blob: fda5ccc6c75a47cbd75b5184d3f1e91fd0a82842 [file] [log] [blame]
// Copyright 2015, ARM Limited
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of ARM Limited nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef VIXL_A64_ASSEMBLER_A64_H_
#define VIXL_A64_ASSEMBLER_A64_H_
#include "vixl/globals.h"
#include "vixl/invalset.h"
#include "vixl/utils.h"
#include "vixl/code-buffer.h"
#include "vixl/a64/instructions-a64.h"
namespace vixl {
typedef uint64_t RegList;
static const int kRegListSizeInBits = sizeof(RegList) * 8;
// Registers.
// Some CPURegister methods can return Register or VRegister types, so we need
// to declare them in advance.
class Register;
class VRegister;
class CPURegister {
public:
enum RegisterType {
// The kInvalid value is used to detect uninitialized static instances,
// which are always zero-initialized before any constructors are called.
kInvalid = 0,
kRegister,
kVRegister,
kFPRegister = kVRegister,
kNoRegister
};
CPURegister() : code_(0), size_(0), type_(kNoRegister) {
VIXL_ASSERT(!IsValid());
VIXL_ASSERT(IsNone());
}
CPURegister(unsigned code, unsigned size, RegisterType type)
: code_(code), size_(size), type_(type) {
VIXL_ASSERT(IsValidOrNone());
}
unsigned code() const {
VIXL_ASSERT(IsValid());
return code_;
}
RegisterType type() const {
VIXL_ASSERT(IsValidOrNone());
return type_;
}
RegList Bit() const {
VIXL_ASSERT(code_ < (sizeof(RegList) * 8));
return IsValid() ? (static_cast<RegList>(1) << code_) : 0;
}
unsigned size() const {
VIXL_ASSERT(IsValid());
return size_;
}
int SizeInBytes() const {
VIXL_ASSERT(IsValid());
VIXL_ASSERT(size() % 8 == 0);
return size_ / 8;
}
int SizeInBits() const {
VIXL_ASSERT(IsValid());
return size_;
}
bool Is8Bits() const {
VIXL_ASSERT(IsValid());
return size_ == 8;
}
bool Is16Bits() const {
VIXL_ASSERT(IsValid());
return size_ == 16;
}
bool Is32Bits() const {
VIXL_ASSERT(IsValid());
return size_ == 32;
}
bool Is64Bits() const {
VIXL_ASSERT(IsValid());
return size_ == 64;
}
bool Is128Bits() const {
VIXL_ASSERT(IsValid());
return size_ == 128;
}
bool IsValid() const {
if (IsValidRegister() || IsValidVRegister()) {
VIXL_ASSERT(!IsNone());
return true;
} else {
// This assert is hit when the register has not been properly initialized.
// One cause for this can be an initialisation order fiasco. See
// https://isocpp.org/wiki/faq/ctors#static-init-order for some details.
VIXL_ASSERT(IsNone());
return false;
}
}
bool IsValidRegister() const {
return IsRegister() &&
((size_ == kWRegSize) || (size_ == kXRegSize)) &&
((code_ < kNumberOfRegisters) || (code_ == kSPRegInternalCode));
}
bool IsValidVRegister() const {
return IsVRegister() &&
((size_ == kBRegSize) || (size_ == kHRegSize) ||
(size_ == kSRegSize) || (size_ == kDRegSize) ||
(size_ == kQRegSize)) &&
(code_ < kNumberOfVRegisters);
}
bool IsValidFPRegister() const {
return IsFPRegister() && (code_ < kNumberOfVRegisters);
}
bool IsNone() const {
// kNoRegister types should always have size 0 and code 0.
VIXL_ASSERT((type_ != kNoRegister) || (code_ == 0));
VIXL_ASSERT((type_ != kNoRegister) || (size_ == 0));
return type_ == kNoRegister;
}
bool Aliases(const CPURegister& other) const {
VIXL_ASSERT(IsValidOrNone() && other.IsValidOrNone());
return (code_ == other.code_) && (type_ == other.type_);
}
bool Is(const CPURegister& other) const {
VIXL_ASSERT(IsValidOrNone() && other.IsValidOrNone());
return Aliases(other) && (size_ == other.size_);
}
bool IsZero() const {
VIXL_ASSERT(IsValid());
return IsRegister() && (code_ == kZeroRegCode);
}
bool IsSP() const {
VIXL_ASSERT(IsValid());
return IsRegister() && (code_ == kSPRegInternalCode);
}
bool IsRegister() const {
return type_ == kRegister;
}
bool IsVRegister() const {
return type_ == kVRegister;
}
bool IsFPRegister() const {
return IsS() || IsD();
}
bool IsW() const { return IsValidRegister() && Is32Bits(); }
bool IsX() const { return IsValidRegister() && Is64Bits(); }
// These assertions ensure that the size and type of the register are as
// described. They do not consider the number of lanes that make up a vector.
// So, for example, Is8B() implies IsD(), and Is1D() implies IsD, but IsD()
// does not imply Is1D() or Is8B().
// Check the number of lanes, ie. the format of the vector, using methods such
// as Is8B(), Is1D(), etc. in the VRegister class.
bool IsV() const { return IsVRegister(); }
bool IsB() const { return IsV() && Is8Bits(); }
bool IsH() const { return IsV() && Is16Bits(); }
bool IsS() const { return IsV() && Is32Bits(); }
bool IsD() const { return IsV() && Is64Bits(); }
bool IsQ() const { return IsV() && Is128Bits(); }
const Register& W() const;
const Register& X() const;
const VRegister& V() const;
const VRegister& B() const;
const VRegister& H() const;
const VRegister& S() const;
const VRegister& D() const;
const VRegister& Q() const;
bool IsSameSizeAndType(const CPURegister& other) const {
return (size_ == other.size_) && (type_ == other.type_);
}
protected:
unsigned code_;
unsigned size_;
RegisterType type_;
private:
bool IsValidOrNone() const {
return IsValid() || IsNone();
}
};
class Register : public CPURegister {
public:
Register() : CPURegister() {}
explicit Register(const CPURegister& other)
: CPURegister(other.code(), other.size(), other.type()) {
VIXL_ASSERT(IsValidRegister());
}
Register(unsigned code, unsigned size)
: CPURegister(code, size, kRegister) {}
bool IsValid() const {
VIXL_ASSERT(IsRegister() || IsNone());
return IsValidRegister();
}
static const Register& WRegFromCode(unsigned code);
static const Register& XRegFromCode(unsigned code);
private:
static const Register wregisters[];
static const Register xregisters[];
};
class VRegister : public CPURegister {
public:
VRegister() : CPURegister(), lanes_(1) {}
explicit VRegister(const CPURegister& other)
: CPURegister(other.code(), other.size(), other.type()), lanes_(1) {
VIXL_ASSERT(IsValidVRegister());
VIXL_ASSERT(IsPowerOf2(lanes_) && (lanes_ <= 16));
}
VRegister(unsigned code, unsigned size, unsigned lanes = 1)
: CPURegister(code, size, kVRegister), lanes_(lanes) {
VIXL_ASSERT(IsPowerOf2(lanes_) && (lanes_ <= 16));
}
VRegister(unsigned code, VectorFormat format)
: CPURegister(code, RegisterSizeInBitsFromFormat(format), kVRegister),
lanes_(IsVectorFormat(format) ? LaneCountFromFormat(format) : 1) {
VIXL_ASSERT(IsPowerOf2(lanes_) && (lanes_ <= 16));
}
bool IsValid() const {
VIXL_ASSERT(IsVRegister() || IsNone());
return IsValidVRegister();
}
static const VRegister& BRegFromCode(unsigned code);
static const VRegister& HRegFromCode(unsigned code);
static const VRegister& SRegFromCode(unsigned code);
static const VRegister& DRegFromCode(unsigned code);
static const VRegister& QRegFromCode(unsigned code);
static const VRegister& VRegFromCode(unsigned code);
VRegister V8B() const { return VRegister(code_, kDRegSize, 8); }
VRegister V16B() const { return VRegister(code_, kQRegSize, 16); }
VRegister V4H() const { return VRegister(code_, kDRegSize, 4); }
VRegister V8H() const { return VRegister(code_, kQRegSize, 8); }
VRegister V2S() const { return VRegister(code_, kDRegSize, 2); }
VRegister V4S() const { return VRegister(code_, kQRegSize, 4); }
VRegister V2D() const { return VRegister(code_, kQRegSize, 2); }
VRegister V1D() const { return VRegister(code_, kDRegSize, 1); }
bool Is8B() const { return (Is64Bits() && (lanes_ == 8)); }
bool Is16B() const { return (Is128Bits() && (lanes_ == 16)); }
bool Is4H() const { return (Is64Bits() && (lanes_ == 4)); }
bool Is8H() const { return (Is128Bits() && (lanes_ == 8)); }
bool Is2S() const { return (Is64Bits() && (lanes_ == 2)); }
bool Is4S() const { return (Is128Bits() && (lanes_ == 4)); }
bool Is1D() const { return (Is64Bits() && (lanes_ == 1)); }
bool Is2D() const { return (Is128Bits() && (lanes_ == 2)); }
// For consistency, we assert the number of lanes of these scalar registers,
// even though there are no vectors of equivalent total size with which they
// could alias.
bool Is1B() const {
VIXL_ASSERT(!(Is8Bits() && IsVector()));
return Is8Bits();
}
bool Is1H() const {
VIXL_ASSERT(!(Is16Bits() && IsVector()));
return Is16Bits();
}
bool Is1S() const {
VIXL_ASSERT(!(Is32Bits() && IsVector()));
return Is32Bits();
}
bool IsLaneSizeB() const { return LaneSizeInBits() == kBRegSize; }
bool IsLaneSizeH() const { return LaneSizeInBits() == kHRegSize; }
bool IsLaneSizeS() const { return LaneSizeInBits() == kSRegSize; }
bool IsLaneSizeD() const { return LaneSizeInBits() == kDRegSize; }
int lanes() const {
return lanes_;
}
bool IsScalar() const {
return lanes_ == 1;
}
bool IsVector() const {
return lanes_ > 1;
}
bool IsSameFormat(const VRegister& other) const {
return (size_ == other.size_) && (lanes_ == other.lanes_);
}
unsigned LaneSizeInBytes() const {
return SizeInBytes() / lanes_;
}
unsigned LaneSizeInBits() const {
return LaneSizeInBytes() * 8;
}
private:
static const VRegister bregisters[];
static const VRegister hregisters[];
static const VRegister sregisters[];
static const VRegister dregisters[];
static const VRegister qregisters[];
static const VRegister vregisters[];
int lanes_;
};
// Backward compatibility for FPRegisters.
typedef VRegister FPRegister;
// No*Reg is used to indicate an unused argument, or an error case. Note that
// these all compare equal (using the Is() method). The Register and VRegister
// variants are provided for convenience.
const Register NoReg;
const VRegister NoVReg;
const FPRegister NoFPReg; // For backward compatibility.
const CPURegister NoCPUReg;
#define DEFINE_REGISTERS(N) \
const Register w##N(N, kWRegSize); \
const Register x##N(N, kXRegSize);
REGISTER_CODE_LIST(DEFINE_REGISTERS)
#undef DEFINE_REGISTERS
const Register wsp(kSPRegInternalCode, kWRegSize);
const Register sp(kSPRegInternalCode, kXRegSize);
#define DEFINE_VREGISTERS(N) \
const VRegister b##N(N, kBRegSize); \
const VRegister h##N(N, kHRegSize); \
const VRegister s##N(N, kSRegSize); \
const VRegister d##N(N, kDRegSize); \
const VRegister q##N(N, kQRegSize); \
const VRegister v##N(N, kQRegSize);
REGISTER_CODE_LIST(DEFINE_VREGISTERS)
#undef DEFINE_VREGISTERS
// Registers aliases.
const Register ip0 = x16;
const Register ip1 = x17;
const Register lr = x30;
const Register xzr = x31;
const Register wzr = w31;
// AreAliased returns true if any of the named registers overlap. Arguments
// set to NoReg are ignored. The system stack pointer may be specified.
bool AreAliased(const CPURegister& reg1,
const CPURegister& reg2,
const CPURegister& reg3 = NoReg,
const CPURegister& reg4 = NoReg,
const CPURegister& reg5 = NoReg,
const CPURegister& reg6 = NoReg,
const CPURegister& reg7 = NoReg,
const CPURegister& reg8 = NoReg);
// AreSameSizeAndType returns true if all of the specified registers have the
// same size, and are of the same type. The system stack pointer may be
// specified. Arguments set to NoReg are ignored, as are any subsequent
// arguments. At least one argument (reg1) must be valid (not NoCPUReg).
bool AreSameSizeAndType(const CPURegister& reg1,
const CPURegister& reg2,
const CPURegister& reg3 = NoCPUReg,
const CPURegister& reg4 = NoCPUReg,
const CPURegister& reg5 = NoCPUReg,
const CPURegister& reg6 = NoCPUReg,
const CPURegister& reg7 = NoCPUReg,
const CPURegister& reg8 = NoCPUReg);
// AreSameFormat returns true if all of the specified VRegisters have the same
// vector format. Arguments set to NoReg are ignored, as are any subsequent
// arguments. At least one argument (reg1) must be valid (not NoVReg).
bool AreSameFormat(const VRegister& reg1,
const VRegister& reg2,
const VRegister& reg3 = NoVReg,
const VRegister& reg4 = NoVReg);
// AreConsecutive returns true if all of the specified VRegisters are
// consecutive in the register file. Arguments set to NoReg are ignored, as are
// any subsequent arguments. At least one argument (reg1) must be valid
// (not NoVReg).
bool AreConsecutive(const VRegister& reg1,
const VRegister& reg2,
const VRegister& reg3 = NoVReg,
const VRegister& reg4 = NoVReg);
// Lists of registers.
