| /* |
| * HPPA interrupt helper routines |
| * |
| * Copyright (c) 2017 Richard Henderson |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/main-loop.h" |
| #include "qemu/log.h" |
| #include "cpu.h" |
| #include "exec/helper-proto.h" |
| #include "hw/core/cpu.h" |
| #include "hw/hppa/hppa_hardware.h" |
| |
| static void eval_interrupt(HPPACPU *cpu) |
| { |
| CPUState *cs = CPU(cpu); |
| if (cpu->env.cr[CR_EIRR]) { |
| cpu_interrupt(cs, CPU_INTERRUPT_HARD); |
| } else { |
| cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); |
| } |
| } |
| |
| /* Each CPU has a word mapped into the GSC bus. Anything on the GSC bus |
| * can write to this word to raise an external interrupt on the target CPU. |
| * This includes the system controller (DINO) for regular devices, or |
| * another CPU for SMP interprocessor interrupts. |
| */ |
| static uint64_t io_eir_read(void *opaque, hwaddr addr, unsigned size) |
| { |
| HPPACPU *cpu = opaque; |
| |
| /* ??? What does a read of this register over the GSC bus do? */ |
| return cpu->env.cr[CR_EIRR]; |
| } |
| |
| static void io_eir_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| HPPACPU *cpu = opaque; |
| CPUHPPAState *env = &cpu->env; |
| int widthm1 = 31; |
| int le_bit; |
| |
| /* The default PSW.W controls the width of EIRR. */ |
| if (hppa_is_pa20(env) && env->cr[CR_PSW_DEFAULT] & PDC_PSW_WIDE_BIT) { |
| widthm1 = 63; |
| } |
| le_bit = ~data & widthm1; |
| |
| env->cr[CR_EIRR] |= 1ull << le_bit; |
| eval_interrupt(cpu); |
| } |
| |
| const MemoryRegionOps hppa_io_eir_ops = { |
| .read = io_eir_read, |
| .write = io_eir_write, |
| .valid.min_access_size = 4, |
| .valid.max_access_size = 4, |
| .impl.min_access_size = 4, |
| .impl.max_access_size = 4, |
| }; |
| |
| void hppa_cpu_alarm_timer(void *opaque) |
| { |
| /* Raise interrupt 0. */ |
| io_eir_write(opaque, 0, 0, 4); |
| } |
| |
| void HELPER(write_eirr)(CPUHPPAState *env, target_ulong val) |
| { |
| env->cr[CR_EIRR] &= ~val; |
| bql_lock(); |
| eval_interrupt(env_archcpu(env)); |
| bql_unlock(); |
| } |
| |
| void hppa_cpu_do_interrupt(CPUState *cs) |
| { |
| HPPACPU *cpu = HPPA_CPU(cs); |
| CPUHPPAState *env = &cpu->env; |
| int i = cs->exception_index; |
| uint64_t old_psw; |
| |
| /* As documented in pa2.0 -- interruption handling. */ |
| /* step 1 */ |
| env->cr[CR_IPSW] = old_psw = cpu_hppa_get_psw(env); |
| |
| /* step 2 -- Note PSW_W is masked out again for pa1.x */ |
| cpu_hppa_put_psw(env, |
| (env->cr[CR_PSW_DEFAULT] & PDC_PSW_WIDE_BIT ? PSW_W : 0) | |
| (i == EXCP_HPMC ? PSW_M : 0)); |
| |
| /* step 3 */ |
| /* |
| * IIASQ is the top bits of the virtual address, or zero if translation |
| * is disabled -- with PSW_W == 0, this will reduce to the space. |
| */ |
| if (old_psw & PSW_C) { |
| env->cr[CR_IIASQ] = |
| hppa_form_gva_psw(old_psw, env->iasq_f, env->iaoq_f) >> 32; |
| env->cr_back[0] = |
| hppa_form_gva_psw(old_psw, env->iasq_b, env->iaoq_b) >> 32; |
| } else { |
| env->cr[CR_IIASQ] = 0; |
| env->cr_back[0] = 0; |
| } |
| /* IIAOQ is the full offset for wide mode, or 32 bits for narrow mode. */ |
| if (old_psw & PSW_W) { |
| env->cr[CR_IIAOQ] = env->iaoq_f; |
| env->cr_back[1] = env->iaoq_b; |
| } else { |
| env->cr[CR_IIAOQ] = (uint32_t)env->iaoq_f; |
| env->cr_back[1] = (uint32_t)env->iaoq_b; |
| } |
| |
| if (old_psw & PSW_Q) { |
| /* step 5 */ |
| /* ISR and IOR will be set elsewhere. */ |
| switch (i) { |
| case EXCP_ILL: |
| case EXCP_BREAK: |
| case EXCP_OVERFLOW: |
| case EXCP_COND: |
| case EXCP_PRIV_REG: |
| case EXCP_PRIV_OPR: |
| /* IIR set via translate.c. */ |
| break; |
| |
| case EXCP_ASSIST: |
| case EXCP_DTLB_MISS: |
| case EXCP_NA_ITLB_MISS: |
| case EXCP_NA_DTLB_MISS: |
| case EXCP_DMAR: |
| case EXCP_DMPI: |
| case EXCP_UNALIGN: |
| case EXCP_DMP: |
| case EXCP_DMB: |
| case EXCP_TLB_DIRTY: |
| case EXCP_PAGE_REF: |
| case EXCP_ASSIST_EMU: |
| { |
| /* Avoid reading directly from the virtual address, lest we |
| raise another exception from some sort of TLB issue. */ |
| /* ??? An alternate fool-proof method would be to store the |
| instruction data into the unwind info. That's probably |
