| /* |
| * Software MMU support |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| * |
| */ |
| |
| /* |
| * Generate inline load/store functions for all MMU modes (typically |
| * at least _user and _kernel) as well as _data versions, for all data |
| * sizes. |
| * |
| * Used by target op helpers. |
| * |
| * The syntax for the accessors is: |
| * |
| * load: cpu_ld{sign}{size}{end}_{mmusuffix}(env, ptr) |
| * cpu_ld{sign}{size}{end}_{mmusuffix}_ra(env, ptr, retaddr) |
| * cpu_ld{sign}{size}{end}_mmuidx_ra(env, ptr, mmu_idx, retaddr) |
| * cpu_ld{sign}{size}{end}_mmu(env, ptr, oi, retaddr) |
| * |
| * store: cpu_st{size}{end}_{mmusuffix}(env, ptr, val) |
| * cpu_st{size}{end}_{mmusuffix}_ra(env, ptr, val, retaddr) |
| * cpu_st{size}{end}_mmuidx_ra(env, ptr, val, mmu_idx, retaddr) |
| * cpu_st{size}{end}_mmu(env, ptr, val, oi, retaddr) |
| * |
| * sign is: |
| * (empty): for 32 and 64 bit sizes |
| * u : unsigned |
| * s : signed |
| * |
| * size is: |
| * b: 8 bits |
| * w: 16 bits |
| * l: 32 bits |
| * q: 64 bits |
| * |
| * end is: |
| * (empty): for target native endian, or for 8 bit access |
| * _be: for forced big endian |
| * _le: for forced little endian |
| * |
| * mmusuffix is one of the generic suffixes "data" or "code", or "mmuidx". |
| * The "mmuidx" suffix carries an extra mmu_idx argument that specifies |
| * the index to use; the "data" and "code" suffixes take the index from |
| * cpu_mmu_index(). |
| * |
| * The "mmu" suffix carries the full MemOpIdx, with both mmu_idx and the |
| * MemOp including alignment requirements. The alignment will be enforced. |
| */ |
| #ifndef CPU_LDST_H |
| #define CPU_LDST_H |
| |
| #include "exec/memopidx.h" |
| #include "qemu/int128.h" |
| #include "cpu.h" |
| |
| #if defined(CONFIG_USER_ONLY) |
| /* sparc32plus has 64bit long but 32bit space address |
| * this can make bad result with g2h() and h2g() |
| */ |
| #if TARGET_VIRT_ADDR_SPACE_BITS <= 32 |
| typedef uint32_t abi_ptr; |
| #define TARGET_ABI_FMT_ptr "%x" |
| #else |
| typedef uint64_t abi_ptr; |
| #define TARGET_ABI_FMT_ptr "%"PRIx64 |
| #endif |
| |
| #ifndef TARGET_TAGGED_ADDRESSES |
| static inline abi_ptr cpu_untagged_addr(CPUState *cs, abi_ptr x) |
| { |
| return x; |
| } |
| #endif |
| |
| /* All direct uses of g2h and h2g need to go away for usermode softmmu. */ |
| static inline void *g2h_untagged(abi_ptr x) |
| { |
| return (void *)((uintptr_t)(x) + guest_base); |
| } |
| |
| static inline void *g2h(CPUState *cs, abi_ptr x) |
| { |
| return g2h_untagged(cpu_untagged_addr(cs, x)); |
| } |
| |
| static inline bool guest_addr_valid_untagged(abi_ulong x) |
| { |
| return x <= GUEST_ADDR_MAX; |
| } |
| |
| static inline bool guest_range_valid_untagged(abi_ulong start, abi_ulong len) |
| { |
| return len - 1 <= GUEST_ADDR_MAX && start <= GUEST_ADDR_MAX - len + 1; |
| } |
| |
| #define h2g_valid(x) \ |
| (HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS || \ |
| (uintptr_t)(x) - guest_base <= GUEST_ADDR_MAX) |