class CPURegList {
public:
explicit CPURegList(CPURegister reg1,
CPURegister reg2 = NoCPUReg,
CPURegister reg3 = NoCPUReg,
CPURegister reg4 = NoCPUReg)
: list_(reg1.Bit() | reg2.Bit() | reg3.Bit() | reg4.Bit()),
size_(reg1.size()), type_(reg1.type()) {
VIXL_ASSERT(AreSameSizeAndType(reg1, reg2, reg3, reg4));
VIXL_ASSERT(IsValid());
}
CPURegList(CPURegister::RegisterType type, unsigned size, RegList list)
: list_(list), size_(size), type_(type) {
VIXL_ASSERT(IsValid());
}
CPURegList(CPURegister::RegisterType type, unsigned size,
unsigned first_reg, unsigned last_reg)
: size_(size), type_(type) {
VIXL_ASSERT(((type == CPURegister::kRegister) &&
(last_reg < kNumberOfRegisters)) ||
((type == CPURegister::kVRegister) &&
(last_reg < kNumberOfVRegisters)));
VIXL_ASSERT(last_reg >= first_reg);
list_ = (UINT64_C(1) << (last_reg + 1)) - 1;
list_ &= ~((UINT64_C(1) << first_reg) - 1);
VIXL_ASSERT(IsValid());
}
CPURegister::RegisterType type() const {
VIXL_ASSERT(IsValid());
return type_;
}
// Combine another CPURegList into this one. Registers that already exist in
// this list are left unchanged. The type and size of the registers in the
// 'other' list must match those in this list.
void Combine(const CPURegList& other) {
VIXL_ASSERT(IsValid());
VIXL_ASSERT(other.type() == type_);
VIXL_ASSERT(other.RegisterSizeInBits() == size_);
list_ |= other.list();
}
// Remove every register in the other CPURegList from this one. Registers that
// do not exist in this list are ignored. The type and size of the registers
// in the 'other' list must match those in this list.
void Remove(const CPURegList& other) {
VIXL_ASSERT(IsValid());
VIXL_ASSERT(other.type() == type_);
VIXL_ASSERT(other.RegisterSizeInBits() == size_);
list_ &= ~other.list();
}
// Variants of Combine and Remove which take a single register.
void Combine(const CPURegister& other) {
VIXL_ASSERT(other.type() == type_);
VIXL_ASSERT(other.size() == size_);
Combine(other.code());
}
void Remove(const CPURegister& other) {
VIXL_ASSERT(other.type() == type_);
VIXL_ASSERT(other.size() == size_);
Remove(other.code());
}
// Variants of Combine and Remove which take a single register by its code;
// the type and size of the register is inferred from this list.
void Combine(int code) {
VIXL_ASSERT(IsValid());
VIXL_ASSERT(CPURegister(code, size_, type_).IsValid());
list_ |= (UINT64_C(1) << code);
}
void Remove(int code) {
VIXL_ASSERT(IsValid());
VIXL_ASSERT(CPURegister(code, size_, type_).IsValid());
list_ &= ~(UINT64_C(1) << code);
}
static CPURegList Union(const CPURegList& list_1, const CPURegList& list_2) {
VIXL_ASSERT(list_1.type_ == list_2.type_);
VIXL_ASSERT(list_1.size_ == list_2.size_);
return CPURegList(list_1.type_, list_1.size_, list_1.list_ | list_2.list_);
}
static CPURegList Union(const CPURegList& list_1,
const CPURegList& list_2,
const CPURegList& list_3);
static CPURegList Union(const CPURegList& list_1,
const CPURegList& list_2,
const CPURegList& list_3,
const CPURegList& list_4);
static CPURegList Intersection(const CPURegList& list_1,
const CPURegList& list_2) {
VIXL_ASSERT(list_1.type_ == list_2.type_);
VIXL_ASSERT(list_1.size_ == list_2.size_);
return CPURegList(list_1.type_, list_1.size_, list_1.list_ & list_2.list_);
}
static CPURegList Intersection(const CPURegList& list_1,
const CPURegList& list_2,
const CPURegList& list_3);
static CPURegList Intersection(const CPURegList& list_1,
const CPURegList& list_2,
const CPURegList& list_3,
const CPURegList& list_4);
bool Overlaps(const CPURegList& other) const {
return (type_ == other.type_) && ((list_ & other.list_) != 0);
}
RegList list() const {
VIXL_ASSERT(IsValid());
return list_;
}
void set_list(RegList new_list) {
VIXL_ASSERT(IsValid());
list_ = new_list;
}
// Remove all callee-saved registers from the list. This can be useful when
// preparing registers for an AAPCS64 function call, for example.
void RemoveCalleeSaved();
CPURegister PopLowestIndex();
CPURegister PopHighestIndex();
// AAPCS64 callee-saved registers.
static CPURegList GetCalleeSaved(unsigned size = kXRegSize);
static CPURegList GetCalleeSavedV(unsigned size = kDRegSize);
// AAPCS64 caller-saved registers. Note that this includes lr.
// TODO(all): Determine how we handle d8-d15 being callee-saved, but the top
// 64-bits being caller-saved.
static CPURegList GetCallerSaved(unsigned size = kXRegSize);
static CPURegList GetCallerSavedV(unsigned size = kDRegSize);
bool IsEmpty() const {
VIXL_ASSERT(IsValid());
return list_ == 0;
}
bool IncludesAliasOf(const CPURegister& other) const {
VIXL_ASSERT(IsValid());
return (type_ == other.type()) && ((other.Bit() & list_) != 0);
}
bool IncludesAliasOf(int code) const {
VIXL_ASSERT(IsValid());
return ((code & list_) != 0);
}
int Count() const {
VIXL_ASSERT(IsValid());
return CountSetBits(list_);
}
unsigned RegisterSizeInBits() const {
VIXL_ASSERT(IsValid());
return size_;
}
unsigned RegisterSizeInBytes() const {
int size_in_bits = RegisterSizeInBits();
VIXL_ASSERT((size_in_bits % 8) == 0);
return size_in_bits / 8;
}
unsigned TotalSizeInBytes() const {
VIXL_ASSERT(IsValid());
return RegisterSizeInBytes() * Count();
}
private:
RegList list_;
unsigned size_;
CPURegister::RegisterType type_;
bool IsValid() const;
};
// AAPCS64 callee-saved registers.
extern const CPURegList kCalleeSaved;
extern const CPURegList kCalleeSavedV;
// AAPCS64 caller-saved registers. Note that this includes lr.
extern const CPURegList kCallerSaved;
extern const CPURegList kCallerSavedV;
// Operand.
class Operand {
public:
// #<immediate>
// where <immediate> is int64_t.
// This is allowed to be an implicit constructor because Operand is
// a wrapper class that doesn't normally perform any type conversion.
Operand(int64_t immediate = 0); // NOLINT(runtime/explicit)
// rm, {<shift> #<shift_amount>}
// where <shift> is one of {LSL, LSR, ASR, ROR}.
// <shift_amount> is uint6_t.
// This is allowed to be an implicit constructor because Operand is
// a wrapper class that doesn't normally perform any type conversion.
Operand(Register reg,
Shift shift = LSL,
unsigned shift_amount = 0); // NOLINT(runtime/explicit)
// rm, {<extend> {#<shift_amount>}}
// where <extend> is one of {UXTB, UXTH, UXTW, UXTX, SXTB, SXTH, SXTW, SXTX}.
// <shift_amount> is uint2_t.
explicit Operand(Register reg, Extend extend, unsigned shift_amount = 0);
bool IsImmediate() const;
bool IsShiftedRegister() const;
bool IsExtendedRegister() const;
bool IsZero() const;
// This returns an LSL shift (<= 4) operand as an equivalent extend operand,
// which helps in the encoding of instructions that use the stack pointer.
Operand ToExtendedRegister() const;
int64_t immediate() const {
VIXL_ASSERT(IsImmediate());
return immediate_;
}
Register reg() const {
VIXL_ASSERT(IsShiftedRegister() || IsExtendedRegister());
return reg_;
}
Shift shift() const {
VIXL_ASSERT(IsShiftedRegister());
return shift_;
}
Extend extend() const {
VIXL_ASSERT(IsExtendedRegister());
return extend_;
}
unsigned shift_amount() const {
VIXL_ASSERT(IsShiftedRegister() || IsExtendedRegister());
return shift_amount_;
}
private:
int64_t immediate_;
Register reg_;
Shift shift_;
Extend extend_;
unsigned shift_amount_;
};
// MemOperand represents the addressing mode of a load or store instruction.
class MemOperand {
public:
explicit MemOperand(Register base,
int64_t offset = 0,
AddrMode addrmode = Offset);
MemOperand(Register base,
Register regoffset,
Shift shift = LSL,
unsigned shift_amount = 0);
MemOperand(Register base,
Register regoffset,
Extend extend,
unsigned shift_amount = 0);
MemOperand(Register base,
const Operand& offset,
AddrMode addrmode = Offset);
const Register& base() const { return base_; }
const Register& regoffset() const { return regoffset_; }
int64_t offset() const { return offset_; }
AddrMode addrmode() const { return addrmode_; }
Shift shift() const { return shift_; }
Extend extend() const { return extend_; }
unsigned shift_amount() const { return shift_amount_; }
bool IsImmediateOffset() const;
bool IsRegisterOffset() const;
bool IsPreIndex() const;
bool IsPostIndex() const;
void AddOffset(int64_t offset);
private:
Register base_;
Register regoffset_;
int64_t offset_;
AddrMode addrmode_;
Shift shift_;
Extend extend_;
unsigned shift_amount_;
};
class LabelTestHelper; // Forward declaration.
class Label {
public:
Label() : location_(kLocationUnbound) {}
~Label() {
// If the label has been linked to, it needs to be bound to a target.
VIXL_ASSERT(!IsLinked() || IsBound());
}
bool IsBound() const { return location_ >= 0; }
bool IsLinked() const { return !links_.empty(); }
ptrdiff_t location() const { return location_; }
static const int kNPreallocatedLinks = 4;
static const ptrdiff_t kInvalidLinkKey = PTRDIFF_MAX;
static const size_t kReclaimFrom = 512;
static const size_t kReclaimFactor = 2;
typedef InvalSet<ptrdiff_t,
kNPreallocatedLinks,
ptrdiff_t,
kInvalidLinkKey,
kReclaimFrom,
kReclaimFactor> LinksSetBase;
typedef InvalSetIterator<LinksSetBase> LabelLinksIteratorBase;
private:
class LinksSet : public LinksSetBase {
public:
LinksSet() : LinksSetBase() {}
};
// Allows iterating over the links of a label. The behaviour is undefined if
// the list of links is modified in any way while iterating.
class LabelLinksIterator : public LabelLinksIteratorBase {
public:
explicit LabelLinksIterator(Label* label)
: LabelLinksIteratorBase(&label->links_) {}
};
void Bind(ptrdiff_t location) {
// Labels can only be bound once.
VIXL_ASSERT(!IsBound());
location_ = location;
}
void AddLink(ptrdiff_t instruction) {
// If a label is bound, the assembler already has the information it needs
// to write the instruction, so there is no need to add it to links_.
VIXL_ASSERT(!IsBound());
links_.insert(instruction);
}
void DeleteLink(ptrdiff_t instruction) {
links_.erase(instruction);
}
void ClearAllLinks() {
links_.clear();
}
// TODO: The comment below considers average case complexity for our
// usual use-cases. The elements of interest are:
// - Branches to a label are emitted in order: branch instructions to a label
// are generated at an offset in the code generation buffer greater than any
// other branch to that same label already generated. As an example, this can
// be broken when an instruction is patched to become a branch. Note that the
// code will still work, but the complexity considerations below may locally
// not apply any more.
// - Veneers are generated in order: for multiple branches of the same type
// branching to the same unbound label going out of range, veneers are
// generated in growing order of the branch instruction offset from the start
// of the buffer.
//
// When creating a veneer for a branch going out of range, the link for this
// branch needs to be removed from this `links_`. Since all branches are
// tracked in one underlying InvalSet, the complexity for this deletion is the
// same as for finding the element, ie. O(n), where n is the number of links
// in the set.
// This could be reduced to O(1) by using the same trick as used when tracking
// branch information for veneers: split the container to use one set per type
// of branch. With that setup, when a veneer is created and the link needs to
// be deleted, if the two points above hold, it must be the minimum element of
// the set for its type of branch, and that minimum element will be accessible
// in O(1).
// The offsets of the instructions that have linked to this label.
LinksSet links_;
// The label location.
ptrdiff_t location_;
static const ptrdiff_t kLocationUnbound = -1;
// It is not safe to copy labels, so disable the copy constructor and operator
// by declaring them private (without an implementation).
Label(const Label&);
void operator=(const Label&);
// The Assembler class is responsible for binding and linking labels, since
// the stored offsets need to be consistent with the Assembler's buffer.
friend class Assembler;
// The MacroAssembler and VeneerPool handle resolution of branches to distant
// targets.
friend class MacroAssembler;
friend class VeneerPool;
};
// Required InvalSet template specialisations.
#define INVAL_SET_TEMPLATE_PARAMETERS \
ptrdiff_t, \
Label::kNPreallocatedLinks, \
ptrdiff_t, \
Label::kInvalidLinkKey, \
Label::kReclaimFrom, \
Label::kReclaimFactor
template<>
inline ptrdiff_t InvalSet<INVAL_SET_TEMPLATE_PARAMETERS>::Key(
const ptrdiff_t& element) {
return element;
}
template<>
inline void InvalSet<INVAL_SET_TEMPLATE_PARAMETERS>::SetKey(
ptrdiff_t* element, ptrdiff_t key) {
*element = key;
}
#undef INVAL_SET_TEMPLATE_PARAMETERS
class Assembler;
class LiteralPool;
// A literal is a 32-bit or 64-bit piece of data stored in the instruction
// stream and loaded through a pc relative load. The same literal can be
// referred to by multiple instructions but a literal can only reside at one
// place in memory. A literal can be used by a load before or after being
// placed in memory.
//
// Internally an offset of 0 is associated with a literal which has been
// neither used nor placed. Then two possibilities arise:
// 1) the label is placed, the offset (stored as offset + 1) is used to
// resolve any subsequent load using the label.
