| /* |
| * emulator main execution loop |
| * |
| * Copyright (c) 2003-2005 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/qemu-print.h" |
| #include "qapi/error.h" |
| #include "qapi/type-helpers.h" |
| #include "hw/core/tcg-cpu-ops.h" |
| #include "trace.h" |
| #include "disas/disas.h" |
| #include "exec/exec-all.h" |
| #include "tcg/tcg.h" |
| #include "qemu/atomic.h" |
| #include "qemu/rcu.h" |
| #include "exec/log.h" |
| #include "qemu/main-loop.h" |
| #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) |
| #include "hw/i386/apic.h" |
| #endif |
| #include "sysemu/cpus.h" |
| #include "exec/cpu-all.h" |
| #include "sysemu/cpu-timers.h" |
| #include "exec/replay-core.h" |
| #include "sysemu/tcg.h" |
| #include "exec/helper-proto-common.h" |
| #include "tb-jmp-cache.h" |
| #include "tb-hash.h" |
| #include "tb-context.h" |
| #include "internal-common.h" |
| #include "internal-target.h" |
| |
| /* -icount align implementation. */ |
| |
| typedef struct SyncClocks { |
| int64_t diff_clk; |
| int64_t last_cpu_icount; |
| int64_t realtime_clock; |
| } SyncClocks; |
| |
| #if !defined(CONFIG_USER_ONLY) |
| /* Allow the guest to have a max 3ms advance. |
| * The difference between the 2 clocks could therefore |
| * oscillate around 0. |
| */ |
| #define VM_CLOCK_ADVANCE 3000000 |
| #define THRESHOLD_REDUCE 1.5 |
| #define MAX_DELAY_PRINT_RATE 2000000000LL |
| #define MAX_NB_PRINTS 100 |
| |
| int64_t max_delay; |
| int64_t max_advance; |
| |
| static void align_clocks(SyncClocks *sc, CPUState *cpu) |
| { |
| int64_t cpu_icount; |
| |
| if (!icount_align_option) { |
| return; |
| } |
| |
| cpu_icount = cpu->icount_extra + cpu->neg.icount_decr.u16.low; |
| sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount); |
| sc->last_cpu_icount = cpu_icount; |
| |
| if (sc->diff_clk > VM_CLOCK_ADVANCE) { |
| #ifndef _WIN32 |
| struct timespec sleep_delay, rem_delay; |
| sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; |
| sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; |
| if (nanosleep(&sleep_delay, &rem_delay) < 0) { |
| sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; |
| } else { |
| sc->diff_clk = 0; |
| } |
| #else |
| Sleep(sc->diff_clk / SCALE_MS); |
| sc->diff_clk = 0; |
| #endif |
| } |
| } |
| |
| static void print_delay(const SyncClocks *sc) |
| { |
| static float threshold_delay; |
| static int64_t last_realtime_clock; |
| static int nb_prints; |
| |
| if (icount_align_option && |
| sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && |
| nb_prints < MAX_NB_PRINTS) { |
| if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || |
| (-sc->diff_clk / (float)1000000000LL < |
| (threshold_delay - THRESHOLD_REDUCE))) { |
| threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; |
| qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n", |
| threshold_delay - 1, |
| threshold_delay); |
| nb_prints++; |
| last_realtime_clock = sc->realtime_clock; |
| } |
| } |
| } |
| |
| static void init_delay_params(SyncClocks *sc, CPUState *cpu) |
| { |
| if (!icount_align_option) { |
| return; |
| } |
| sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); |
| sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; |
| sc->last_cpu_icount |
| = cpu->icount_extra + cpu->neg.icount_decr.u16.low; |
| if (sc->diff_clk < max_delay) { |
| max_delay = sc->diff_clk; |
| } |
| if (sc->diff_clk > max_advance) { |
| max_advance = sc->diff_clk; |
| } |
| |
| /* Print every 2s max if the guest is late. We limit the number |
| of printed messages to NB_PRINT_MAX(currently 100) */ |
| print_delay(sc); |
| } |
| #else |
| static void align_clocks(SyncClocks *sc, const CPUState *cpu) |
| { |
| } |
| |
| static void init_delay_params(SyncClocks *sc, const CPUState *cpu) |
| { |
| } |
| #endif /* CONFIG USER ONLY */ |
| |
| uint32_t curr_cflags(CPUState *cpu) |
| { |
| uint32_t cflags = cpu->tcg_cflags; |
| |
| /* |
| * Record gdb single-step. We should be exiting the TB by raising |