| |
| #define h2g_nocheck(x) ({ \ |
| uintptr_t __ret = (uintptr_t)(x) - guest_base; \ |
| (abi_ptr)__ret; \ |
| }) |
| |
| #define h2g(x) ({ \ |
| /* Check if given address fits target address space */ \ |
| assert(h2g_valid(x)); \ |
| h2g_nocheck(x); \ |
| }) |
| #else |
| typedef target_ulong abi_ptr; |
| #define TARGET_ABI_FMT_ptr TARGET_FMT_lx |
| #endif |
| |
| uint32_t cpu_ldub_data(CPUArchState *env, abi_ptr ptr); |
| int cpu_ldsb_data(CPUArchState *env, abi_ptr ptr); |
| uint32_t cpu_lduw_be_data(CPUArchState *env, abi_ptr ptr); |
| int cpu_ldsw_be_data(CPUArchState *env, abi_ptr ptr); |
| uint32_t cpu_ldl_be_data(CPUArchState *env, abi_ptr ptr); |
| uint64_t cpu_ldq_be_data(CPUArchState *env, abi_ptr ptr); |
| uint32_t cpu_lduw_le_data(CPUArchState *env, abi_ptr ptr); |
| int cpu_ldsw_le_data(CPUArchState *env, abi_ptr ptr); |
| uint32_t cpu_ldl_le_data(CPUArchState *env, abi_ptr ptr); |
| uint64_t cpu_ldq_le_data(CPUArchState *env, abi_ptr ptr); |
| |
| uint32_t cpu_ldub_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra); |
| int cpu_ldsb_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra); |
| uint32_t cpu_lduw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra); |
| int cpu_ldsw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra); |
| uint32_t cpu_ldl_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra); |
| uint64_t cpu_ldq_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra); |
| uint32_t cpu_lduw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra); |
| int cpu_ldsw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra); |
| uint32_t cpu_ldl_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra); |
| uint64_t cpu_ldq_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra); |
| |
| void cpu_stb_data(CPUArchState *env, abi_ptr ptr, uint32_t val); |
| void cpu_stw_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val); |
| void cpu_stl_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val); |
| void cpu_stq_be_data(CPUArchState *env, abi_ptr ptr, uint64_t val); |
| void cpu_stw_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val); |
| void cpu_stl_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val); |
| void cpu_stq_le_data(CPUArchState *env, abi_ptr ptr, uint64_t val); |
| |
| void cpu_stb_data_ra(CPUArchState *env, abi_ptr ptr, |
| uint32_t val, uintptr_t ra); |
| void cpu_stw_be_data_ra(CPUArchState *env, abi_ptr ptr, |
| uint32_t val, uintptr_t ra); |
| void cpu_stl_be_data_ra(CPUArchState *env, abi_ptr ptr, |
| uint32_t val, uintptr_t ra); |
| void cpu_stq_be_data_ra(CPUArchState *env, abi_ptr ptr, |
| uint64_t val, uintptr_t ra); |
| void cpu_stw_le_data_ra(CPUArchState *env, abi_ptr ptr, |
| uint32_t val, uintptr_t ra); |
| void cpu_stl_le_data_ra(CPUArchState *env, abi_ptr ptr, |
| uint32_t val, uintptr_t ra); |
| void cpu_stq_le_data_ra(CPUArchState *env, abi_ptr ptr, |
| uint64_t val, uintptr_t ra); |
| |
| uint32_t cpu_ldub_mmuidx_ra(CPUArchState *env, abi_ptr ptr, |