// 2) the label is not placed and offset is the offset of the last load using
// the literal (stored as -offset -1). If multiple loads refer to this
// literal then the last load holds the offset of the preceding load and
// all loads form a chain. Once the offset is placed all the loads in the
// chain are resolved and future loads fall back to possibility 1.
class RawLiteral {
public:
enum DeletionPolicy {
kDeletedOnPlacementByPool,
kDeletedOnPoolDestruction,
kManuallyDeleted
};
RawLiteral(size_t size,
LiteralPool* literal_pool,
DeletionPolicy deletion_policy = kManuallyDeleted);
// The literal pool only sees and deletes `RawLiteral*` pointers, but they are
// actually pointing to `Literal<T>` objects.
virtual ~RawLiteral() {}
size_t size() {
VIXL_STATIC_ASSERT(kDRegSizeInBytes == kXRegSizeInBytes);
VIXL_STATIC_ASSERT(kSRegSizeInBytes == kWRegSizeInBytes);
VIXL_ASSERT((size_ == kXRegSizeInBytes) ||
(size_ == kWRegSizeInBytes) ||
(size_ == kQRegSizeInBytes));
return size_;
}
uint64_t raw_value128_low64() {
VIXL_ASSERT(size_ == kQRegSizeInBytes);
return low64_;
}
uint64_t raw_value128_high64() {
VIXL_ASSERT(size_ == kQRegSizeInBytes);
return high64_;
}
uint64_t raw_value64() {
VIXL_ASSERT(size_ == kXRegSizeInBytes);
VIXL_ASSERT(high64_ == 0);
return low64_;
}
uint32_t raw_value32() {
VIXL_ASSERT(size_ == kWRegSizeInBytes);
VIXL_ASSERT(high64_ == 0);
VIXL_ASSERT(is_uint32(low64_) || is_int32(low64_));
return static_cast<uint32_t>(low64_);
}
bool IsUsed() { return offset_ < 0; }
bool IsPlaced() { return offset_ > 0; }
LiteralPool* GetLiteralPool() const {
return literal_pool_;
}
ptrdiff_t offset() {
VIXL_ASSERT(IsPlaced());
return offset_ - 1;
}
protected:
void set_offset(ptrdiff_t offset) {
VIXL_ASSERT(offset >= 0);
VIXL_ASSERT(IsWordAligned(offset));
VIXL_ASSERT(!IsPlaced());
offset_ = offset + 1;
}
ptrdiff_t last_use() {
VIXL_ASSERT(IsUsed());
return -offset_ - 1;
}
void set_last_use(ptrdiff_t offset) {
VIXL_ASSERT(offset >= 0);
VIXL_ASSERT(IsWordAligned(offset));
VIXL_ASSERT(!IsPlaced());
offset_ = -offset - 1;
}
size_t size_;
ptrdiff_t offset_;
uint64_t low64_;
uint64_t high64_;
private:
LiteralPool* literal_pool_;
DeletionPolicy deletion_policy_;
friend class Assembler;
friend class LiteralPool;
};
template <typename T>
class Literal : public RawLiteral {
public:
explicit Literal(T value,
LiteralPool* literal_pool = NULL,
RawLiteral::DeletionPolicy ownership = kManuallyDeleted)
: RawLiteral(sizeof(value), literal_pool, ownership) {
VIXL_STATIC_ASSERT(sizeof(value) <= kXRegSizeInBytes);
UpdateValue(value);
}
Literal(T high64, T low64,
LiteralPool* literal_pool = NULL,
RawLiteral::DeletionPolicy ownership = kManuallyDeleted)
: RawLiteral(kQRegSizeInBytes, literal_pool, ownership) {
VIXL_STATIC_ASSERT(sizeof(low64) == (kQRegSizeInBytes / 2));
UpdateValue(high64, low64);
}
virtual ~Literal() {}
// Update the value of this literal, if necessary by rewriting the value in
// the pool.
// If the literal has already been placed in a literal pool, the address of
// the start of the code buffer must be provided, as the literal only knows it
// offset from there. This also allows patching the value after the code has
// been moved in memory.
void UpdateValue(T new_value, uint8_t* code_buffer = NULL) {
VIXL_ASSERT(sizeof(new_value) == size_);
memcpy(&low64_, &new_value, sizeof(new_value));
if (IsPlaced()) {
VIXL_ASSERT(code_buffer != NULL);
RewriteValueInCode(code_buffer);
}
}
void UpdateValue(T high64, T low64, uint8_t* code_buffer = NULL) {
VIXL_ASSERT(sizeof(low64) == size_ / 2);
memcpy(&low64_, &low64, sizeof(low64));
memcpy(&high64_, &high64, sizeof(high64));
if (IsPlaced()) {
VIXL_ASSERT(code_buffer != NULL);
RewriteValueInCode(code_buffer);
}
}
void UpdateValue(T new_value, const Assembler* assembler);
void UpdateValue(T high64, T low64, const Assembler* assembler);
private:
void RewriteValueInCode(uint8_t* code_buffer) {
VIXL_ASSERT(IsPlaced());
VIXL_STATIC_ASSERT(sizeof(T) <= kXRegSizeInBytes);
switch (size()) {
case kSRegSizeInBytes:
*reinterpret_cast<uint32_t*>(code_buffer + offset()) = raw_value32();
break;
case kDRegSizeInBytes:
*reinterpret_cast<uint64_t*>(code_buffer + offset()) = raw_value64();
break;
default:
VIXL_ASSERT(size() == kQRegSizeInBytes);
uint64_t* base_address =
reinterpret_cast<uint64_t*>(code_buffer + offset());
*base_address = raw_value128_low64();
*(base_address + 1) = raw_value128_high64();
}
}
};
// Control whether or not position-independent code should be emitted.
enum PositionIndependentCodeOption {
// All code generated will be position-independent; all branches and
// references to labels generated with the Label class will use PC-relative
// addressing.
PositionIndependentCode,
// Allow VIXL to generate code that refers to absolute addresses. With this
// option, it will not be possible to copy the code buffer and run it from a
// different address; code must be generated in its final location.
PositionDependentCode,
// Allow VIXL to assume that the bottom 12 bits of the address will be
// constant, but that the top 48 bits may change. This allows `adrp` to
// function in systems which copy code between pages, but otherwise maintain
// 4KB page alignment.
PageOffsetDependentCode
};
// Control how scaled- and unscaled-offset loads and stores are generated.
enum LoadStoreScalingOption {
// Prefer scaled-immediate-offset instructions, but emit unscaled-offset,
// register-offset, pre-index or post-index instructions if necessary.
PreferScaledOffset,
// Prefer unscaled-immediate-offset instructions, but emit scaled-offset,
// register-offset, pre-index or post-index instructions if necessary.
PreferUnscaledOffset,
// Require scaled-immediate-offset instructions.
RequireScaledOffset,
// Require unscaled-immediate-offset instructions.
RequireUnscaledOffset
};
// Assembler.
class Assembler {
public:
Assembler(size_t capacity,
PositionIndependentCodeOption pic = PositionIndependentCode);
Assembler(byte* buffer, size_t capacity,
PositionIndependentCodeOption pic = PositionIndependentCode);
// The destructor asserts that one of the following is true:
// * The Assembler object has not been used.
// * Nothing has been emitted since the last Reset() call.
// * Nothing has been emitted since the last FinalizeCode() call.
~Assembler();
// System functions.
// Start generating code from the beginning of the buffer, discarding any code
// and data that has already been emitted into the buffer.
void Reset();
// Finalize a code buffer of generated instructions. This function must be
// called before executing or copying code from the buffer.
void FinalizeCode();
// Label.
// Bind a label to the current PC.
void bind(Label* label);
// Bind a label to a specified offset from the start of the buffer.
void BindToOffset(Label* label, ptrdiff_t offset);
// Place a literal at the current PC.
void place(RawLiteral* literal);
ptrdiff_t CursorOffset() const {
return buffer_->CursorOffset();
}
ptrdiff_t BufferEndOffset() const {
return static_cast<ptrdiff_t>(buffer_->capacity());
}
// Return the address of an offset in the buffer.
template <typename T>
T GetOffsetAddress(ptrdiff_t offset) const {
VIXL_STATIC_ASSERT(sizeof(T) >= sizeof(uintptr_t));
return buffer_->GetOffsetAddress<T>(offset);
}
// Return the address of a bound label.
template <typename T>
T GetLabelAddress(const Label * label) const {
VIXL_ASSERT(label->IsBound());
VIXL_STATIC_ASSERT(sizeof(T) >= sizeof(uintptr_t));
return GetOffsetAddress<T>(label->location());
}
// Return the address of the cursor.
template <typename T>
T GetCursorAddress() const {
VIXL_STATIC_ASSERT(sizeof(T) >= sizeof(uintptr_t));
return GetOffsetAddress<T>(CursorOffset());
}
// Return the address of the start of the buffer.
template <typename T>
T GetStartAddress() const {
VIXL_STATIC_ASSERT(sizeof(T) >= sizeof(uintptr_t));
return GetOffsetAddress<T>(0);
}
Instruction* InstructionAt(ptrdiff_t instruction_offset) {
return GetOffsetAddress<Instruction*>(instruction_offset);
}
ptrdiff_t InstructionOffset(Instruction* instruction) {
VIXL_STATIC_ASSERT(sizeof(*instruction) == 1);
ptrdiff_t offset = instruction - GetStartAddress<Instruction*>();
VIXL_ASSERT((0 <= offset) &&
(offset < static_cast<ptrdiff_t>(BufferCapacity())));
return offset;
}
// Instruction set functions.
// Branch / Jump instructions.
// Branch to register.
void br(const Register& xn);
// Branch with link to register.
void blr(const Register& xn);
// Branch to register with return hint.
void ret(const Register& xn = lr);
// Unconditional branch to label.
void b(Label* label);
// Conditional branch to label.
void b(Label* label, Condition cond);
// Unconditional branch to PC offset.
void b(int imm26);
// Conditional branch to PC offset.
void b(int imm19, Condition cond);
// Branch with link to label.
void bl(Label* label);
// Branch with link to PC offset.
void bl(int imm26);
// Compare and branch to label if zero.
void cbz(const Register& rt, Label* label);
// Compare and branch to PC offset if zero.
void cbz(const Register& rt, int imm19);
// Compare and branch to label if not zero.
void cbnz(const Register& rt, Label* label);
// Compare and branch to PC offset if not zero.
void cbnz(const Register& rt, int imm19);
// Table lookup from one register.
void tbl(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Table lookup from two registers.
void tbl(const VRegister& vd,
const VRegister& vn,
const VRegister& vn2,
const VRegister& vm);
// Table lookup from three registers.
void tbl(const VRegister& vd,
const VRegister& vn,
const VRegister& vn2,
const VRegister& vn3,
const VRegister& vm);
// Table lookup from four registers.
void tbl(const VRegister& vd,
const VRegister& vn,
const VRegister& vn2,
const VRegister& vn3,
const VRegister& vn4,
const VRegister& vm);
// Table lookup extension from one register.
void tbx(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Table lookup extension from two registers.
void tbx(const VRegister& vd,
const VRegister& vn,
const VRegister& vn2,
const VRegister& vm);
// Table lookup extension from three registers.
void tbx(const VRegister& vd,
const VRegister& vn,
const VRegister& vn2,
const VRegister& vn3,
const VRegister& vm);
// Table lookup extension from four registers.
void tbx(const VRegister& vd,
const VRegister& vn,
const VRegister& vn2,
const VRegister& vn3,
const VRegister& vn4,
const VRegister& vm);
// Test bit and branch to label if zero.
void tbz(const Register& rt, unsigned bit_pos, Label* label);
// Test bit and branch to PC offset if zero.
void tbz(const Register& rt, unsigned bit_pos, int imm14);
// Test bit and branch to label if not zero.
void tbnz(const Register& rt, unsigned bit_pos, Label* label);
// Test bit and branch to PC offset if not zero.
void tbnz(const Register& rt, unsigned bit_pos, int imm14);
// Address calculation instructions.
// Calculate a PC-relative address. Unlike for branches the offset in adr is
// unscaled (i.e. the result can be unaligned).
// Calculate the address of a label.
void adr(const Register& rd, Label* label);
// Calculate the address of a PC offset.
void adr(const Register& rd, int imm21);
// Calculate the page address of a label.
void adrp(const Register& rd, Label* label);
// Calculate the page address of a PC offset.
void adrp(const Register& rd, int imm21);
// Data Processing instructions.
// Add.
void add(const Register& rd,
const Register& rn,
const Operand& operand);
// Add and update status flags.
void adds(const Register& rd,
const Register& rn,
const Operand& operand);
// Compare negative.
void cmn(const Register& rn, const Operand& operand);
// Subtract.
void sub(const Register& rd,
const Register& rn,
const Operand& operand);
// Subtract and update status flags.
void subs(const Register& rd,
const Register& rn,
const Operand& operand);
// Compare.
void cmp(const Register& rn, const Operand& operand);
// Negate.
void neg(const Register& rd,
const Operand& operand);
// Negate and update status flags.
void negs(const Register& rd,
const Operand& operand);
// Add with carry bit.
void adc(const Register& rd,
const Register& rn,
const Operand& operand);
// Add with carry bit and update status flags.
void adcs(const Register& rd,
const Register& rn,
const Operand& operand);
// Subtract with carry bit.
void sbc(const Register& rd,
const Register& rn,
const Operand& operand);
// Subtract with carry bit and update status flags.
void sbcs(const Register& rd,
const Register& rn,
const Operand& operand);
// Negate with carry bit.
void ngc(const Register& rd,
const Operand& operand);
// Negate with carry bit and update status flags.
void ngcs(const Register& rd,
const Operand& operand);
// Logical instructions.