| * EXCP_DEBUG, but to simplify other tests, disable chaining too. |
| * |
| * For singlestep and -d nochain, suppress goto_tb so that |
| * we can log -d cpu,exec after every TB. |
| */ |
| if (unlikely(cpu->singlestep_enabled)) { |
| cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1; |
| } else if (qatomic_read(&one_insn_per_tb)) { |
| cflags |= CF_NO_GOTO_TB | 1; |
| } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) { |
| cflags |= CF_NO_GOTO_TB; |
| } |
| |
| return cflags; |
| } |
| |
| struct tb_desc { |
| vaddr pc; |
| uint64_t cs_base; |
| CPUArchState *env; |
| tb_page_addr_t page_addr0; |
| uint32_t flags; |
| uint32_t cflags; |
| }; |
| |
| static bool tb_lookup_cmp(const void *p, const void *d) |
| { |
| const TranslationBlock *tb = p; |
| const struct tb_desc *desc = d; |
| |
| if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->pc) && |
| tb_page_addr0(tb) == desc->page_addr0 && |
| tb->cs_base == desc->cs_base && |
| tb->flags == desc->flags && |
| tb_cflags(tb) == desc->cflags) { |
| /* check next page if needed */ |
| tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb); |
| if (tb_phys_page1 == -1) { |
| return true; |
| } else { |
| tb_page_addr_t phys_page1; |
| vaddr virt_page1; |
| |
| /* |
| * We know that the first page matched, and an otherwise valid TB |
| * encountered an incomplete instruction at the end of that page, |
| * therefore we know that generating a new TB from the current PC |
| * must also require reading from the next page -- even if the |
| * second pages do not match, and therefore the resulting insn |
| * is different for the new TB. Therefore any exception raised |
| * here by the faulting lookup is not premature. |
| */ |
| virt_page1 = TARGET_PAGE_ALIGN(desc->pc); |
| phys_page1 = get_page_addr_code(desc->env, virt_page1); |
| if (tb_phys_page1 == phys_page1) { |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| static TranslationBlock *tb_htable_lookup(CPUState *cpu, vaddr pc, |
| uint64_t cs_base, uint32_t flags, |
| uint32_t cflags) |
| { |
| tb_page_addr_t phys_pc; |
| struct tb_desc desc; |
| uint32_t h; |
| |
| desc.env = cpu_env(cpu); |
| desc.cs_base = cs_base; |
| desc.flags = flags; |
| desc.cflags = cflags; |
| desc.pc = pc; |
| phys_pc = get_page_addr_code(desc.env, pc); |
| if (phys_pc == -1) { |
| return NULL; |
| } |
| desc.page_addr0 = phys_pc; |
| h = tb_hash_func(phys_pc, (cflags & CF_PCREL ? 0 : pc), |
| flags, cs_base, cflags); |
| return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); |
| } |
| |
| /* Might cause an exception, so have a longjmp destination ready */ |
| static inline TranslationBlock *tb_lookup(CPUState *cpu, vaddr pc, |
| uint64_t cs_base, uint32_t flags, |
| uint32_t cflags) |
| { |
| TranslationBlock *tb; |
| CPUJumpCache *jc; |
| uint32_t hash; |
| |
| /* we should never be trying to look up an INVALID tb */ |
| tcg_debug_assert(!(cflags & CF_INVALID)); |
| |
| hash = tb_jmp_cache_hash_func(pc); |
| jc = cpu->tb_jmp_cache; |
| |
| tb = qatomic_read(&jc->array[hash].tb); |
| if (likely(tb && |
| jc->array[hash].pc == pc && |
| tb->cs_base == cs_base && |
| tb->flags == flags && |
| tb_cflags(tb) == cflags)) { |
| goto hit; |
| } |
| |
| tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags); |
| if (tb == NULL) { |
| return NULL; |
| } |
| |
| jc->array[hash].pc = pc; |
| qatomic_set(&jc->array[hash].tb, tb); |
| |
| hit: |
| /* |
| * As long as tb is not NULL, the contents are consistent. Therefore, |
| * the virtual PC has to match for non-CF_PCREL translations. |
| */ |
| assert((tb_cflags(tb) & CF_PCREL) || tb->pc == pc); |
| return tb; |
| } |
| |
| static void log_cpu_exec(vaddr pc, CPUState *cpu, |
| const TranslationBlock *tb) |
| { |
| if (qemu_log_in_addr_range(pc)) { |
| qemu_log_mask(CPU_LOG_EXEC, |
| "Trace %d: %p [%08" PRIx64 |
| "/%016" VADDR_PRIx "/%08x/%08x] %s\n", |
| cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc, |