| a bit too much in the way of extra storage required. */ |
| vaddr vaddr = env->iaoq_f & -4; |
| hwaddr paddr = vaddr; |
| |
| if (old_psw & PSW_C) { |
| int prot, t; |
| |
| vaddr = hppa_form_gva_psw(old_psw, env->iasq_f, vaddr); |
| t = hppa_get_physical_address(env, vaddr, MMU_KERNEL_IDX, |
| 0, &paddr, &prot, NULL); |
| if (t >= 0) { |
| /* We can't re-load the instruction. */ |
| env->cr[CR_IIR] = 0; |
| break; |
| } |
| } |
| env->cr[CR_IIR] = ldl_phys(cs->as, paddr); |
| } |
| break; |
| |
| default: |
| /* Other exceptions do not set IIR. */ |
| break; |
| } |
| |
| /* step 6 */ |
| env->shadow[0] = env->gr[1]; |
| env->shadow[1] = env->gr[8]; |
| env->shadow[2] = env->gr[9]; |
| env->shadow[3] = env->gr[16]; |
| env->shadow[4] = env->gr[17]; |
| env->shadow[5] = env->gr[24]; |
| env->shadow[6] = env->gr[25]; |
| } |
| |
| /* step 7 */ |
| if (i == EXCP_TOC) { |
| env->iaoq_f = hppa_form_gva(env, 0, FIRMWARE_START); |
| /* help SeaBIOS and provide iaoq_b and iasq_back in shadow regs */ |
| env->gr[24] = env->cr_back[0]; |
| env->gr[25] = env->cr_back[1]; |
| } else { |
| env->iaoq_f = hppa_form_gva(env, 0, env->cr[CR_IVA] + 32 * i); |
| } |
| env->iaoq_b = hppa_form_gva(env, 0, env->iaoq_f + 4); |
| env->iasq_f = 0; |
| env->iasq_b = 0; |
| |
| if (qemu_loglevel_mask(CPU_LOG_INT)) { |
| static const char * const names[] = { |
| [EXCP_HPMC] = "high priority machine check", |
| [EXCP_POWER_FAIL] = "power fail interrupt", |
| [EXCP_RC] = "recovery counter trap", |
| [EXCP_EXT_INTERRUPT] = "external interrupt", |
| [EXCP_LPMC] = "low priority machine check", |
| [EXCP_ITLB_MISS] = "instruction tlb miss fault", |
| [EXCP_IMP] = "instruction memory protection trap", |
| [EXCP_ILL] = "illegal instruction trap", |
| [EXCP_BREAK] = "break instruction trap", |
| [EXCP_PRIV_OPR] = "privileged operation trap", |
| [EXCP_PRIV_REG] = "privileged register trap", |
| [EXCP_OVERFLOW] = "overflow trap", |
| [EXCP_COND] = "conditional trap", |
| [EXCP_ASSIST] = "assist exception trap", |
| [EXCP_DTLB_MISS] = "data tlb miss fault", |
| [EXCP_NA_ITLB_MISS] = "non-access instruction tlb miss", |
| [EXCP_NA_DTLB_MISS] = "non-access data tlb miss", |
| [EXCP_DMP] = "data memory protection trap", |
| [EXCP_DMB] = "data memory break trap", |
| [EXCP_TLB_DIRTY] = "tlb dirty bit trap", |
| [EXCP_PAGE_REF] = "page reference trap", |
| [EXCP_ASSIST_EMU] = "assist emulation trap", |
| [EXCP_HPT] = "high-privilege transfer trap", |
| [EXCP_LPT] = "low-privilege transfer trap", |
| [EXCP_TB] = "taken branch trap", |
| [EXCP_DMAR] = "data memory access rights trap", |
| [EXCP_DMPI] = "data memory protection id trap", |
| [EXCP_UNALIGN] = "unaligned data reference trap", |
| [EXCP_PER_INTERRUPT] = "performance monitor interrupt", |
| [EXCP_SYSCALL] = "syscall", |
| [EXCP_SYSCALL_LWS] = "syscall-lws", |
| [EXCP_TOC] = "TOC (transfer of control)", |
| }; |
| static int count; |
| const char *name = NULL; |
| char unknown[16]; |
| |
| if (i >= 0 && i < ARRAY_SIZE(names)) { |
| name = names[i]; |
| } |
| if (!name) { |
| snprintf(unknown, sizeof(unknown), "unknown %d", i); |
| name = unknown; |
| } |
| qemu_log("INT %6d: %s @ " TARGET_FMT_lx ":" TARGET_FMT_lx |
| " for " TARGET_FMT_lx ":" TARGET_FMT_lx "\n", |
| ++count, name, env->cr[CR_IIASQ], env->cr[CR_IIAOQ], |
| env->cr[CR_ISR], env->cr[CR_IOR]); |
| } |
| cs->exception_index = -1; |
| } |
| |
| bool hppa_cpu_exec_interrupt(CPUState *cs, int interrupt_request) |
| { |
| HPPACPU *cpu = HPPA_CPU(cs); |
| CPUHPPAState *env = &cpu->env; |
| |
| if (interrupt_request & CPU_INTERRUPT_NMI) { |
| /* Raise TOC (NMI) interrupt */ |
| cpu_reset_interrupt(cs, CPU_INTERRUPT_NMI); |
| cs->exception_index = EXCP_TOC; |
| hppa_cpu_do_interrupt(cs); |
| return true; |
| } |
| |
| /* If interrupts are requested and enabled, raise them. */ |
| if ((interrupt_request & CPU_INTERRUPT_HARD) |
| && (env->psw & PSW_I) |
| && (env->cr[CR_EIRR] & env->cr[CR_EIEM])) { |
| cs->exception_index = EXCP_EXT_INTERRUPT; |
| hppa_cpu_do_interrupt(cs); |
| return true; |
| } |
| return false; |
| } |