// Bitwise and (A & B).
void and_(const Register& rd,
const Register& rn,
const Operand& operand);
// Bitwise and (A & B) and update status flags.
void ands(const Register& rd,
const Register& rn,
const Operand& operand);
// Bit test and set flags.
void tst(const Register& rn, const Operand& operand);
// Bit clear (A & ~B).
void bic(const Register& rd,
const Register& rn,
const Operand& operand);
// Bit clear (A & ~B) and update status flags.
void bics(const Register& rd,
const Register& rn,
const Operand& operand);
// Bitwise or (A | B).
void orr(const Register& rd, const Register& rn, const Operand& operand);
// Bitwise nor (A | ~B).
void orn(const Register& rd, const Register& rn, const Operand& operand);
// Bitwise eor/xor (A ^ B).
void eor(const Register& rd, const Register& rn, const Operand& operand);
// Bitwise enor/xnor (A ^ ~B).
void eon(const Register& rd, const Register& rn, const Operand& operand);
// Logical shift left by variable.
void lslv(const Register& rd, const Register& rn, const Register& rm);
// Logical shift right by variable.
void lsrv(const Register& rd, const Register& rn, const Register& rm);
// Arithmetic shift right by variable.
void asrv(const Register& rd, const Register& rn, const Register& rm);
// Rotate right by variable.
void rorv(const Register& rd, const Register& rn, const Register& rm);
// Bitfield instructions.
// Bitfield move.
void bfm(const Register& rd,
const Register& rn,
unsigned immr,
unsigned imms);
// Signed bitfield move.
void sbfm(const Register& rd,
const Register& rn,
unsigned immr,
unsigned imms);
// Unsigned bitfield move.
void ubfm(const Register& rd,
const Register& rn,
unsigned immr,
unsigned imms);
// Bfm aliases.
// Bitfield insert.
void bfi(const Register& rd,
const Register& rn,
unsigned lsb,
unsigned width) {
VIXL_ASSERT(width >= 1);
VIXL_ASSERT(lsb + width <= rn.size());
bfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
}
// Bitfield extract and insert low.
void bfxil(const Register& rd,
const Register& rn,
unsigned lsb,
unsigned width) {
VIXL_ASSERT(width >= 1);
VIXL_ASSERT(lsb + width <= rn.size());
bfm(rd, rn, lsb, lsb + width - 1);
}
// Sbfm aliases.
// Arithmetic shift right.
void asr(const Register& rd, const Register& rn, unsigned shift) {
VIXL_ASSERT(shift < rd.size());
sbfm(rd, rn, shift, rd.size() - 1);
}
// Signed bitfield insert with zero at right.
void sbfiz(const Register& rd,
const Register& rn,
unsigned lsb,
unsigned width) {
VIXL_ASSERT(width >= 1);
VIXL_ASSERT(lsb + width <= rn.size());
sbfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
}
// Signed bitfield extract.
void sbfx(const Register& rd,
const Register& rn,
unsigned lsb,
unsigned width) {
VIXL_ASSERT(width >= 1);
VIXL_ASSERT(lsb + width <= rn.size());
sbfm(rd, rn, lsb, lsb + width - 1);
}
// Signed extend byte.
void sxtb(const Register& rd, const Register& rn) {
sbfm(rd, rn, 0, 7);
}
// Signed extend halfword.
void sxth(const Register& rd, const Register& rn) {
sbfm(rd, rn, 0, 15);
}
// Signed extend word.
void sxtw(const Register& rd, const Register& rn) {
sbfm(rd, rn, 0, 31);
}
// Ubfm aliases.
// Logical shift left.
void lsl(const Register& rd, const Register& rn, unsigned shift) {
unsigned reg_size = rd.size();
VIXL_ASSERT(shift < reg_size);
ubfm(rd, rn, (reg_size - shift) % reg_size, reg_size - shift - 1);
}
// Logical shift right.
void lsr(const Register& rd, const Register& rn, unsigned shift) {
VIXL_ASSERT(shift < rd.size());
ubfm(rd, rn, shift, rd.size() - 1);
}
// Unsigned bitfield insert with zero at right.
void ubfiz(const Register& rd,
const Register& rn,
unsigned lsb,
unsigned width) {
VIXL_ASSERT(width >= 1);
VIXL_ASSERT(lsb + width <= rn.size());
ubfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
}
// Unsigned bitfield extract.
void ubfx(const Register& rd,
const Register& rn,
unsigned lsb,
unsigned width) {
VIXL_ASSERT(width >= 1);
VIXL_ASSERT(lsb + width <= rn.size());
ubfm(rd, rn, lsb, lsb + width - 1);
}
// Unsigned extend byte.
void uxtb(const Register& rd, const Register& rn) {
ubfm(rd, rn, 0, 7);
}
// Unsigned extend halfword.
void uxth(const Register& rd, const Register& rn) {
ubfm(rd, rn, 0, 15);
}
// Unsigned extend word.
void uxtw(const Register& rd, const Register& rn) {
ubfm(rd, rn, 0, 31);
}
// Extract.
void extr(const Register& rd,
const Register& rn,
const Register& rm,
unsigned lsb);
// Conditional select: rd = cond ? rn : rm.
void csel(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond);
// Conditional select increment: rd = cond ? rn : rm + 1.
void csinc(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond);
// Conditional select inversion: rd = cond ? rn : ~rm.
void csinv(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond);
// Conditional select negation: rd = cond ? rn : -rm.
void csneg(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond);
// Conditional set: rd = cond ? 1 : 0.
void cset(const Register& rd, Condition cond);
// Conditional set mask: rd = cond ? -1 : 0.
void csetm(const Register& rd, Condition cond);
// Conditional increment: rd = cond ? rn + 1 : rn.
void cinc(const Register& rd, const Register& rn, Condition cond);
// Conditional invert: rd = cond ? ~rn : rn.
void cinv(const Register& rd, const Register& rn, Condition cond);
// Conditional negate: rd = cond ? -rn : rn.
void cneg(const Register& rd, const Register& rn, Condition cond);
// Rotate right.
void ror(const Register& rd, const Register& rs, unsigned shift) {
extr(rd, rs, rs, shift);
}
// Conditional comparison.
// Conditional compare negative.
void ccmn(const Register& rn,
const Operand& operand,
StatusFlags nzcv,
Condition cond);
// Conditional compare.
void ccmp(const Register& rn,
const Operand& operand,
StatusFlags nzcv,
Condition cond);
// CRC-32 checksum from byte.
void crc32b(const Register& rd,
const Register& rn,
const Register& rm);
// CRC-32 checksum from half-word.
void crc32h(const Register& rd,
const Register& rn,
const Register& rm);
// CRC-32 checksum from word.
void crc32w(const Register& rd,
const Register& rn,
const Register& rm);
// CRC-32 checksum from double word.
void crc32x(const Register& rd,
const Register& rn,
const Register& rm);
// CRC-32 C checksum from byte.
void crc32cb(const Register& rd,
const Register& rn,
const Register& rm);
// CRC-32 C checksum from half-word.
void crc32ch(const Register& rd,
const Register& rn,
const Register& rm);
// CRC-32 C checksum from word.
void crc32cw(const Register& rd,
const Register& rn,
const Register& rm);
// CRC-32C checksum from double word.
void crc32cx(const Register& rd,
const Register& rn,
const Register& rm);
// Multiply.
void mul(const Register& rd, const Register& rn, const Register& rm);
// Negated multiply.
void mneg(const Register& rd, const Register& rn, const Register& rm);
// Signed long multiply: 32 x 32 -> 64-bit.
void smull(const Register& rd, const Register& rn, const Register& rm);
// Signed multiply high: 64 x 64 -> 64-bit <127:64>.
void smulh(const Register& xd, const Register& xn, const Register& xm);
// Multiply and accumulate.
void madd(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra);
// Multiply and subtract.
void msub(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra);
// Signed long multiply and accumulate: 32 x 32 + 64 -> 64-bit.
void smaddl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra);
// Unsigned long multiply and accumulate: 32 x 32 + 64 -> 64-bit.
void umaddl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra);
// Unsigned long multiply: 32 x 32 -> 64-bit.
void umull(const Register& rd,
const Register& rn,
const Register& rm) {
umaddl(rd, rn, rm, xzr);
}
// Unsigned multiply high: 64 x 64 -> 64-bit <127:64>.
void umulh(const Register& xd,
const Register& xn,
const Register& xm);
// Signed long multiply and subtract: 64 - (32 x 32) -> 64-bit.
void smsubl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra);
// Unsigned long multiply and subtract: 64 - (32 x 32) -> 64-bit.
void umsubl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra);
// Signed integer divide.
void sdiv(const Register& rd, const Register& rn, const Register& rm);
// Unsigned integer divide.
void udiv(const Register& rd, const Register& rn, const Register& rm);
// Bit reverse.
void rbit(const Register& rd, const Register& rn);
// Reverse bytes in 16-bit half words.
void rev16(const Register& rd, const Register& rn);
// Reverse bytes in 32-bit words.
void rev32(const Register& rd, const Register& rn);
// Reverse bytes.
void rev(const Register& rd, const Register& rn);
// Count leading zeroes.
void clz(const Register& rd, const Register& rn);
// Count leading sign bits.
void cls(const Register& rd, const Register& rn);
// Memory instructions.
// Load integer or FP register.
void ldr(const CPURegister& rt, const MemOperand& src,
LoadStoreScalingOption option = PreferScaledOffset);
// Store integer or FP register.
void str(const CPURegister& rt, const MemOperand& dst,
LoadStoreScalingOption option = PreferScaledOffset);
// Load word with sign extension.
void ldrsw(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option = PreferScaledOffset);
// Load byte.
void ldrb(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option = PreferScaledOffset);
// Store byte.
void strb(const Register& rt, const MemOperand& dst,
LoadStoreScalingOption option = PreferScaledOffset);
// Load byte with sign extension.
void ldrsb(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option = PreferScaledOffset);
// Load half-word.
void ldrh(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option = PreferScaledOffset);
// Store half-word.
void strh(const Register& rt, const MemOperand& dst,
LoadStoreScalingOption option = PreferScaledOffset);
// Load half-word with sign extension.
void ldrsh(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option = PreferScaledOffset);
// Load integer or FP register (with unscaled offset).
void ldur(const CPURegister& rt, const MemOperand& src,
LoadStoreScalingOption option = PreferUnscaledOffset);
// Store integer or FP register (with unscaled offset).
void stur(const CPURegister& rt, const MemOperand& src,
LoadStoreScalingOption option = PreferUnscaledOffset);
// Load word with sign extension.
void ldursw(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option = PreferUnscaledOffset);
// Load byte (with unscaled offset).
void ldurb(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option = PreferUnscaledOffset);
// Store byte (with unscaled offset).
void sturb(const Register& rt, const MemOperand& dst,
LoadStoreScalingOption option = PreferUnscaledOffset);
// Load byte with sign extension (and unscaled offset).
void ldursb(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option = PreferUnscaledOffset);
// Load half-word (with unscaled offset).
void ldurh(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option = PreferUnscaledOffset);
// Store half-word (with unscaled offset).
void sturh(const Register& rt, const MemOperand& dst,
LoadStoreScalingOption option = PreferUnscaledOffset);
// Load half-word with sign extension (and unscaled offset).
void ldursh(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option = PreferUnscaledOffset);
// Load integer or FP register pair.
void ldp(const CPURegister& rt, const CPURegister& rt2,
const MemOperand& src);
// Store integer or FP register pair.
void stp(const CPURegister& rt, const CPURegister& rt2,
const MemOperand& dst);
// Load word pair with sign extension.
void ldpsw(const Register& rt, const Register& rt2, const MemOperand& src);
// Load integer or FP register pair, non-temporal.
void ldnp(const CPURegister& rt, const CPURegister& rt2,
const MemOperand& src);
// Store integer or FP register pair, non-temporal.
void stnp(const CPURegister& rt, const CPURegister& rt2,
const MemOperand& dst);
// Load integer or FP register from literal pool.
void ldr(const CPURegister& rt, RawLiteral* literal);
// Load word with sign extension from literal pool.
void ldrsw(const Register& rt, RawLiteral* literal);
// Load integer or FP register from pc + imm19 << 2.
void ldr(const CPURegister& rt, int imm19);
// Load word with sign extension from pc + imm19 << 2.
void ldrsw(const Register& rt, int imm19);
// Store exclusive byte.
void stxrb(const Register& rs, const Register& rt, const MemOperand& dst);
// Store exclusive half-word.
void stxrh(const Register& rs, const Register& rt, const MemOperand& dst);
// Store exclusive register.
void stxr(const Register& rs, const Register& rt, const MemOperand& dst);
// Load exclusive byte.
void ldxrb(const Register& rt, const MemOperand& src);
// Load exclusive half-word.
void ldxrh(const Register& rt, const MemOperand& src);
// Load exclusive register.
void ldxr(const Register& rt, const MemOperand& src);
// Store exclusive register pair.
void stxp(const Register& rs,
const Register& rt,
const Register& rt2,
const MemOperand& dst);
// Load exclusive register pair.
void ldxp(const Register& rt, const Register& rt2, const MemOperand& src);
// Store-release exclusive byte.
void stlxrb(const Register& rs, const Register& rt, const MemOperand& dst);
// Store-release exclusive half-word.
void stlxrh(const Register& rs, const Register& rt, const MemOperand& dst);
// Store-release exclusive register.
void stlxr(const Register& rs, const Register& rt, const MemOperand& dst);
// Load-acquire exclusive byte.
void ldaxrb(const Register& rt, const MemOperand& src);
// Load-acquire exclusive half-word.
void ldaxrh(const Register& rt, const MemOperand& src);
// Load-acquire exclusive register.
void ldaxr(const Register& rt, const MemOperand& src);
// Store-release exclusive register pair.
void stlxp(const Register& rs,
const Register& rt,
const Register& rt2,
const MemOperand& dst);
// Load-acquire exclusive register pair.
void ldaxp(const Register& rt, const Register& rt2, const MemOperand& src);
// Store-release byte.
void stlrb(const Register& rt, const MemOperand& dst);
// Store-release half-word.
void stlrh(const Register& rt, const MemOperand& dst);
// Store-release register.
void stlr(const Register& rt, const MemOperand& dst);
// Load-acquire byte.
void ldarb(const Register& rt, const MemOperand& src);
// Load-acquire half-word.
void ldarh(const Register& rt, const MemOperand& src);
// Load-acquire register.
void ldar(const Register& rt, const MemOperand& src);
// Prefetch memory.
void prfm(PrefetchOperation op, const MemOperand& addr,
LoadStoreScalingOption option = PreferScaledOffset);
// Prefetch memory (with unscaled offset).
void prfum(PrefetchOperation op, const MemOperand& addr,
LoadStoreScalingOption option = PreferUnscaledOffset);
// Prefetch memory in the literal pool.
void prfm(PrefetchOperation op, RawLiteral* literal);
// Prefetch from pc + imm19 << 2.
void prfm(PrefetchOperation op, int imm19);
// Move instructions. The default shift of -1 indicates that the move
// instruction will calculate an appropriate 16-bit immediate and left shift
// that is equal to the 64-bit immediate argument. If an explicit left shift
// is specified (0, 16, 32 or 48), the immediate must be a 16-bit value.