| tb->flags, tb->cflags, lookup_symbol(pc)); |
| |
| if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { |
| FILE *logfile = qemu_log_trylock(); |
| if (logfile) { |
| int flags = 0; |
| |
| if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { |
| flags |= CPU_DUMP_FPU; |
| } |
| #if defined(TARGET_I386) |
| flags |= CPU_DUMP_CCOP; |
| #endif |
| if (qemu_loglevel_mask(CPU_LOG_TB_VPU)) { |
| flags |= CPU_DUMP_VPU; |
| } |
| cpu_dump_state(cpu, logfile, flags); |
| qemu_log_unlock(logfile); |
| } |
| } |
| } |
| } |
| |
| static bool check_for_breakpoints_slow(CPUState *cpu, vaddr pc, |
| uint32_t *cflags) |
| { |
| CPUBreakpoint *bp; |
| bool match_page = false; |
| |
| /* |
| * Singlestep overrides breakpoints. |
| * This requirement is visible in the record-replay tests, where |
| * we would fail to make forward progress in reverse-continue. |
| * |
| * TODO: gdb singlestep should only override gdb breakpoints, |
| * so that one could (gdb) singlestep into the guest kernel's |
| * architectural breakpoint handler. |
| */ |
| if (cpu->singlestep_enabled) { |
| return false; |
| } |
| |
| QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { |
| /* |
| * If we have an exact pc match, trigger the breakpoint. |
| * Otherwise, note matches within the page. |
| */ |
| if (pc == bp->pc) { |
| bool match_bp = false; |
| |
| if (bp->flags & BP_GDB) { |
| match_bp = true; |
| } else if (bp->flags & BP_CPU) { |
| #ifdef CONFIG_USER_ONLY |
| g_assert_not_reached(); |
| #else |
| CPUClass *cc = CPU_GET_CLASS(cpu); |
| assert(cc->tcg_ops->debug_check_breakpoint); |
| match_bp = cc->tcg_ops->debug_check_breakpoint(cpu); |
| #endif |
| } |
| |
| if (match_bp) { |
| cpu->exception_index = EXCP_DEBUG; |
| return true; |
| } |
| } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) { |
| match_page = true; |
| } |
| } |
| |
| /* |
| * Within the same page as a breakpoint, single-step, |
| * returning to helper_lookup_tb_ptr after each insn looking |
| * for the actual breakpoint. |
| * |
| * TODO: Perhaps better to record all of the TBs associated |
| * with a given virtual page that contains a breakpoint, and |
| * then invalidate them when a new overlapping breakpoint is |
| * set on the page. Non-overlapping TBs would not be |
| * invalidated, nor would any TB need to be invalidated as |
| * breakpoints are removed. |
| */ |
| if (match_page) { |
| *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1; |
| } |
| return false; |
| } |
| |
| static inline bool check_for_breakpoints(CPUState *cpu, vaddr pc, |
| uint32_t *cflags) |
| { |
| return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) && |
| check_for_breakpoints_slow(cpu, pc, cflags); |
| } |
| |
| /** |
| * helper_lookup_tb_ptr: quick check for next tb |
| * @env: current cpu state |
| * |
| * Look for an existing TB matching the current cpu state. |
| * If found, return the code pointer. If not found, return |
| * the tcg epilogue so that we return into cpu_tb_exec. |
| */ |
| const void *HELPER(lookup_tb_ptr)(CPUArchState *env) |
| { |
| CPUState *cpu = env_cpu(env); |
| TranslationBlock *tb; |
| vaddr pc; |
| uint64_t cs_base; |
| uint32_t flags, cflags; |
| |
| cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); |
| |
| cflags = curr_cflags(cpu); |
| if (check_for_breakpoints(cpu, pc, &cflags)) { |
| cpu_loop_exit(cpu); |
| } |
| |
| tb = tb_lookup(cpu, pc, cs_base, flags, cflags); |
| if (tb == NULL) { |
| return tcg_code_gen_epilogue; |
| } |
| |
| if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { |
| log_cpu_exec(pc, cpu, tb); |
| } |
| |
| return tb->tc.ptr; |
| } |
| |
| /* Execute a TB, and fix up the CPU state afterwards if necessary */ |
| /* |
| * Disable CFI checks. |
| * TCG creates binary blobs at runtime, with the transformed code. |
| * A TB is a blob of binary code, created at runtime and called with an |
| * indirect function call. Since such function did not exist at compile time, |