| int mmu_idx, uintptr_t ra); |
| int cpu_ldsb_mmuidx_ra(CPUArchState *env, abi_ptr ptr, |
| int mmu_idx, uintptr_t ra); |
| uint32_t cpu_lduw_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr, |
| int mmu_idx, uintptr_t ra); |
| int cpu_ldsw_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr, |
| int mmu_idx, uintptr_t ra); |
| uint32_t cpu_ldl_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr, |
| int mmu_idx, uintptr_t ra); |
| uint64_t cpu_ldq_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr, |
| int mmu_idx, uintptr_t ra); |
| uint32_t cpu_lduw_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr, |
| int mmu_idx, uintptr_t ra); |
| int cpu_ldsw_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr, |
| int mmu_idx, uintptr_t ra); |
| uint32_t cpu_ldl_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr, |
| int mmu_idx, uintptr_t ra); |
| uint64_t cpu_ldq_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr, |
| int mmu_idx, uintptr_t ra); |
| |
| void cpu_stb_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint32_t val, |
| int mmu_idx, uintptr_t ra); |
| void cpu_stw_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint32_t val, |
| int mmu_idx, uintptr_t ra); |
| void cpu_stl_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint32_t val, |
| int mmu_idx, uintptr_t ra); |
| void cpu_stq_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint64_t val, |
| int mmu_idx, uintptr_t ra); |
| void cpu_stw_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint32_t val, |
| int mmu_idx, uintptr_t ra); |
| void cpu_stl_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint32_t val, |
| int mmu_idx, uintptr_t ra); |
| void cpu_stq_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint64_t val, |
| int mmu_idx, uintptr_t ra); |
| |
| uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr ptr, MemOpIdx oi, uintptr_t ra); |
| uint16_t cpu_ldw_mmu(CPUArchState *env, abi_ptr ptr, MemOpIdx oi, uintptr_t ra); |
| uint32_t cpu_ldl_mmu(CPUArchState *env, abi_ptr ptr, MemOpIdx oi, uintptr_t ra); |
| uint64_t cpu_ldq_mmu(CPUArchState *env, abi_ptr ptr, MemOpIdx oi, uintptr_t ra); |
| Int128 cpu_ld16_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra); |
| |
| void cpu_stb_mmu(CPUArchState *env, abi_ptr ptr, uint8_t val, |
| MemOpIdx oi, uintptr_t ra); |
| void cpu_stw_mmu(CPUArchState *env, abi_ptr ptr, uint16_t val, |
| MemOpIdx oi, uintptr_t ra); |
| void cpu_stl_mmu(CPUArchState *env, abi_ptr ptr, uint32_t val, |
| MemOpIdx oi, uintptr_t ra); |
| void cpu_stq_mmu(CPUArchState *env, abi_ptr ptr, uint64_t val, |
| MemOpIdx oi, uintptr_t ra); |
| void cpu_st16_mmu(CPUArchState *env, abi_ptr addr, Int128 val, |
| MemOpIdx oi, uintptr_t ra); |
| |
| uint32_t cpu_atomic_cmpxchgb_mmu(CPUArchState *env, abi_ptr addr, |
| uint32_t cmpv, uint32_t newv, |
| MemOpIdx oi, uintptr_t retaddr); |
| uint32_t cpu_atomic_cmpxchgw_le_mmu(CPUArchState *env, abi_ptr addr, |
| uint32_t cmpv, uint32_t newv, |