//
// For movk, an explicit shift can be used to indicate which half word should
// be overwritten, eg. movk(x0, 0, 0) will overwrite the least-significant
// half word with zero, whereas movk(x0, 0, 48) will overwrite the
// most-significant.
// Move immediate and keep.
void movk(const Register& rd, uint64_t imm, int shift = -1) {
MoveWide(rd, imm, shift, MOVK);
}
// Move inverted immediate.
void movn(const Register& rd, uint64_t imm, int shift = -1) {
MoveWide(rd, imm, shift, MOVN);
}
// Move immediate.
void movz(const Register& rd, uint64_t imm, int shift = -1) {
MoveWide(rd, imm, shift, MOVZ);
}
// Misc instructions.
// Monitor debug-mode breakpoint.
void brk(int code);
// Halting debug-mode breakpoint.
void hlt(int code);
// Generate exception targeting EL1.
void svc(int code);
// Move register to register.
void mov(const Register& rd, const Register& rn);
// Move inverted operand to register.
void mvn(const Register& rd, const Operand& operand);
// System instructions.
// Move to register from system register.
void mrs(const Register& rt, SystemRegister sysreg);
// Move from register to system register.
void msr(SystemRegister sysreg, const Register& rt);
// System instruction.
void sys(int op1, int crn, int crm, int op2, const Register& rt = xzr);
// System instruction with pre-encoded op (op1:crn:crm:op2).
void sys(int op, const Register& rt = xzr);
// System data cache operation.
void dc(DataCacheOp op, const Register& rt);
// System instruction cache operation.
void ic(InstructionCacheOp op, const Register& rt);
// System hint.
void hint(SystemHint code);
// Clear exclusive monitor.
void clrex(int imm4 = 0xf);
// Data memory barrier.
void dmb(BarrierDomain domain, BarrierType type);
// Data synchronization barrier.
void dsb(BarrierDomain domain, BarrierType type);
// Instruction synchronization barrier.
void isb();
// Alias for system instructions.
// No-op.
void nop() {
hint(NOP);
}
// FP and NEON instructions.
// Move double precision immediate to FP register.
void fmov(const VRegister& vd, double imm);
// Move single precision immediate to FP register.
void fmov(const VRegister& vd, float imm);
// Move FP register to register.
void fmov(const Register& rd, const VRegister& fn);
// Move register to FP register.
void fmov(const VRegister& vd, const Register& rn);
// Move FP register to FP register.
void fmov(const VRegister& vd, const VRegister& fn);
// Move 64-bit register to top half of 128-bit FP register.
void fmov(const VRegister& vd, int index, const Register& rn);
// Move top half of 128-bit FP register to 64-bit register.
void fmov(const Register& rd, const VRegister& vn, int index);
// FP add.
void fadd(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// FP subtract.
void fsub(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// FP multiply.
void fmul(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// FP fused multiply-add.
void fmadd(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
const VRegister& va);
// FP fused multiply-subtract.
void fmsub(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
const VRegister& va);
// FP fused multiply-add and negate.
void fnmadd(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
const VRegister& va);
// FP fused multiply-subtract and negate.
void fnmsub(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
const VRegister& va);
// FP multiply-negate scalar.
void fnmul(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// FP reciprocal exponent scalar.
void frecpx(const VRegister& vd,
const VRegister& vn);
// FP divide.
void fdiv(const VRegister& vd, const VRegister& fn, const VRegister& vm);
// FP maximum.
void fmax(const VRegister& vd, const VRegister& fn, const VRegister& vm);
// FP minimum.
void fmin(const VRegister& vd, const VRegister& fn, const VRegister& vm);
// FP maximum number.
void fmaxnm(const VRegister& vd, const VRegister& fn, const VRegister& vm);
// FP minimum number.
void fminnm(const VRegister& vd, const VRegister& fn, const VRegister& vm);
// FP absolute.
void fabs(const VRegister& vd, const VRegister& vn);
// FP negate.
void fneg(const VRegister& vd, const VRegister& vn);
// FP square root.
void fsqrt(const VRegister& vd, const VRegister& vn);
// FP round to integer, nearest with ties to away.
void frinta(const VRegister& vd, const VRegister& vn);
// FP round to integer, implicit rounding.
void frinti(const VRegister& vd, const VRegister& vn);
// FP round to integer, toward minus infinity.
void frintm(const VRegister& vd, const VRegister& vn);
// FP round to integer, nearest with ties to even.
void frintn(const VRegister& vd, const VRegister& vn);
// FP round to integer, toward plus infinity.
void frintp(const VRegister& vd, const VRegister& vn);
// FP round to integer, exact, implicit rounding.
void frintx(const VRegister& vd, const VRegister& vn);
// FP round to integer, towards zero.
void frintz(const VRegister& vd, const VRegister& vn);
void FPCompareMacro(const VRegister& vn,
double value,
FPTrapFlags trap);
void FPCompareMacro(const VRegister& vn,
const VRegister& vm,
FPTrapFlags trap);
// FP compare registers.
void fcmp(const VRegister& vn, const VRegister& vm);
// FP compare immediate.
void fcmp(const VRegister& vn, double value);
void FPCCompareMacro(const VRegister& vn,
const VRegister& vm,
StatusFlags nzcv,
Condition cond,
FPTrapFlags trap);
// FP conditional compare.
void fccmp(const VRegister& vn,
const VRegister& vm,
StatusFlags nzcv,
Condition cond);
// FP signaling compare registers.
void fcmpe(const VRegister& vn, const VRegister& vm);
// FP signaling compare immediate.
void fcmpe(const VRegister& vn, double value);
// FP conditional signaling compare.
void fccmpe(const VRegister& vn,
const VRegister& vm,
StatusFlags nzcv,
Condition cond);
// FP conditional select.
void fcsel(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
Condition cond);
// Common FP Convert functions.
void NEONFPConvertToInt(const Register& rd,
const VRegister& vn,
Instr op);
void NEONFPConvertToInt(const VRegister& vd,
const VRegister& vn,
Instr op);
// FP convert between precisions.
void fcvt(const VRegister& vd, const VRegister& vn);
// FP convert to higher precision.
void fcvtl(const VRegister& vd, const VRegister& vn);
// FP convert to higher precision (second part).
void fcvtl2(const VRegister& vd, const VRegister& vn);
// FP convert to lower precision.
void fcvtn(const VRegister& vd, const VRegister& vn);
// FP convert to lower prevision (second part).
void fcvtn2(const VRegister& vd, const VRegister& vn);
// FP convert to lower precision, rounding to odd.
void fcvtxn(const VRegister& vd, const VRegister& vn);
// FP convert to lower precision, rounding to odd (second part).
void fcvtxn2(const VRegister& vd, const VRegister& vn);
// FP convert to signed integer, nearest with ties to away.
void fcvtas(const Register& rd, const VRegister& vn);
// FP convert to unsigned integer, nearest with ties to away.
void fcvtau(const Register& rd, const VRegister& vn);
// FP convert to signed integer, nearest with ties to away.
void fcvtas(const VRegister& vd, const VRegister& vn);
// FP convert to unsigned integer, nearest with ties to away.
void fcvtau(const VRegister& vd, const VRegister& vn);
// FP convert to signed integer, round towards -infinity.
void fcvtms(const Register& rd, const VRegister& vn);
// FP convert to unsigned integer, round towards -infinity.
void fcvtmu(const Register& rd, const VRegister& vn);
// FP convert to signed integer, round towards -infinity.
void fcvtms(const VRegister& vd, const VRegister& vn);
// FP convert to unsigned integer, round towards -infinity.
void fcvtmu(const VRegister& vd, const VRegister& vn);
// FP convert to signed integer, nearest with ties to even.
void fcvtns(const Register& rd, const VRegister& vn);
// FP convert to unsigned integer, nearest with ties to even.
void fcvtnu(const Register& rd, const VRegister& vn);
// FP convert to signed integer, nearest with ties to even.
void fcvtns(const VRegister& rd, const VRegister& vn);
// FP convert to unsigned integer, nearest with ties to even.
void fcvtnu(const VRegister& rd, const VRegister& vn);
// FP convert to signed integer or fixed-point, round towards zero.
void fcvtzs(const Register& rd, const VRegister& vn, int fbits = 0);
// FP convert to unsigned integer or fixed-point, round towards zero.
void fcvtzu(const Register& rd, const VRegister& vn, int fbits = 0);
// FP convert to signed integer or fixed-point, round towards zero.
void fcvtzs(const VRegister& vd, const VRegister& vn, int fbits = 0);
// FP convert to unsigned integer or fixed-point, round towards zero.
void fcvtzu(const VRegister& vd, const VRegister& vn, int fbits = 0);
// FP convert to signed integer, round towards +infinity.
void fcvtps(const Register& rd, const VRegister& vn);
// FP convert to unsigned integer, round towards +infinity.
void fcvtpu(const Register& rd, const VRegister& vn);
// FP convert to signed integer, round towards +infinity.
void fcvtps(const VRegister& vd, const VRegister& vn);
// FP convert to unsigned integer, round towards +infinity.
void fcvtpu(const VRegister& vd, const VRegister& vn);
// Convert signed integer or fixed point to FP.
void scvtf(const VRegister& fd, const Register& rn, int fbits = 0);
// Convert unsigned integer or fixed point to FP.
void ucvtf(const VRegister& fd, const Register& rn, int fbits = 0);
// Convert signed integer or fixed-point to FP.
void scvtf(const VRegister& fd, const VRegister& vn, int fbits = 0);
// Convert unsigned integer or fixed-point to FP.
void ucvtf(const VRegister& fd, const VRegister& vn, int fbits = 0);
// Unsigned absolute difference.
void uabd(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed absolute difference.
void sabd(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Unsigned absolute difference and accumulate.
void uaba(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed absolute difference and accumulate.
void saba(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Add.
void add(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Subtract.
void sub(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Unsigned halving add.
void uhadd(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed halving add.
void shadd(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Unsigned rounding halving add.
void urhadd(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed rounding halving add.
void srhadd(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Unsigned halving sub.
void uhsub(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed halving sub.
void shsub(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Unsigned saturating add.
void uqadd(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed saturating add.
void sqadd(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Unsigned saturating subtract.
void uqsub(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed saturating subtract.
void sqsub(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Add pairwise.
void addp(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Add pair of elements scalar.
void addp(const VRegister& vd,
const VRegister& vn);
// Multiply-add to accumulator.
void mla(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Multiply-subtract to accumulator.
void mls(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Multiply.
void mul(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Multiply by scalar element.
void mul(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
int vm_index);
// Multiply-add by scalar element.
void mla(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
int vm_index);
// Multiply-subtract by scalar element.
void mls(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
int vm_index);
// Signed long multiply-add by scalar element.
void smlal(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
int vm_index);
// Signed long multiply-add by scalar element (second part).
void smlal2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
int vm_index);
// Unsigned long multiply-add by scalar element.
void umlal(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
int vm_index);
// Unsigned long multiply-add by scalar element (second part).
void umlal2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
int vm_index);
// Signed long multiply-sub by scalar element.
void smlsl(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
int vm_index);
// Signed long multiply-sub by scalar element (second part).
void smlsl2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
int vm_index);
// Unsigned long multiply-sub by scalar element.
void umlsl(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
int vm_index);
// Unsigned long multiply-sub by scalar element (second part).
void umlsl2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
int vm_index);
// Signed long multiply by scalar element.
void smull(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
int vm_index);
// Signed long multiply by scalar element (second part).
void smull2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
int vm_index);
// Unsigned long multiply by scalar element.
void umull(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
int vm_index);
// Unsigned long multiply by scalar element (second part).
void umull2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
int vm_index);
// Signed saturating double long multiply by element.
void sqdmull(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
int vm_index);
// Signed saturating double long multiply by element (second part).
void sqdmull2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
int vm_index);
// Signed saturating doubling long multiply-add by element.
void sqdmlal(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
int vm_index);
// Signed saturating doubling long multiply-add by element (second part).
void sqdmlal2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
int vm_index);
// Signed saturating doubling long multiply-sub by element.
void sqdmlsl(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
int vm_index);
// Signed saturating doubling long multiply-sub by element (second part).
void sqdmlsl2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
int vm_index);
// Compare equal.
void cmeq(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Compare signed greater than or equal.
void cmge(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Compare signed greater than.
void cmgt(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Compare unsigned higher.
void cmhi(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Compare unsigned higher or same.
void cmhs(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Compare bitwise test bits nonzero.
void cmtst(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Compare bitwise to zero.
void cmeq(const VRegister& vd,
const VRegister& vn,
int value);
// Compare signed greater than or equal to zero.
void cmge(const VRegister& vd,
const VRegister& vn,
int value);
// Compare signed greater than zero.
void cmgt(const VRegister& vd,
const VRegister& vn,
int value);
// Compare signed less than or equal to zero.
void cmle(const VRegister& vd,
const VRegister& vn,
int value);
// Compare signed less than zero.
void cmlt(const VRegister& vd,
const VRegister& vn,
int value);
// Signed shift left by register.
void sshl(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Unsigned shift left by register.
void ushl(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed saturating shift left by register.
void sqshl(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Unsigned saturating shift left by register.
void uqshl(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed rounding shift left by register.
void srshl(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Unsigned rounding shift left by register.
void urshl(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed saturating rounding shift left by register.
void sqrshl(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Unsigned saturating rounding shift left by register.
void uqrshl(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Bitwise and.
void and_(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Bitwise or.
void orr(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Bitwise or immediate.
void orr(const VRegister& vd,
const int imm8,
const int left_shift = 0);
// Move register to register.