| * the CFI runtime has no way to verify its signature and would fail. |
| * TCG is not considered a security-sensitive part of QEMU so this does not |
| * affect the impact of CFI in environment with high security requirements |
| */ |
| static inline TranslationBlock * QEMU_DISABLE_CFI |
| cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit) |
| { |
| CPUArchState *env = cpu_env(cpu); |
| uintptr_t ret; |
| TranslationBlock *last_tb; |
| const void *tb_ptr = itb->tc.ptr; |
| |
| if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { |
| log_cpu_exec(log_pc(cpu, itb), cpu, itb); |
| } |
| |
| qemu_thread_jit_execute(); |
| ret = tcg_qemu_tb_exec(env, tb_ptr); |
| cpu->neg.can_do_io = true; |
| qemu_plugin_disable_mem_helpers(cpu); |
| /* |
| * TODO: Delay swapping back to the read-write region of the TB |
| * until we actually need to modify the TB. The read-only copy, |
| * coming from the rx region, shares the same host TLB entry as |
| * the code that executed the exit_tb opcode that arrived here. |
| * If we insist on touching both the RX and the RW pages, we |
| * double the host TLB pressure. |
| */ |
| last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK)); |
| *tb_exit = ret & TB_EXIT_MASK; |
| |
| trace_exec_tb_exit(last_tb, *tb_exit); |
| |
| if (*tb_exit > TB_EXIT_IDX1) { |
| /* We didn't start executing this TB (eg because the instruction |
| * counter hit zero); we must restore the guest PC to the address |
| * of the start of the TB. |
| */ |
| CPUClass *cc = CPU_GET_CLASS(cpu); |
| |
| if (cc->tcg_ops->synchronize_from_tb) { |
| cc->tcg_ops->synchronize_from_tb(cpu, last_tb); |
| } else { |
| tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL)); |
| assert(cc->set_pc); |
| cc->set_pc(cpu, last_tb->pc); |
| } |
| if (qemu_loglevel_mask(CPU_LOG_EXEC)) { |
| vaddr pc = log_pc(cpu, last_tb); |
| if (qemu_log_in_addr_range(pc)) { |
| qemu_log("Stopped execution of TB chain before %p [%016" |
| VADDR_PRIx "] %s\n", |
| last_tb->tc.ptr, pc, lookup_symbol(pc)); |
| } |
| } |
| } |
| |
| /* |
| * If gdb single-step, and we haven't raised another exception, |
| * raise a debug exception. Single-step with another exception |
| * is handled in cpu_handle_exception. |
| */ |
| if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) { |
| cpu->exception_index = EXCP_DEBUG; |
| cpu_loop_exit(cpu); |
| } |
| |
| return last_tb; |
| } |
| |
| |
| static void cpu_exec_enter(CPUState *cpu) |
| { |
| CPUClass *cc = CPU_GET_CLASS(cpu); |
| |
| if (cc->tcg_ops->cpu_exec_enter) { |
| cc->tcg_ops->cpu_exec_enter(cpu); |
| } |
| } |
| |
| static void cpu_exec_exit(CPUState *cpu) |
| { |
| CPUClass *cc = CPU_GET_CLASS(cpu); |
| |
| if (cc->tcg_ops->cpu_exec_exit) { |
| cc->tcg_ops->cpu_exec_exit(cpu); |
| } |
| } |
| |
| static void cpu_exec_longjmp_cleanup(CPUState *cpu) |
| { |
| /* Non-buggy compilers preserve this; assert the correct value. */ |
| g_assert(cpu == current_cpu); |
| |
| #ifdef CONFIG_USER_ONLY |
| clear_helper_retaddr(); |
| if (have_mmap_lock()) { |
| mmap_unlock(); |
| } |
| #else |
| /* |
| * For softmmu, a tlb_fill fault during translation will land here, |
| * and we need to release any page locks held. In system mode we |
| * have one tcg_ctx per thread, so we know it was this cpu doing |
| * the translation. |
| * |
| * Alternative 1: Install a cleanup to be called via an exception |
| * handling safe longjmp. It seems plausible that all our hosts |
| * support such a thing. We'd have to properly register unwind info |
| * for the JIT for EH, rather that just for GDB. |
| * |
| * Alternative 2: Set and restore cpu->jmp_env in tb_gen_code to |
| * capture the cpu_loop_exit longjmp, perform the cleanup, and |
| * jump again to arrive here. |
| */ |
| if (tcg_ctx->gen_tb) { |
| tb_unlock_pages(tcg_ctx->gen_tb); |
| tcg_ctx->gen_tb = NULL; |
| } |
| #endif |
| if (bql_locked()) { |
| bql_unlock(); |