| MemOpIdx oi, uintptr_t retaddr); |
| uint32_t cpu_atomic_cmpxchgl_le_mmu(CPUArchState *env, abi_ptr addr, |
| uint32_t cmpv, uint32_t newv, |
| MemOpIdx oi, uintptr_t retaddr); |
| uint64_t cpu_atomic_cmpxchgq_le_mmu(CPUArchState *env, abi_ptr addr, |
| uint64_t cmpv, uint64_t newv, |
| MemOpIdx oi, uintptr_t retaddr); |
| uint32_t cpu_atomic_cmpxchgw_be_mmu(CPUArchState *env, abi_ptr addr, |
| uint32_t cmpv, uint32_t newv, |
| MemOpIdx oi, uintptr_t retaddr); |
| uint32_t cpu_atomic_cmpxchgl_be_mmu(CPUArchState *env, abi_ptr addr, |
| uint32_t cmpv, uint32_t newv, |
| MemOpIdx oi, uintptr_t retaddr); |
| uint64_t cpu_atomic_cmpxchgq_be_mmu(CPUArchState *env, abi_ptr addr, |
| uint64_t cmpv, uint64_t newv, |
| MemOpIdx oi, uintptr_t retaddr); |
| |
| #define GEN_ATOMIC_HELPER(NAME, TYPE, SUFFIX) \ |
| TYPE cpu_atomic_ ## NAME ## SUFFIX ## _mmu \ |
| (CPUArchState *env, abi_ptr addr, TYPE val, \ |
| MemOpIdx oi, uintptr_t retaddr); |
| |
| #ifdef CONFIG_ATOMIC64 |
| #define GEN_ATOMIC_HELPER_ALL(NAME) \ |
| GEN_ATOMIC_HELPER(NAME, uint32_t, b) \ |
| GEN_ATOMIC_HELPER(NAME, uint32_t, w_le) \ |
| GEN_ATOMIC_HELPER(NAME, uint32_t, w_be) \ |
| GEN_ATOMIC_HELPER(NAME, uint32_t, l_le) \ |
| GEN_ATOMIC_HELPER(NAME, uint32_t, l_be) \ |
| GEN_ATOMIC_HELPER(NAME, uint64_t, q_le) \ |
| GEN_ATOMIC_HELPER(NAME, uint64_t, q_be) |
| #else |
| #define GEN_ATOMIC_HELPER_ALL(NAME) \ |
| GEN_ATOMIC_HELPER(NAME, uint32_t, b) \ |
| GEN_ATOMIC_HELPER(NAME, uint32_t, w_le) \ |
| GEN_ATOMIC_HELPER(NAME, uint32_t, w_be) \ |
| GEN_ATOMIC_HELPER(NAME, uint32_t, l_le) \ |
| GEN_ATOMIC_HELPER(NAME, uint32_t, l_be) |
| #endif |
| |
| GEN_ATOMIC_HELPER_ALL(fetch_add) |
| GEN_ATOMIC_HELPER_ALL(fetch_sub) |
| GEN_ATOMIC_HELPER_ALL(fetch_and) |
| GEN_ATOMIC_HELPER_ALL(fetch_or) |
| GEN_ATOMIC_HELPER_ALL(fetch_xor) |
| GEN_ATOMIC_HELPER_ALL(fetch_smin) |
| GEN_ATOMIC_HELPER_ALL(fetch_umin) |
| GEN_ATOMIC_HELPER_ALL(fetch_smax) |
| GEN_ATOMIC_HELPER_ALL(fetch_umax) |
| |
| GEN_ATOMIC_HELPER_ALL(add_fetch) |
| GEN_ATOMIC_HELPER_ALL(sub_fetch) |
| GEN_ATOMIC_HELPER_ALL(and_fetch) |
| GEN_ATOMIC_HELPER_ALL(or_fetch) |
| GEN_ATOMIC_HELPER_ALL(xor_fetch) |
| GEN_ATOMIC_HELPER_ALL(smin_fetch) |
| GEN_ATOMIC_HELPER_ALL(umin_fetch) |
| GEN_ATOMIC_HELPER_ALL(smax_fetch) |
| GEN_ATOMIC_HELPER_ALL(umax_fetch) |
| |
| GEN_ATOMIC_HELPER_ALL(xchg) |
| |
| #undef GEN_ATOMIC_HELPER_ALL |
| #undef GEN_ATOMIC_HELPER |
| |
| Int128 cpu_atomic_cmpxchgo_le_mmu(CPUArchState *env, abi_ptr addr, |
| Int128 cmpv, Int128 newv, |
| MemOpIdx oi, uintptr_t retaddr); |
| Int128 cpu_atomic_cmpxchgo_be_mmu(CPUArchState *env, abi_ptr addr, |
| Int128 cmpv, Int128 newv, |
| MemOpIdx oi, uintptr_t retaddr); |
| |
| #if defined(CONFIG_USER_ONLY) |
| |
| extern __thread uintptr_t helper_retaddr; |
| |
| static inline void set_helper_retaddr(uintptr_t ra) |
| { |
| helper_retaddr = ra; |
| /* |
| * Ensure that this write is visible to the SIGSEGV handler that |