void mov(const VRegister& vd,
const VRegister& vn);
// Bitwise orn.
void orn(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Bitwise eor.
void eor(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Bit clear immediate.
void bic(const VRegister& vd,
const int imm8,
const int left_shift = 0);
// Bit clear.
void bic(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Bitwise insert if false.
void bif(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Bitwise insert if true.
void bit(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Bitwise select.
void bsl(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Polynomial multiply.
void pmul(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Vector move immediate.
void movi(const VRegister& vd,
const uint64_t imm,
Shift shift = LSL,
const int shift_amount = 0);
// Bitwise not.
void mvn(const VRegister& vd,
const VRegister& vn);
// Vector move inverted immediate.
void mvni(const VRegister& vd,
const int imm8,
Shift shift = LSL,
const int shift_amount = 0);
// Signed saturating accumulate of unsigned value.
void suqadd(const VRegister& vd,
const VRegister& vn);
// Unsigned saturating accumulate of signed value.
void usqadd(const VRegister& vd,
const VRegister& vn);
// Absolute value.
void abs(const VRegister& vd,
const VRegister& vn);
// Signed saturating absolute value.
void sqabs(const VRegister& vd,
const VRegister& vn);
// Negate.
void neg(const VRegister& vd,
const VRegister& vn);
// Signed saturating negate.
void sqneg(const VRegister& vd,
const VRegister& vn);
// Bitwise not.
void not_(const VRegister& vd,
const VRegister& vn);
// Extract narrow.
void xtn(const VRegister& vd,
const VRegister& vn);
// Extract narrow (second part).
void xtn2(const VRegister& vd,
const VRegister& vn);
// Signed saturating extract narrow.
void sqxtn(const VRegister& vd,
const VRegister& vn);
// Signed saturating extract narrow (second part).
void sqxtn2(const VRegister& vd,
const VRegister& vn);
// Unsigned saturating extract narrow.
void uqxtn(const VRegister& vd,
const VRegister& vn);
// Unsigned saturating extract narrow (second part).
void uqxtn2(const VRegister& vd,
const VRegister& vn);
// Signed saturating extract unsigned narrow.
void sqxtun(const VRegister& vd,
const VRegister& vn);
// Signed saturating extract unsigned narrow (second part).
void sqxtun2(const VRegister& vd,
const VRegister& vn);
// Extract vector from pair of vectors.
void ext(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
int index);
// Duplicate vector element to vector or scalar.
void dup(const VRegister& vd,
const VRegister& vn,
int vn_index);
// Move vector element to scalar.
void mov(const VRegister& vd,
const VRegister& vn,
int vn_index);
// Duplicate general-purpose register to vector.
void dup(const VRegister& vd,
const Register& rn);
// Insert vector element from another vector element.
void ins(const VRegister& vd,
int vd_index,
const VRegister& vn,
int vn_index);
// Move vector element to another vector element.
void mov(const VRegister& vd,
int vd_index,
const VRegister& vn,
int vn_index);
// Insert vector element from general-purpose register.
void ins(const VRegister& vd,
int vd_index,
const Register& rn);
// Move general-purpose register to a vector element.
void mov(const VRegister& vd,
int vd_index,
const Register& rn);
// Unsigned move vector element to general-purpose register.
void umov(const Register& rd,
const VRegister& vn,
int vn_index);
// Move vector element to general-purpose register.
void mov(const Register& rd,
const VRegister& vn,
int vn_index);
// Signed move vector element to general-purpose register.
void smov(const Register& rd,
const VRegister& vn,
int vn_index);
// One-element structure load to one register.
void ld1(const VRegister& vt,
const MemOperand& src);
// One-element structure load to two registers.
void ld1(const VRegister& vt,
const VRegister& vt2,
const MemOperand& src);
// One-element structure load to three registers.
void ld1(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
const MemOperand& src);
// One-element structure load to four registers.
void ld1(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
const VRegister& vt4,
const MemOperand& src);
// One-element single structure load to one lane.
void ld1(const VRegister& vt,
int lane,
const MemOperand& src);
// One-element single structure load to all lanes.
void ld1r(const VRegister& vt,
const MemOperand& src);
// Two-element structure load.
void ld2(const VRegister& vt,
const VRegister& vt2,
const MemOperand& src);
// Two-element single structure load to one lane.
void ld2(const VRegister& vt,
const VRegister& vt2,
int lane,
const MemOperand& src);
// Two-element single structure load to all lanes.
void ld2r(const VRegister& vt,
const VRegister& vt2,
const MemOperand& src);
// Three-element structure load.
void ld3(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
const MemOperand& src);
// Three-element single structure load to one lane.
void ld3(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
int lane,
const MemOperand& src);
// Three-element single structure load to all lanes.
void ld3r(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
const MemOperand& src);
// Four-element structure load.
void ld4(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
const VRegister& vt4,
const MemOperand& src);
// Four-element single structure load to one lane.
void ld4(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
const VRegister& vt4,
int lane,
const MemOperand& src);
// Four-element single structure load to all lanes.
void ld4r(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
const VRegister& vt4,
const MemOperand& src);
// Count leading sign bits.
void cls(const VRegister& vd,
const VRegister& vn);
// Count leading zero bits (vector).
void clz(const VRegister& vd,
const VRegister& vn);
// Population count per byte.
void cnt(const VRegister& vd,
const VRegister& vn);
// Reverse bit order.
void rbit(const VRegister& vd,
const VRegister& vn);
// Reverse elements in 16-bit halfwords.
void rev16(const VRegister& vd,
const VRegister& vn);
// Reverse elements in 32-bit words.
void rev32(const VRegister& vd,
const VRegister& vn);
// Reverse elements in 64-bit doublewords.
void rev64(const VRegister& vd,
const VRegister& vn);
// Unsigned reciprocal square root estimate.
void ursqrte(const VRegister& vd,
const VRegister& vn);
// Unsigned reciprocal estimate.
void urecpe(const VRegister& vd,
const VRegister& vn);
// Signed pairwise long add.
void saddlp(const VRegister& vd,
const VRegister& vn);
// Unsigned pairwise long add.
void uaddlp(const VRegister& vd,
const VRegister& vn);
// Signed pairwise long add and accumulate.
void sadalp(const VRegister& vd,
const VRegister& vn);
// Unsigned pairwise long add and accumulate.
void uadalp(const VRegister& vd,
const VRegister& vn);
// Shift left by immediate.
void shl(const VRegister& vd,
const VRegister& vn,
int shift);
// Signed saturating shift left by immediate.
void sqshl(const VRegister& vd,
const VRegister& vn,
int shift);
// Signed saturating shift left unsigned by immediate.
void sqshlu(const VRegister& vd,
const VRegister& vn,
int shift);
// Unsigned saturating shift left by immediate.
void uqshl(const VRegister& vd,
const VRegister& vn,
int shift);
// Signed shift left long by immediate.
void sshll(const VRegister& vd,
const VRegister& vn,
int shift);
// Signed shift left long by immediate (second part).
void sshll2(const VRegister& vd,
const VRegister& vn,
int shift);
// Signed extend long.
void sxtl(const VRegister& vd,
const VRegister& vn);
// Signed extend long (second part).
void sxtl2(const VRegister& vd,
const VRegister& vn);
// Unsigned shift left long by immediate.
void ushll(const VRegister& vd,
const VRegister& vn,
int shift);
// Unsigned shift left long by immediate (second part).
void ushll2(const VRegister& vd,
const VRegister& vn,
int shift);
// Shift left long by element size.
void shll(const VRegister& vd,
const VRegister& vn,
int shift);
// Shift left long by element size (second part).
void shll2(const VRegister& vd,
const VRegister& vn,
int shift);
// Unsigned extend long.
void uxtl(const VRegister& vd,
const VRegister& vn);
// Unsigned extend long (second part).
void uxtl2(const VRegister& vd,
const VRegister& vn);
// Shift left by immediate and insert.
void sli(const VRegister& vd,
const VRegister& vn,
int shift);
// Shift right by immediate and insert.
void sri(const VRegister& vd,
const VRegister& vn,
int shift);
// Signed maximum.
void smax(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed pairwise maximum.
void smaxp(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Add across vector.
void addv(const VRegister& vd,
const VRegister& vn);
// Signed add long across vector.
void saddlv(const VRegister& vd,
const VRegister& vn);
// Unsigned add long across vector.
void uaddlv(const VRegister& vd,
const VRegister& vn);
// FP maximum number across vector.
void fmaxnmv(const VRegister& vd,
const VRegister& vn);
// FP maximum across vector.
void fmaxv(const VRegister& vd,
const VRegister& vn);
// FP minimum number across vector.
void fminnmv(const VRegister& vd,
const VRegister& vn);
// FP minimum across vector.
void fminv(const VRegister& vd,
const VRegister& vn);
// Signed maximum across vector.
void smaxv(const VRegister& vd,
const VRegister& vn);
// Signed minimum.
void smin(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed minimum pairwise.
void sminp(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed minimum across vector.
void sminv(const VRegister& vd,
const VRegister& vn);
// One-element structure store from one register.
void st1(const VRegister& vt,
const MemOperand& src);
// One-element structure store from two registers.
void st1(const VRegister& vt,
const VRegister& vt2,
const MemOperand& src);
// One-element structure store from three registers.
void st1(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
const MemOperand& src);
// One-element structure store from four registers.
void st1(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
const VRegister& vt4,
const MemOperand& src);
// One-element single structure store from one lane.
void st1(const VRegister& vt,
int lane,
const MemOperand& src);
// Two-element structure store from two registers.
void st2(const VRegister& vt,
const VRegister& vt2,
const MemOperand& src);
// Two-element single structure store from two lanes.
void st2(const VRegister& vt,
const VRegister& vt2,
int lane,
const MemOperand& src);
// Three-element structure store from three registers.
void st3(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
const MemOperand& src);
// Three-element single structure store from three lanes.
void st3(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
int lane,
const MemOperand& src);
// Four-element structure store from four registers.
void st4(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
const VRegister& vt4,
const MemOperand& src);
// Four-element single structure store from four lanes.
void st4(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
const VRegister& vt4,
int lane,
const MemOperand& src);
// Unsigned add long.
void uaddl(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Unsigned add long (second part).
void uaddl2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Unsigned add wide.
void uaddw(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Unsigned add wide (second part).
void uaddw2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed add long.
void saddl(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed add long (second part).
void saddl2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed add wide.
void saddw(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed add wide (second part).
void saddw2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Unsigned subtract long.
void usubl(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Unsigned subtract long (second part).
void usubl2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Unsigned subtract wide.
void usubw(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Unsigned subtract wide (second part).
void usubw2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed subtract long.
void ssubl(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed subtract long (second part).
void ssubl2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed integer subtract wide.
void ssubw(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed integer subtract wide (second part).
void ssubw2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Unsigned maximum.
void umax(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Unsigned pairwise maximum.
void umaxp(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Unsigned maximum across vector.
void umaxv(const VRegister& vd,
const VRegister& vn);
// Unsigned minimum.
void umin(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Unsigned pairwise minimum.
void uminp(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Unsigned minimum across vector.
void uminv(const VRegister& vd,
const VRegister& vn);
// Transpose vectors (primary).
void trn1(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Transpose vectors (secondary).
void trn2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Unzip vectors (primary).
void uzp1(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Unzip vectors (secondary).
void uzp2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Zip vectors (primary).
void zip1(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Zip vectors (secondary).
void zip2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed shift right by immediate.
void sshr(const VRegister& vd,
const VRegister& vn,
int shift);
// Unsigned shift right by immediate.
void ushr(const VRegister& vd,
const VRegister& vn,
int shift);
// Signed rounding shift right by immediate.
void srshr(const VRegister& vd,
const VRegister& vn,
int shift);
// Unsigned rounding shift right by immediate.
void urshr(const VRegister& vd,
const VRegister& vn,
int shift);
// Signed shift right by immediate and accumulate.
void ssra(const VRegister& vd,
const VRegister& vn,
int shift);
// Unsigned shift right by immediate and accumulate.
void usra(const VRegister& vd,
const VRegister& vn,
int shift);
// Signed rounding shift right by immediate and accumulate.
void srsra(const VRegister& vd,
const VRegister& vn,
int shift);
// Unsigned rounding shift right by immediate and accumulate.
void ursra(const VRegister& vd,
const VRegister& vn,
int shift);
// Shift right narrow by immediate.
void shrn(const VRegister& vd,
const VRegister& vn,
int shift);
// Shift right narrow by immediate (second part).
void shrn2(const VRegister& vd,
const VRegister& vn,
int shift);
// Rounding shift right narrow by immediate.
void rshrn(const VRegister& vd,
const VRegister& vn,
int shift);
// Rounding shift right narrow by immediate (second part).
void rshrn2(const VRegister& vd,
const VRegister& vn,
int shift);
// Unsigned saturating shift right narrow by immediate.
void uqshrn(const VRegister& vd,
const VRegister& vn,
int shift);
// Unsigned saturating shift right narrow by immediate (second part).
void uqshrn2(const VRegister& vd,
const VRegister& vn,
int shift);
// Unsigned saturating rounding shift right narrow by immediate.
void uqrshrn(const VRegister& vd,
const VRegister& vn,
int shift);
// Unsigned saturating rounding shift right narrow by immediate (second part).
void uqrshrn2(const VRegister& vd,
const VRegister& vn,
int shift);
// Signed saturating shift right narrow by immediate.
void sqshrn(const VRegister& vd,
const VRegister& vn,
int shift);
// Signed saturating shift right narrow by immediate (second part).
void sqshrn2(const VRegister& vd,
const VRegister& vn,
int shift);
// Signed saturating rounded shift right narrow by immediate.
void sqrshrn(const VRegister& vd,
const VRegister& vn,
int shift);
// Signed saturating rounded shift right narrow by immediate (second part).
void sqrshrn2(const VRegister& vd,
const VRegister& vn,
int shift);
// Signed saturating shift right unsigned narrow by immediate.
void sqshrun(const VRegister& vd,
const VRegister& vn,
int shift);
// Signed saturating shift right unsigned narrow by immediate (second part).
