIOCETHTOOL) {
return -1;
}
#ifdef BCM_DEBUG
printf( "bcm57xx: detected device " );
if( IS_5703 ) {
printf( "5703S" );
} else if( IS_5704 ) {
printf( "5704" );
if( IS_SERDES ) {
printf( "S\n" );
} else {
printf( "C\n" );
}
} else if( IS_5714 ) {
printf( "5714\n" );
}
#endif
/*
* setup register & memory base addresses of NIC
*/
l_baseaddrL_u32 = (uint32_t) ~0xf &
SLOF_pci_config_read32(PCI_BAR1_R);
/*l_baseaddrL_u32 = ( (uint32_t) ~0xf &
(uint32_t) snk_kernel_interface->pci_config_read( bcm_pcicfg_puid,
4,
bcm_pcicfg_bus,
bcm_pcicfg_devfn,
PCI_BAR1_R ) );*/
l_baseaddrH_u32 = SLOF_pci_config_read32(PCI_BAR2_R);
/*l_baseaddrH_u32 =
(uint32_t) snk_kernel_interface->pci_config_read( bcm_pcicfg_puid,
4,
bcm_pcicfg_bus,
bcm_pcicfg_devfn,
PCI_BAR2_R );*/
bcm_baseaddr_u64 = (uint64_t) l_baseaddrH_u32;
bcm_baseaddr_u64 <<= 32;
bcm_baseaddr_u64 += (uint64_t) l_baseaddrL_u32;
bcm_baseaddr_u64 =
(uint64_t)SLOF_translate_my_address((void *)bcm_baseaddr_u64);
/*snk_kernel_interface->translate_addr(((void *)&(bcm_baseaddr_u64)));*/
bcm_memaddr_u64 = bcm_baseaddr_u64 + BCM_MEMORY_OFFS;
/*
* 57xx hardware initialization
* BCM57xx Programmer's Guide: Section 8, "Initialization"
* steps 1 through 101
*/
// step 1: enable bus master & memory space in command reg
i = ( BIT32( 10 ) | BIT32( 2 ) | BIT32( 1 ) );
SLOF_pci_config_write16(PCI_COM_R, i);
/*snk_kernel_interface->pci_config_write( bcm_pcicfg_puid,
2,
bcm_pcicfg_bus,
bcm_pcicfg_devfn,
PCI_COM_R,
( int ) i );*/
// step 2: disable & mask interrupts & enable pci byte/word swapping & enable indirect addressing mode
i = ( BIT32( 7 ) | BIT32( 3 ) | BIT32( 2 ) | BIT32( 1 ) | BIT32( 0 ) );
SLOF_pci_config_write32(PCI_MISC_HCTRL_R, i);
/*snk_kernel_interface->pci_config_write( bcm_pcicfg_puid,
4,
bcm_pcicfg_bus,
bcm_pcicfg_devfn,
PCI_MISC_HCTRL_R,
( int ) i );*/
bcm_nvram_init();
switch(ioctl_data->subcmd) {
case ETHTOOL_GMAC:
switch(ioctl_data->data.mac.idx) {
case 0:
ret_val = bcm_getmac(0x7C, ioctl_data->data.mac.address);
break;
case 1:
ret_val = bcm_getmac(0xCC, ioctl_data->data.mac.address);
break;
default:
ret_val = -1;
break;
}
break;
case ETHTOOL_SMAC:
switch(ioctl_data->data.mac.idx) {
case 0:
ret_val = bcm_getmac(0xCC, mac_addr);
if(ret_val == 0)
ret_val = bcm_setmac(ioctl_data->data.mac.address, mac_addr);
break;
case 1:
ret_val = bcm_getmac(0x7C, mac_addr);
if(ret_val == 0)
ret_val = bcm_setmac(mac_addr, ioctl_data->data.mac.address);
break;
default:
ret_val = -1;
break;
}
break;
case ETHTOOL_VERSION: {
char *text = ioctl_data->data.version.text;
memcpy(text, " BCM57xx Boot code level: ", 27);
ret_val = bcm_get_version(&text[27]);
break;
}
default:
ret_val = -1;
break;
}
bcm_term();
return ret_val;
}
net_driver_t *bcm57xx_open(void)
{
net_driver_t *driver;
uint16_t vendor_id, device_id;
vendor_id = SLOF_pci_config_read16(0);
device_id = SLOF_pci_config_read16(2);
if (check_driver(vendor_id, device_id))
return NULL;
driver = SLOF_alloc_mem(sizeof(*driver));
if (!driver) {
printf("Unable to allocate virtio-net driver\n");
return NULL;
}
memset(driver, 0, sizeof(*driver));
if (bcm_init(driver))
goto FAIL;
return driver;
FAIL: SLOF_free_mem(driver, sizeof(*driver));
return NULL;
return 0;
}
void bcm57xx_close(net_driver_t *driver)
{
if (driver->running == 0)
return;
bcm_term();
driver->running = 0;
SLOF_free_mem(driver, sizeof(*driver));
}
int bcm57xx_read(char *buf, int len)
{
if (buf)
return bcm_receive(buf, len);
return -1;
}
int bcm57xx_write(char *buf, int len)
{
if (buf)
return bcm_xmit(buf, len);
return -1;
}