| * may be invoked due to a subsequent invalid memory operation. |
| */ |
| signal_barrier(); |
| } |
| |
| static inline void clear_helper_retaddr(void) |
| { |
| /* |
| * Ensure that previous memory operations have succeeded before |
| * removing the data visible to the signal handler. |
| */ |
| signal_barrier(); |
| helper_retaddr = 0; |
| } |
| |
| #else |
| |
| #include "tcg/oversized-guest.h" |
| |
| static inline uint64_t tlb_read_idx(const CPUTLBEntry *entry, |
| MMUAccessType access_type) |
| { |
| /* Do not rearrange the CPUTLBEntry structure members. */ |
| QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_read) != |
| MMU_DATA_LOAD * sizeof(uint64_t)); |
| QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_write) != |
| MMU_DATA_STORE * sizeof(uint64_t)); |
| QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_code) != |
| MMU_INST_FETCH * sizeof(uint64_t)); |
| |
| #if TARGET_LONG_BITS == 32 |
| /* Use qatomic_read, in case of addr_write; only care about low bits. */ |
| const uint32_t *ptr = (uint32_t *)&entry->addr_idx[access_type]; |
| ptr += HOST_BIG_ENDIAN; |
| return qatomic_read(ptr); |
| #else |
| const uint64_t *ptr = &entry->addr_idx[access_type]; |
| # if TCG_OVERSIZED_GUEST |
| return *ptr; |
| # else |
| /* ofs might correspond to .addr_write, so use qatomic_read */ |
| return qatomic_read(ptr); |
| # endif |
| #endif |
| } |
| |
| static inline uint64_t tlb_addr_write(const CPUTLBEntry *entry) |
| { |
| return tlb_read_idx(entry, MMU_DATA_STORE); |
| } |
| |
| /* Find the TLB index corresponding to the mmu_idx + address pair. */ |
| static inline uintptr_t tlb_index(CPUArchState *env, uintptr_t mmu_idx, |
| vaddr addr) |
| { |
| uintptr_t size_mask = env_tlb(env)->f[mmu_idx].mask >> CPU_TLB_ENTRY_BITS; |
| |
| return (addr >> TARGET_PAGE_BITS) & size_mask; |
| } |
| |
| /* Find the TLB entry corresponding to the mmu_idx + address pair. */ |
| static inline CPUTLBEntry *tlb_entry(CPUArchState *env, uintptr_t mmu_idx, |
| vaddr addr) |
| { |
| return &env_tlb(env)->f[mmu_idx].table[tlb_index(env, mmu_idx, addr)]; |
| } |
| |
| #endif /* defined(CONFIG_USER_ONLY) */ |
| |
| #if TARGET_BIG_ENDIAN |
| # define cpu_lduw_data cpu_lduw_be_data |
| # define cpu_ldsw_data cpu_ldsw_be_data |
| # define cpu_ldl_data cpu_ldl_be_data |
| # define cpu_ldq_data cpu_ldq_be_data |
| # define cpu_lduw_data_ra cpu_lduw_be_data_ra |
| # define cpu_ldsw_data_ra cpu_ldsw_be_data_ra |
| # define cpu_ldl_data_ra cpu_ldl_be_data_ra |
| # define cpu_ldq_data_ra cpu_ldq_be_data_ra |
| # define cpu_lduw_mmuidx_ra cpu_lduw_be_mmuidx_ra |
| # define cpu_ldsw_mmuidx_ra cpu_ldsw_be_mmuidx_ra |
| # define cpu_ldl_mmuidx_ra cpu_ldl_be_mmuidx_ra |
| # define cpu_ldq_mmuidx_ra cpu_ldq_be_mmuidx_ra |
| # define cpu_stw_data cpu_stw_be_data |
| # define cpu_stl_data cpu_stl_be_data |
| # define cpu_stq_data cpu_stq_be_data |
| # define cpu_stw_data_ra cpu_stw_be_data_ra |
| # define cpu_stl_data_ra cpu_stl_be_data_ra |
| # define cpu_stq_data_ra cpu_stq_be_data_ra |