void sqshrun2(const VRegister& vd,
const VRegister& vn,
int shift);
// Signed sat rounded shift right unsigned narrow by immediate.
void sqrshrun(const VRegister& vd,
const VRegister& vn,
int shift);
// Signed sat rounded shift right unsigned narrow by immediate (second part).
void sqrshrun2(const VRegister& vd,
const VRegister& vn,
int shift);
// FP reciprocal step.
void frecps(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// FP reciprocal estimate.
void frecpe(const VRegister& vd,
const VRegister& vn);
// FP reciprocal square root estimate.
void frsqrte(const VRegister& vd,
const VRegister& vn);
// FP reciprocal square root step.
void frsqrts(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed absolute difference and accumulate long.
void sabal(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed absolute difference and accumulate long (second part).
void sabal2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Unsigned absolute difference and accumulate long.
void uabal(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Unsigned absolute difference and accumulate long (second part).
void uabal2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed absolute difference long.
void sabdl(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed absolute difference long (second part).
void sabdl2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Unsigned absolute difference long.
void uabdl(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Unsigned absolute difference long (second part).
void uabdl2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Polynomial multiply long.
void pmull(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Polynomial multiply long (second part).
void pmull2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed long multiply-add.
void smlal(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed long multiply-add (second part).
void smlal2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Unsigned long multiply-add.
void umlal(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Unsigned long multiply-add (second part).
void umlal2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed long multiply-sub.
void smlsl(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed long multiply-sub (second part).
void smlsl2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Unsigned long multiply-sub.
void umlsl(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Unsigned long multiply-sub (second part).
void umlsl2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed long multiply.
void smull(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed long multiply (second part).
void smull2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed saturating doubling long multiply-add.
void sqdmlal(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed saturating doubling long multiply-add (second part).
void sqdmlal2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed saturating doubling long multiply-subtract.
void sqdmlsl(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed saturating doubling long multiply-subtract (second part).
void sqdmlsl2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed saturating doubling long multiply.
void sqdmull(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed saturating doubling long multiply (second part).
void sqdmull2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed saturating doubling multiply returning high half.
void sqdmulh(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed saturating rounding doubling multiply returning high half.
void sqrdmulh(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Signed saturating doubling multiply element returning high half.
void sqdmulh(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
int vm_index);
// Signed saturating rounding doubling multiply element returning high half.
void sqrdmulh(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
int vm_index);
// Unsigned long multiply long.
void umull(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Unsigned long multiply (second part).
void umull2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Add narrow returning high half.
void addhn(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Add narrow returning high half (second part).
void addhn2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Rounding add narrow returning high half.
void raddhn(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Rounding add narrow returning high half (second part).
void raddhn2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Subtract narrow returning high half.
void subhn(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Subtract narrow returning high half (second part).
void subhn2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Rounding subtract narrow returning high half.
void rsubhn(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// Rounding subtract narrow returning high half (second part).
void rsubhn2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// FP vector multiply accumulate.
void fmla(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// FP vector multiply subtract.
void fmls(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// FP vector multiply extended.
void fmulx(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// FP absolute greater than or equal.
void facge(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// FP absolute greater than.
void facgt(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// FP multiply by element.
void fmul(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
int vm_index);
// FP fused multiply-add to accumulator by element.
void fmla(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
int vm_index);
// FP fused multiply-sub from accumulator by element.
void fmls(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
int vm_index);
// FP multiply extended by element.
void fmulx(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
int vm_index);
// FP compare equal.
void fcmeq(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// FP greater than.
void fcmgt(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// FP greater than or equal.
void fcmge(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// FP compare equal to zero.
void fcmeq(const VRegister& vd,
const VRegister& vn,
double imm);
// FP greater than zero.
void fcmgt(const VRegister& vd,
const VRegister& vn,
double imm);
// FP greater than or equal to zero.
void fcmge(const VRegister& vd,
const VRegister& vn,
double imm);
// FP less than or equal to zero.
void fcmle(const VRegister& vd,
const VRegister& vn,
double imm);
// FP less than to zero.
void fcmlt(const VRegister& vd,
const VRegister& vn,
double imm);
// FP absolute difference.
void fabd(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// FP pairwise add vector.
void faddp(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// FP pairwise add scalar.
void faddp(const VRegister& vd,
const VRegister& vn);
// FP pairwise maximum vector.
void fmaxp(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// FP pairwise maximum scalar.
void fmaxp(const VRegister& vd,
const VRegister& vn);
// FP pairwise minimum vector.
void fminp(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// FP pairwise minimum scalar.
void fminp(const VRegister& vd,
const VRegister& vn);
// FP pairwise maximum number vector.
void fmaxnmp(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// FP pairwise maximum number scalar.
void fmaxnmp(const VRegister& vd,
const VRegister& vn);
// FP pairwise minimum number vector.
void fminnmp(const VRegister& vd,
const VRegister& vn,
const VRegister& vm);
// FP pairwise minimum number scalar.
void fminnmp(const VRegister& vd,
const VRegister& vn);
// Emit generic instructions.
// Emit raw instructions into the instruction stream.
void dci(Instr raw_inst) { Emit(raw_inst); }
// Emit 32 bits of data into the instruction stream.
void dc32(uint32_t data) {
VIXL_ASSERT(buffer_monitor_ > 0);
buffer_->Emit32(data);
}
// Emit 64 bits of data into the instruction stream.
void dc64(uint64_t data) {
VIXL_ASSERT(buffer_monitor_ > 0);
buffer_->Emit64(data);
}
// Copy a string into the instruction stream, including the terminating NULL
// character. The instruction pointer is then aligned correctly for
// subsequent instructions.
void EmitString(const char * string) {
VIXL_ASSERT(string != NULL);
VIXL_ASSERT(buffer_monitor_ > 0);
buffer_->EmitString(string);
buffer_->Align();
}
// Code generation helpers.
// Register encoding.
static Instr Rd(CPURegister rd) {
VIXL_ASSERT(rd.code() != kSPRegInternalCode);
return rd.code() << Rd_offset;
}
static Instr Rn(CPURegister rn) {
VIXL_ASSERT(rn.code() != kSPRegInternalCode);
return rn.code() << Rn_offset;
}
static Instr Rm(CPURegister rm) {
VIXL_ASSERT(rm.code() != kSPRegInternalCode);
return rm.code() << Rm_offset;
}
static Instr RmNot31(CPURegister rm) {
VIXL_ASSERT(rm.code() != kSPRegInternalCode);
VIXL_ASSERT(!rm.IsZero());
return Rm(rm);
}
static Instr Ra(CPURegister ra) {
VIXL_ASSERT(ra.code() != kSPRegInternalCode);
return ra.code() << Ra_offset;
}
static Instr Rt(CPURegister rt) {
VIXL_ASSERT(rt.code() != kSPRegInternalCode);
return rt.code() << Rt_offset;
}
static Instr Rt2(CPURegister rt2) {
VIXL_ASSERT(rt2.code() != kSPRegInternalCode);
return rt2.code() << Rt2_offset;
}
static Instr Rs(CPURegister rs) {
VIXL_ASSERT(rs.code() != kSPRegInternalCode);
return rs.code() << Rs_offset;
}
// These encoding functions allow the stack pointer to be encoded, and
// disallow the zero register.
static Instr RdSP(Register rd) {
VIXL_ASSERT(!rd.IsZero());
return (rd.code() & kRegCodeMask) << Rd_offset;
}
static Instr RnSP(Register rn) {
VIXL_ASSERT(!rn.IsZero());
return (rn.code() & kRegCodeMask) << Rn_offset;
}
// Flags encoding.
static Instr Flags(FlagsUpdate S) {
if (S == SetFlags) {
return 1 << FlagsUpdate_offset;
} else if (S == LeaveFlags) {
return 0 << FlagsUpdate_offset;
}
VIXL_UNREACHABLE();
return 0;
}
static Instr Cond(Condition cond) {
return cond << Condition_offset;
}
// PC-relative address encoding.
static Instr ImmPCRelAddress(int imm21) {
VIXL_ASSERT(is_int21(imm21));
Instr imm = static_cast<Instr>(truncate_to_int21(imm21));
Instr immhi = (imm >> ImmPCRelLo_width) << ImmPCRelHi_offset;
Instr immlo = imm << ImmPCRelLo_offset;
return (immhi & ImmPCRelHi_mask) | (immlo & ImmPCRelLo_mask);
}
// Branch encoding.
static Instr ImmUncondBranch(int imm26) {
VIXL_ASSERT(is_int26(imm26));
return truncate_to_int26(imm26) << ImmUncondBranch_offset;
}
static Instr ImmCondBranch(int imm19) {
VIXL_ASSERT(is_int19(imm19));
return truncate_to_int19(imm19) << ImmCondBranch_offset;
}
static Instr ImmCmpBranch(int imm19) {
VIXL_ASSERT(is_int19(imm19));
return truncate_to_int19(imm19) << ImmCmpBranch_offset;
}
static Instr ImmTestBranch(int imm14) {
VIXL_ASSERT(is_int14(imm14));
return truncate_to_int14(imm14) << ImmTestBranch_offset;
}
static Instr ImmTestBranchBit(unsigned bit_pos) {
VIXL_ASSERT(is_uint6(bit_pos));
// Subtract five from the shift offset, as we need bit 5 from bit_pos.
unsigned b5 = bit_pos << (ImmTestBranchBit5_offset - 5);
unsigned b40 = bit_pos << ImmTestBranchBit40_offset;
b5 &= ImmTestBranchBit5_mask;
b40 &= ImmTestBranchBit40_mask;
return b5 | b40;
}
// Data Processing encoding.
static Instr SF(Register rd) {
return rd.Is64Bits() ? SixtyFourBits : ThirtyTwoBits;
}
static Instr ImmAddSub(int imm) {
VIXL_ASSERT(IsImmAddSub(imm));
if (is_uint12(imm)) { // No shift required.
imm <<= ImmAddSub_offset;
} else {
imm = ((imm >> 12) << ImmAddSub_offset) | (1 << ShiftAddSub_offset);
}
return imm;
}
static Instr ImmS(unsigned imms, unsigned reg_size) {
VIXL_ASSERT(((reg_size == kXRegSize) && is_uint6(imms)) ||
((reg_size == kWRegSize) && is_uint5(imms)));
USE(reg_size);
return imms << ImmS_offset;
}
static Instr ImmR(unsigned immr, unsigned reg_size) {
VIXL_ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
((reg_size == kWRegSize) && is_uint5(immr)));
USE(reg_size);
VIXL_ASSERT(is_uint6(immr));
return immr << ImmR_offset;
}
static Instr ImmSetBits(unsigned imms, unsigned reg_size) {
VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
VIXL_ASSERT(is_uint6(imms));
VIXL_ASSERT((reg_size == kXRegSize) || is_uint6(imms + 3));
USE(reg_size);
return imms << ImmSetBits_offset;
}
static Instr ImmRotate(unsigned immr, unsigned reg_size) {
VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
VIXL_ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
((reg_size == kWRegSize) && is_uint5(immr)));
USE(reg_size);
return immr << ImmRotate_offset;
}
static Instr ImmLLiteral(int imm19) {
VIXL_ASSERT(is_int19(imm19));
return truncate_to_int19(imm19) << ImmLLiteral_offset;
}
static Instr BitN(unsigned bitn, unsigned reg_size) {
VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
VIXL_ASSERT((reg_size == kXRegSize) || (bitn == 0));
USE(reg_size);
return bitn << BitN_offset;
}
static Instr ShiftDP(Shift shift) {
VIXL_ASSERT(shift == LSL || shift == LSR || shift == ASR || shift == ROR);
return shift << ShiftDP_offset;
}
static Instr ImmDPShift(unsigned amount) {
VIXL_ASSERT(is_uint6(amount));
return amount << ImmDPShift_offset;
}
static Instr ExtendMode(Extend extend) {
return extend << ExtendMode_offset;
}
static Instr ImmExtendShift(unsigned left_shift) {
VIXL_ASSERT(left_shift <= 4);
return left_shift << ImmExtendShift_offset;
}
static Instr ImmCondCmp(unsigned imm) {
VIXL_ASSERT(is_uint5(imm));
return imm << ImmCondCmp_offset;
}
static Instr Nzcv(StatusFlags nzcv) {
return ((nzcv >> Flags_offset) & 0xf) << Nzcv_offset;
}
// MemOperand offset encoding.
static Instr ImmLSUnsigned(int imm12) {
VIXL_ASSERT(is_uint12(imm12));
return imm12 << ImmLSUnsigned_offset;
}
static Instr ImmLS(int imm9) {
VIXL_ASSERT(is_int9(imm9));
return truncate_to_int9(imm9) << ImmLS_offset;
}
static Instr ImmLSPair(int imm7, unsigned access_size) {
VIXL_ASSERT(((imm7 >> access_size) << access_size) == imm7);
int scaled_imm7 = imm7 >> access_size;
VIXL_ASSERT(is_int7(scaled_imm7));
return truncate_to_int7(scaled_imm7) << ImmLSPair_offset;
}
static Instr ImmShiftLS(unsigned shift_amount) {
VIXL_ASSERT(is_uint1(shift_amount));
return shift_amount << ImmShiftLS_offset;
}
static Instr ImmPrefetchOperation(int imm5) {
VIXL_ASSERT(is_uint5(imm5));
return imm5 << ImmPrefetchOperation_offset;
}
static Instr ImmException(int imm16) {
VIXL_ASSERT(is_uint16(imm16));
return imm16 << ImmException_offset;
}
static Instr ImmSystemRegister(int imm15) {
VIXL_ASSERT(is_uint15(imm15));
return imm15 << ImmSystemRegister_offset;
}
static Instr ImmHint(int imm7) {
VIXL_ASSERT(is_uint7(imm7));
return imm7 << ImmHint_offset;
}
static Instr CRm(int imm4) {
VIXL_ASSERT(is_uint4(imm4));
return imm4 << CRm_offset;
}
static Instr CRn(int imm4) {
VIXL_ASSERT(is_uint4(imm4));
return imm4 << CRn_offset;
}
static Instr SysOp(int imm14) {
VIXL_ASSERT(is_uint14(imm14));
return imm14 << SysOp_offset;
}
static Instr ImmSysOp1(int imm3) {
VIXL_ASSERT(is_uint3(imm3));
return imm3 << SysOp1_offset;
}
static Instr ImmSysOp2(int imm3) {
VIXL_ASSERT(is_uint3(imm3));
return imm3 << SysOp2_offset;
}
static Instr ImmBarrierDomain(int imm2) {
VIXL_ASSERT(is_uint2(imm2));
return imm2 << ImmBarrierDomain_offset;
}
static Instr ImmBarrierType(int imm2) {
VIXL_ASSERT(is_uint2(imm2));
return imm2 << ImmBarrierType_offset;
}
// Move immediates encoding.