| } |
| assert_no_pages_locked(); |
| } |
| |
| void cpu_exec_step_atomic(CPUState *cpu) |
| { |
| CPUArchState *env = cpu_env(cpu); |
| TranslationBlock *tb; |
| vaddr pc; |
| uint64_t cs_base; |
| uint32_t flags, cflags; |
| int tb_exit; |
| |
| if (sigsetjmp(cpu->jmp_env, 0) == 0) { |
| start_exclusive(); |
| g_assert(cpu == current_cpu); |
| g_assert(!cpu->running); |
| cpu->running = true; |
| |
| cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); |
| |
| cflags = curr_cflags(cpu); |
| /* Execute in a serial context. */ |
| cflags &= ~CF_PARALLEL; |
| /* After 1 insn, return and release the exclusive lock. */ |
| cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1; |
| /* |
| * No need to check_for_breakpoints here. |
| * We only arrive in cpu_exec_step_atomic after beginning execution |
| * of an insn that includes an atomic operation we can't handle. |
| * Any breakpoint for this insn will have been recognized earlier. |
| */ |
| |
| tb = tb_lookup(cpu, pc, cs_base, flags, cflags); |
| if (tb == NULL) { |
| mmap_lock(); |
| tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); |
| mmap_unlock(); |
| } |
| |
| cpu_exec_enter(cpu); |
| /* execute the generated code */ |
| trace_exec_tb(tb, pc); |
| cpu_tb_exec(cpu, tb, &tb_exit); |
| cpu_exec_exit(cpu); |
| } else { |
| cpu_exec_longjmp_cleanup(cpu); |
| } |
| |
| /* |
| * As we start the exclusive region before codegen we must still |
| * be in the region if we longjump out of either the codegen or |
| * the execution. |
| */ |
| g_assert(cpu_in_exclusive_context(cpu)); |
| cpu->running = false; |
| end_exclusive(); |
| } |
| |
| void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) |
| { |
| /* |
| * Get the rx view of the structure, from which we find the |
| * executable code address, and tb_target_set_jmp_target can |
| * produce a pc-relative displacement to jmp_target_addr[n]. |
| */ |
| const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb); |
| uintptr_t offset = tb->jmp_insn_offset[n]; |
| uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset; |
| uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff; |
| |
| tb->jmp_target_addr[n] = addr; |
| tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw); |
| } |
| |
| static inline void tb_add_jump(TranslationBlock *tb, int n, |
| TranslationBlock *tb_next) |
| { |
| uintptr_t old; |
| |
| qemu_thread_jit_write(); |
| assert(n < ARRAY_SIZE(tb->jmp_list_next)); |
| qemu_spin_lock(&tb_next->jmp_lock); |
| |
| /* make sure the destination TB is valid */ |
| if (tb_next->cflags & CF_INVALID) { |
| goto out_unlock_next; |
| } |
| /* Atomically claim the jump destination slot only if it was NULL */ |
| old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, |
| (uintptr_t)tb_next); |
| if (old) { |
| goto out_unlock_next; |
| } |
| |
| /* patch the native jump address */ |
| tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); |
| |
| /* add in TB jmp list */ |
| tb->jmp_list_next[n] = tb_next->jmp_list_head; |
| tb_next->jmp_list_head = (uintptr_t)tb | n; |
| |
| qemu_spin_unlock(&tb_next->jmp_lock); |
| |
| qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n", |
| tb->tc.ptr, n, tb_next->tc.ptr); |
| return; |
| |
| out_unlock_next: |
| qemu_spin_unlock(&tb_next->jmp_lock); |
| return; |
| } |
| |
| static inline bool cpu_handle_halt(CPUState *cpu) |
| { |
| #ifndef CONFIG_USER_ONLY |
| if (cpu->halted) { |
| #if defined(TARGET_I386) |
| if (cpu->interrupt_request & CPU_INTERRUPT_POLL) { |
| X86CPU *x86_cpu = X86_CPU(cpu); |
| bql_lock(); |
| apic_poll_irq(x86_cpu->apic_state); |
| cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL); |
| bql_unlock(); |
| } |
| #endif /* TARGET_I386 */ |
| if (!cpu_has_work(cpu)) { |
| return true; |
| } |
| |
| cpu->halted = 0; |
| } |
| #endif /* !CONFIG_USER_ONLY */ |
| |
| return false; |
| } |
| |
| static inline void cpu_handle_debug_exception(CPUState *cpu) |
| { |