| # define cpu_stw_mmuidx_ra cpu_stw_be_mmuidx_ra |
| # define cpu_stl_mmuidx_ra cpu_stl_be_mmuidx_ra |
| # define cpu_stq_mmuidx_ra cpu_stq_be_mmuidx_ra |
| #else |
| # define cpu_lduw_data cpu_lduw_le_data |
| # define cpu_ldsw_data cpu_ldsw_le_data |
| # define cpu_ldl_data cpu_ldl_le_data |
| # define cpu_ldq_data cpu_ldq_le_data |
| # define cpu_lduw_data_ra cpu_lduw_le_data_ra |
| # define cpu_ldsw_data_ra cpu_ldsw_le_data_ra |
| # define cpu_ldl_data_ra cpu_ldl_le_data_ra |
| # define cpu_ldq_data_ra cpu_ldq_le_data_ra |
| # define cpu_lduw_mmuidx_ra cpu_lduw_le_mmuidx_ra |
| # define cpu_ldsw_mmuidx_ra cpu_ldsw_le_mmuidx_ra |
| # define cpu_ldl_mmuidx_ra cpu_ldl_le_mmuidx_ra |
| # define cpu_ldq_mmuidx_ra cpu_ldq_le_mmuidx_ra |
| # define cpu_stw_data cpu_stw_le_data |
| # define cpu_stl_data cpu_stl_le_data |
| # define cpu_stq_data cpu_stq_le_data |
| # define cpu_stw_data_ra cpu_stw_le_data_ra |
| # define cpu_stl_data_ra cpu_stl_le_data_ra |
| # define cpu_stq_data_ra cpu_stq_le_data_ra |
| # define cpu_stw_mmuidx_ra cpu_stw_le_mmuidx_ra |
| # define cpu_stl_mmuidx_ra cpu_stl_le_mmuidx_ra |
| # define cpu_stq_mmuidx_ra cpu_stq_le_mmuidx_ra |
| #endif |
| |
| uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr, |
| MemOpIdx oi, uintptr_t ra); |
| uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr, |
| MemOpIdx oi, uintptr_t ra); |
| uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr, |
| MemOpIdx oi, uintptr_t ra); |
| uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr, |
| MemOpIdx oi, uintptr_t ra); |
| |
| uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr); |
| uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr); |
| uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr); |
| uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr); |
| |
| static inline int cpu_ldsb_code(CPUArchState *env, abi_ptr addr) |
| { |
| return (int8_t)cpu_ldub_code(env, addr); |
| } |
| |
| static inline int cpu_ldsw_code(CPUArchState *env, abi_ptr addr) |
| { |
| return (int16_t)cpu_lduw_code(env, addr); |
| } |
| |
| /** |
| * tlb_vaddr_to_host: |
| * @env: CPUArchState |
| * @addr: guest virtual address to look up |
| * @access_type: 0 for read, 1 for write, 2 for execute |
| * @mmu_idx: MMU index to use for lookup |
| * |
| * Look up the specified guest virtual index in the TCG softmmu TLB. |
| * If we can translate a host virtual address suitable for direct RAM |
| * access, without causing a guest exception, then return it. |
| * Otherwise (TLB entry is for an I/O access, guest software |
| * TLB fill required, etc) return NULL. |
| */ |
| #ifdef CONFIG_USER_ONLY |
| static inline void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr, |
| MMUAccessType access_type, int mmu_idx) |
| { |
| return g2h(env_cpu(env), addr); |
| } |
| #else |
| void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr, |
| MMUAccessType access_type, int mmu_idx); |
| #endif |
| |
| #endif /* CPU_LDST_H */ |