| CPUClass *cc = CPU_GET_CLASS(cpu); |
| CPUWatchpoint *wp; |
| |
| if (!cpu->watchpoint_hit) { |
| QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
| wp->flags &= ~BP_WATCHPOINT_HIT; |
| } |
| } |
| |
| if (cc->tcg_ops->debug_excp_handler) { |
| cc->tcg_ops->debug_excp_handler(cpu); |
| } |
| } |
| |
| static inline bool cpu_handle_exception(CPUState *cpu, int *ret) |
| { |
| if (cpu->exception_index < 0) { |
| #ifndef CONFIG_USER_ONLY |
| if (replay_has_exception() |
| && cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0) { |
| /* Execute just one insn to trigger exception pending in the log */ |
| cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT) |
| | CF_NOIRQ | 1; |
| } |
| #endif |
| return false; |
| } |
| if (cpu->exception_index >= EXCP_INTERRUPT) { |
| /* exit request from the cpu execution loop */ |
| *ret = cpu->exception_index; |
| if (*ret == EXCP_DEBUG) { |
| cpu_handle_debug_exception(cpu); |
| } |
| cpu->exception_index = -1; |
| return true; |
| } else { |
| #if defined(CONFIG_USER_ONLY) |
| /* if user mode only, we simulate a fake exception |
| which will be handled outside the cpu execution |
| loop */ |
| #if defined(TARGET_I386) |
| CPUClass *cc = CPU_GET_CLASS(cpu); |
| cc->tcg_ops->fake_user_interrupt(cpu); |
| #endif /* TARGET_I386 */ |
| *ret = cpu->exception_index; |
| cpu->exception_index = -1; |
| return true; |
| #else |
| if (replay_exception()) { |
| CPUClass *cc = CPU_GET_CLASS(cpu); |
| bql_lock(); |
| cc->tcg_ops->do_interrupt(cpu); |
| bql_unlock(); |
| cpu->exception_index = -1; |
| |
| if (unlikely(cpu->singlestep_enabled)) { |
| /* |
| * After processing the exception, ensure an EXCP_DEBUG is |
| * raised when single-stepping so that GDB doesn't miss the |
| * next instruction. |
| */ |
| *ret = EXCP_DEBUG; |
| cpu_handle_debug_exception(cpu); |
| return true; |
| } |
| } else if (!replay_has_interrupt()) { |
| /* give a chance to iothread in replay mode */ |
| *ret = EXCP_INTERRUPT; |
| return true; |
| } |
| #endif |
| } |
| |
| return false; |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| /* |
| * CPU_INTERRUPT_POLL is a virtual event which gets converted into a |
| * "real" interrupt event later. It does not need to be recorded for |
| * replay purposes. |
| */ |
| static inline bool need_replay_interrupt(int interrupt_request) |
| { |
| #if defined(TARGET_I386) |
| return !(interrupt_request & CPU_INTERRUPT_POLL); |
| #else |
| return true; |
| #endif |
| } |
| #endif /* !CONFIG_USER_ONLY */ |
| |
| static inline bool cpu_handle_interrupt(CPUState *cpu, |
| TranslationBlock **last_tb) |
| { |
| /* |
| * If we have requested custom cflags with CF_NOIRQ we should |
| * skip checking here. Any pending interrupts will get picked up |
| * by the next TB we execute under normal cflags. |
| */ |
| if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) { |
| return false; |
| } |
| |
| /* Clear the interrupt flag now since we're processing |
| * cpu->interrupt_request and cpu->exit_request. |
| * Ensure zeroing happens before reading cpu->exit_request or |
| * cpu->interrupt_request (see also smp_wmb in cpu_exit()) |
| */ |
| qatomic_set_mb(&cpu->neg.icount_decr.u16.high, 0); |
| |
| if (unlikely(qatomic_read(&cpu->interrupt_request))) { |
| int interrupt_request; |
| bql_lock(); |
| interrupt_request = cpu->interrupt_request; |
| if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { |
| /* Mask out external interrupts for this step. */ |
| interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; |
| } |
| if (interrupt_request & CPU_INTERRUPT_DEBUG) { |
| cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; |
| cpu->exception_index = EXCP_DEBUG; |
| bql_unlock(); |
| return true; |
| } |
| #if !defined(CONFIG_USER_ONLY) |
| if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { |
| /* Do nothing */ |
| } else if (interrupt_request & CPU_INTERRUPT_HALT) { |
| replay_interrupt(); |
| cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; |
| cpu->halted = 1; |
| cpu->exception_index = EXCP_HLT; |
| bql_unlock(); |
| return true; |
| } |
| #if defined(TARGET_I386) |
| else if (interrupt_request & CPU_INTERRUPT_INIT) { |
| X86CPU *x86_cpu = X86_CPU(cpu); |
| CPUArchState *env = &x86_cpu->env; |
| replay_interrupt(); |
| cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); |
| do_cpu_init(x86_cpu); |
| cpu->exception_index = EXCP_HALTED; |
| bql_unlock(); |
| return true; |
| } |
| #else |
| else if (interrupt_request & CPU_INTERRUPT_RESET) { |
| replay_interrupt(); |
| cpu_reset(cpu); |
| bql_unlock(); |
| return true; |
| } |
| #endif /* !TARGET_I386 */ |
| /* The target hook has 3 exit conditions: |
| False when the interrupt isn't processed, |
| True when it is, and we should restart on a new TB, |
| and via longjmp via cpu_loop_exit. */ |
| else { |
| CPUClass *cc = CPU_GET_CLASS(cpu); |
| |
| if (cc->tcg_ops->cpu_exec_interrupt && |
| cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) { |
| if (need_replay_interrupt(interrupt_request)) { |
| replay_interrupt(); |
| } |
| /* |
| * After processing the interrupt, ensure an EXCP_DEBUG is |
| * raised when single-stepping so that GDB doesn't miss the |
| * next instruction. |
| */ |
| if (unlikely(cpu->singlestep_enabled)) { |
| cpu->exception_index = EXCP_DEBUG; |
| bql_unlock(); |
| return true; |
| } |
| cpu->exception_index = -1; |
| *last_tb = NULL; |
| } |
| /* The target hook may have updated the 'cpu->interrupt_request'; |
| * reload the 'interrupt_request' value */ |
| interrupt_request = cpu->interrupt_request; |
| } |
| #endif /* !CONFIG_USER_ONLY */ |
| if (interrupt_request & CPU_INTERRUPT_EXITTB) { |
| cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; |
| /* ensure that no TB jump will be modified as |
| the program flow was changed */ |
| *last_tb = NULL; |
| } |
| |
| /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ |
| bql_unlock(); |
| } |
| |
| /* Finally, check if we need to exit to the main loop. */ |
| if (unlikely(qatomic_read(&cpu->exit_request)) |
| || (icount_enabled() |
| && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT) |
| && cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0)) { |
| qatomic_set(&cpu->exit_request, 0); |
| if (cpu->exception_index == -1) { |
| cpu->exception_index = EXCP_INTERRUPT; |
| } |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, |
| vaddr pc, TranslationBlock **last_tb, |
| int *tb_exit) |
| { |
| int32_t insns_left; |
| |
| trace_exec_tb(tb, pc); |
| tb = cpu_tb_exec(cpu, tb, tb_exit); |
| if (*tb_exit != TB_EXIT_REQUESTED) { |
| *last_tb = tb; |
| return; |
| } |
| |
| *last_tb = NULL; |
| insns_left = qatomic_read(&cpu->neg.icount_decr.u32); |
| if (insns_left < 0) { |
| /* Something asked us to stop executing chained TBs; just |
| * continue round the main loop. Whatever requested the exit |
| * will also have set something else (eg exit_request or |
| * interrupt_request) which will be handled by |
| * cpu_handle_interrupt. cpu_handle_interrupt will also |
| * clear cpu->icount_decr.u16.high. |
| */ |
| return; |
| } |
| |
| /* Instruction counter expired. */ |
| assert(icount_enabled()); |
| #ifndef CONFIG_USER_ONLY |
| /* Ensure global icount has gone forward */ |
| icount_update(cpu); |
| /* Refill decrementer and continue execution. */ |
| insns_left = MIN(0xffff, cpu->icount_budget); |
| cpu->neg.icount_decr.u16.low = insns_left; |
| cpu->icount_extra = cpu->icount_budget - insns_left; |
| |
| /* |
| * If the next tb has more instructions than we have left to |
| * execute we need to ensure we find/generate a TB with exactly |
| * insns_left instructions in it. |
| */ |
| if (insns_left > 0 && insns_left < tb->icount) { |
| assert(insns_left <= CF_COUNT_MASK); |
| assert(cpu->icount_extra == 0); |
| cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left; |
| } |
| #endif |
| } |
| |
| /* main execution loop */ |
| |
| static int __attribute__((noinline)) |
| cpu_exec_loop(CPUState *cpu, SyncClocks *sc) |
| { |
| int ret; |
| |
| /* if an exception is pending, we execute it here */ |
| while (!cpu_handle_exception(cpu, &ret)) { |
| TranslationBlock *last_tb = NULL; |
| int tb_exit = 0; |
| |
| while (!cpu_handle_interrupt(cpu, &last_tb)) { |
| TranslationBlock *tb; |
| vaddr pc; |
| uint64_t cs_base; |
| uint32_t flags, cflags; |
| |
| cpu_get_tb_cpu_state(cpu_env(cpu), &pc, &cs_base, &flags); |
| |
| /* |
| * When requested, use an exact setting for cflags for the next |
| * execution. This is used for icount, precise smc, and stop- |
| * after-access watchpoints. Since this request should never |
| * have CF_INVALID set, -1 is a convenient invalid value that |
| * does not require tcg headers for cpu_common_reset. |
| */ |
| cflags = cpu->cflags_next_tb; |
| if (cflags == -1) { |
| cflags = curr_cflags(cpu); |
| } else { |
| cpu->cflags_next_tb = -1; |
| } |
| |
| if (check_for_breakpoints(cpu, pc, &cflags)) { |
| break; |
| } |
| |
| tb = tb_lookup(cpu, pc, cs_base, flags, cflags); |
| if (tb == NULL) { |
| CPUJumpCache *jc; |
| uint32_t h; |
| |
| mmap_lock(); |
| tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); |
| mmap_unlock(); |
| |
| /* |
| * We add the TB in the virtual pc hash table |
| * for the fast lookup |
| */ |
| h = tb_jmp_cache_hash_func(pc); |
| jc = cpu->tb_jmp_cache; |
| jc->array[h].pc = pc; |
| qatomic_set(&jc->array[h].tb, tb); |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| /* |
| * We don't take care of direct jumps when address mapping |
| * changes in system emulation. So it's not safe to make a |
| * direct jump to a TB spanning two pages because the mapping |
| * for the second page can change. |
| */ |
| if (tb_page_addr1(tb) != -1) { |
| last_tb = NULL; |
| } |
| #endif |
| /* See if we can patch the calling TB. */ |
| if (last_tb) { |
| tb_add_jump(last_tb, tb_exit, tb); |
| } |
| |
| cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit); |
| |
| /* Try to align the host and virtual clocks |
| if the guest is in advance */ |
| align_clocks(sc, cpu); |
| } |
| } |
| return ret; |
| } |
| |
| static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc) |
| { |
| /* Prepare setjmp context for exception handling. */ |
| if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) { |
| cpu_exec_longjmp_cleanup(cpu); |
| } |
| |
| return cpu_exec_loop(cpu, sc); |
| } |
| |
| int cpu_exec(CPUState *cpu) |
| { |
| int ret; |
| SyncClocks sc = { 0 }; |
| |
| /* replay_interrupt may need current_cpu */ |
| current_cpu = cpu; |
| |
| if (cpu_handle_halt(cpu)) { |
| return EXCP_HALTED; |
| } |
| |
| RCU_READ_LOCK_GUARD(); |
| cpu_exec_enter(cpu); |
| |
| /* |
| * Calculate difference between guest clock and host clock. |
| * This delay includes the delay of the last cycle, so |
| * what we have to do is sleep until it is 0. As for the |
| * advance/delay we gain here, we try to fix it next time. |
| */ |
| init_delay_params(&sc, cpu); |
| |
| ret = cpu_exec_setjmp(cpu, &sc); |
| |
| cpu_exec_exit(cpu); |
| return ret; |
| } |
| |
| bool tcg_exec_realizefn(CPUState *cpu, Error **errp) |
| { |
| static bool tcg_target_initialized; |
| CPUClass *cc = CPU_GET_CLASS(cpu); |
| |
| if (!tcg_target_initialized) { |
| cc->tcg_ops->initialize(); |
| tcg_target_initialized = true; |
| } |
| |
| cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1); |
| tlb_init(cpu); |
| #ifndef CONFIG_USER_ONLY |
| tcg_iommu_init_notifier_list(cpu); |
| #endif /* !CONFIG_USER_ONLY */ |
| /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */ |
| |
| return true; |
| } |
| |
| /* undo the initializations in reverse order */ |
| void tcg_exec_unrealizefn(CPUState *cpu) |
| { |
| #ifndef CONFIG_USER_ONLY |
| tcg_iommu_free_notifier_list(cpu); |
| #endif /* !CONFIG_USER_ONLY */ |
| |
| tlb_destroy(cpu); |
| g_free_rcu(cpu->tb_jmp_cache, rcu); |
| } |