static Instr ImmMoveWide(uint64_t imm) {
VIXL_ASSERT(is_uint16(imm));
return static_cast<Instr>(imm << ImmMoveWide_offset);
}
static Instr ShiftMoveWide(int64_t shift) {
VIXL_ASSERT(is_uint2(shift));
return static_cast<Instr>(shift << ShiftMoveWide_offset);
}
// FP Immediates.
static Instr ImmFP32(float imm);
static Instr ImmFP64(double imm);
// FP register type.
static Instr FPType(FPRegister fd) {
return fd.Is64Bits() ? FP64 : FP32;
}
static Instr FPScale(unsigned scale) {
VIXL_ASSERT(is_uint6(scale));
return scale << FPScale_offset;
}
// Immediate field checking helpers.
static bool IsImmAddSub(int64_t immediate);
static bool IsImmConditionalCompare(int64_t immediate);
static bool IsImmFP32(float imm);
static bool IsImmFP64(double imm);
static bool IsImmLogical(uint64_t value,
unsigned width,
unsigned* n = NULL,
unsigned* imm_s = NULL,
unsigned* imm_r = NULL);
static bool IsImmLSPair(int64_t offset, unsigned access_size);
static bool IsImmLSScaled(int64_t offset, unsigned access_size);
static bool IsImmLSUnscaled(int64_t offset);
static bool IsImmMovn(uint64_t imm, unsigned reg_size);
static bool IsImmMovz(uint64_t imm, unsigned reg_size);
// Instruction bits for vector format in data processing operations.
static Instr VFormat(VRegister vd) {
if (vd.Is64Bits()) {
switch (vd.lanes()) {
case 2: return NEON_2S;
case 4: return NEON_4H;
case 8: return NEON_8B;
default: return 0xffffffff;
}
} else {
VIXL_ASSERT(vd.Is128Bits());
switch (vd.lanes()) {
case 2: return NEON_2D;
case 4: return NEON_4S;
case 8: return NEON_8H;
case 16: return NEON_16B;
default: return 0xffffffff;
}
}
}
// Instruction bits for vector format in floating point data processing
// operations.
static Instr FPFormat(VRegister vd) {
if (vd.lanes() == 1) {
// Floating point scalar formats.
VIXL_ASSERT(vd.Is32Bits() || vd.Is64Bits());
return vd.Is64Bits() ? FP64 : FP32;
}
// Two lane floating point vector formats.
if (vd.lanes() == 2) {
VIXL_ASSERT(vd.Is64Bits() || vd.Is128Bits());
return vd.Is128Bits() ? NEON_FP_2D : NEON_FP_2S;
}
// Four lane floating point vector format.
VIXL_ASSERT((vd.lanes() == 4) && vd.Is128Bits());
return NEON_FP_4S;
}
// Instruction bits for vector format in load and store operations.
static Instr LSVFormat(VRegister vd) {
if (vd.Is64Bits()) {
switch (vd.lanes()) {
case 1: return LS_NEON_1D;
case 2: return LS_NEON_2S;
case 4: return LS_NEON_4H;
case 8: return LS_NEON_8B;
default: return 0xffffffff;
}
} else {
VIXL_ASSERT(vd.Is128Bits());
switch (vd.lanes()) {
case 2: return LS_NEON_2D;
case 4: return LS_NEON_4S;
case 8: return LS_NEON_8H;
case 16: return LS_NEON_16B;
default: return 0xffffffff;
}
}
}
// Instruction bits for scalar format in data processing operations.
static Instr SFormat(VRegister vd) {
VIXL_ASSERT(vd.lanes() == 1);
switch (vd.SizeInBytes()) {
case 1: return NEON_B;
case 2: return NEON_H;
case 4: return NEON_S;
case 8: return NEON_D;
default: return 0xffffffff;
}
}
static Instr ImmNEONHLM(int index, int num_bits) {
int h, l, m;
if (num_bits == 3) {
VIXL_ASSERT(is_uint3(index));
h = (index >> 2) & 1;
l = (index >> 1) & 1;
m = (index >> 0) & 1;
} else if (num_bits == 2) {
VIXL_ASSERT(is_uint2(index));
h = (index >> 1) & 1;
l = (index >> 0) & 1;
m = 0;
} else {
VIXL_ASSERT(is_uint1(index) && (num_bits == 1));
h = (index >> 0) & 1;
l = 0;
m = 0;
}
return (h << NEONH_offset) | (l << NEONL_offset) | (m << NEONM_offset);
}
static Instr ImmNEONExt(int imm4) {
VIXL_ASSERT(is_uint4(imm4));
return imm4 << ImmNEONExt_offset;
}
static Instr ImmNEON5(Instr format, int index) {
VIXL_ASSERT(is_uint4(index));
int s = LaneSizeInBytesLog2FromFormat(static_cast<VectorFormat>(format));
int imm5 = (index << (s + 1)) | (1 << s);
return imm5 << ImmNEON5_offset;
}
static Instr ImmNEON4(Instr format, int index) {
VIXL_ASSERT(is_uint4(index));
int s = LaneSizeInBytesLog2FromFormat(static_cast<VectorFormat>(format));
int imm4 = index << s;
return imm4 << ImmNEON4_offset;
}
static Instr ImmNEONabcdefgh(int imm8) {
VIXL_ASSERT(is_uint8(imm8));
Instr instr;
instr = ((imm8 >> 5) & 7) << ImmNEONabc_offset;
instr |= (imm8 & 0x1f) << ImmNEONdefgh_offset;
return instr;
}
static Instr NEONCmode(int cmode) {
VIXL_ASSERT(is_uint4(cmode));
return cmode << NEONCmode_offset;
}
static Instr NEONModImmOp(int op) {
VIXL_ASSERT(is_uint1(op));
return op << NEONModImmOp_offset;
}
// Size of the code generated since label to the current position.
size_t SizeOfCodeGeneratedSince(Label* label) const {
VIXL_ASSERT(label->IsBound());
return buffer_->OffsetFrom(label->location());
}
size_t SizeOfCodeGenerated() const {
return buffer_->CursorOffset();
}
size_t BufferCapacity() const { return buffer_->capacity(); }
size_t RemainingBufferSpace() const { return buffer_->RemainingBytes(); }
void EnsureSpaceFor(size_t amount) {
if (buffer_->RemainingBytes() < amount) {
size_t capacity = buffer_->capacity();
size_t size = buffer_->CursorOffset();
do {
// TODO(all): refine.
capacity *= 2;
} while ((capacity - size) < amount);
buffer_->Grow(capacity);
}
}
#ifdef VIXL_DEBUG
void AcquireBuffer() {
VIXL_ASSERT(buffer_monitor_ >= 0);
buffer_monitor_++;
}
void ReleaseBuffer() {
buffer_monitor_--;
VIXL_ASSERT(buffer_monitor_ >= 0);
}
#endif
PositionIndependentCodeOption pic() const {
return pic_;
}
bool AllowPageOffsetDependentCode() const {
return (pic() == PageOffsetDependentCode) ||
(pic() == PositionDependentCode);
}
static const Register& AppropriateZeroRegFor(const CPURegister& reg) {
return reg.Is64Bits() ? xzr : wzr;
}
protected:
void LoadStore(const CPURegister& rt,
const MemOperand& addr,
LoadStoreOp op,
LoadStoreScalingOption option = PreferScaledOffset);
void LoadStorePair(const CPURegister& rt,
const CPURegister& rt2,
const MemOperand& addr,
LoadStorePairOp op);
void LoadStoreStruct(const VRegister& vt,
const MemOperand& addr,
NEONLoadStoreMultiStructOp op);
void LoadStoreStruct1(const VRegister& vt,
int reg_count,
const MemOperand& addr);
void LoadStoreStructSingle(const VRegister& vt,
uint32_t lane,
const MemOperand& addr,
NEONLoadStoreSingleStructOp op);
void LoadStoreStructSingleAllLanes(const VRegister& vt,
const MemOperand& addr,
NEONLoadStoreSingleStructOp op);
void LoadStoreStructVerify(const VRegister& vt,
const MemOperand& addr,
Instr op);
void Prefetch(PrefetchOperation op,
const MemOperand& addr,
LoadStoreScalingOption option = PreferScaledOffset);
// TODO(all): The third parameter should be passed by reference but gcc 4.8.2
// reports a bogus uninitialised warning then.
void Logical(const Register& rd,
const Register& rn,
const Operand operand,
LogicalOp op);
void LogicalImmediate(const Register& rd,
const Register& rn,
unsigned n,
unsigned imm_s,
unsigned imm_r,
LogicalOp op);
void ConditionalCompare(const Register& rn,
const Operand& operand,
StatusFlags nzcv,
Condition cond,
ConditionalCompareOp op);
void AddSubWithCarry(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S,
AddSubWithCarryOp op);
// Functions for emulating operands not directly supported by the instruction
// set.
void EmitShift(const Register& rd,
const Register& rn,
Shift shift,
unsigned amount);
void EmitExtendShift(const Register& rd,
const Register& rn,
Extend extend,
unsigned left_shift);
void AddSub(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S,
AddSubOp op);
void NEONTable(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
NEONTableOp op);
// Find an appropriate LoadStoreOp or LoadStorePairOp for the specified
// registers. Only simple loads are supported; sign- and zero-extension (such
// as in LDPSW_x or LDRB_w) are not supported.
static LoadStoreOp LoadOpFor(const CPURegister& rt);
static LoadStorePairOp LoadPairOpFor(const CPURegister& rt,
const CPURegister& rt2);
static LoadStoreOp StoreOpFor(const CPURegister& rt);
static LoadStorePairOp StorePairOpFor(const CPURegister& rt,
const CPURegister& rt2);
static LoadStorePairNonTemporalOp LoadPairNonTemporalOpFor(
const CPURegister& rt, const CPURegister& rt2);
static LoadStorePairNonTemporalOp StorePairNonTemporalOpFor(
const CPURegister& rt, const CPURegister& rt2);
static LoadLiteralOp LoadLiteralOpFor(const CPURegister& rt);
private:
static uint32_t FP32ToImm8(float imm);
static uint32_t FP64ToImm8(double imm);
// Instruction helpers.
void MoveWide(const Register& rd,
uint64_t imm,
int shift,
MoveWideImmediateOp mov_op);
void DataProcShiftedRegister(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S,
Instr op);
void DataProcExtendedRegister(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S,
Instr op);
void LoadStorePairNonTemporal(const CPURegister& rt,
const CPURegister& rt2,
const MemOperand& addr,
LoadStorePairNonTemporalOp op);
void LoadLiteral(const CPURegister& rt, uint64_t imm, LoadLiteralOp op);
void ConditionalSelect(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond,
ConditionalSelectOp op);
void DataProcessing1Source(const Register& rd,
const Register& rn,
DataProcessing1SourceOp op);
void DataProcessing3Source(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra,
DataProcessing3SourceOp op);
void FPDataProcessing1Source(const VRegister& fd,
const VRegister& fn,
FPDataProcessing1SourceOp op);
void FPDataProcessing3Source(const VRegister& fd,
const VRegister& fn,
const VRegister& fm,
const VRegister& fa,
FPDataProcessing3SourceOp op);
void NEONAcrossLanesL(const VRegister& vd,
const VRegister& vn,
NEONAcrossLanesOp op);
void NEONAcrossLanes(const VRegister& vd,
const VRegister& vn,
NEONAcrossLanesOp op);
void NEONModifiedImmShiftLsl(const VRegister& vd,
const int imm8,
const int left_shift,
NEONModifiedImmediateOp op);
void NEONModifiedImmShiftMsl(const VRegister& vd,
const int imm8,
const int shift_amount,
NEONModifiedImmediateOp op);
void NEONFP2Same(const VRegister& vd,
const VRegister& vn,
Instr vop);
void NEON3Same(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
NEON3SameOp vop);
void NEONFP3Same(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
Instr op);
void NEON3DifferentL(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
NEON3DifferentOp vop);
void NEON3DifferentW(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
NEON3DifferentOp vop);
void NEON3DifferentHN(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
NEON3DifferentOp vop);
void NEONFP2RegMisc(const VRegister& vd,
const VRegister& vn,
NEON2RegMiscOp vop,
double value = 0.0);
void NEON2RegMisc(const VRegister& vd,
const VRegister& vn,
NEON2RegMiscOp vop,
int value = 0);
void NEONFP2RegMisc(const VRegister& vd,
const VRegister& vn,
Instr op);
void NEONAddlp(const VRegister& vd,
const VRegister& vn,
NEON2RegMiscOp op);
void NEONPerm(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
NEONPermOp op);
void NEONFPByElement(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
int vm_index,
NEONByIndexedElementOp op);
void NEONByElement(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
int vm_index,
NEONByIndexedElementOp op);
void NEONByElementL(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
int vm_index,
NEONByIndexedElementOp op);
void NEONShiftImmediate(const VRegister& vd,
const VRegister& vn,
NEONShiftImmediateOp op,
int immh_immb);
void NEONShiftLeftImmediate(const VRegister& vd,
const VRegister& vn,
int shift,
NEONShiftImmediateOp op);
void NEONShiftRightImmediate(const VRegister& vd,
const VRegister& vn,
int shift,
NEONShiftImmediateOp op);
void NEONShiftImmediateL(const VRegister& vd,
const VRegister& vn,
int shift,
NEONShiftImmediateOp op);
void NEONShiftImmediateN(const VRegister& vd,
const VRegister& vn,
int shift,
NEONShiftImmediateOp op);
void NEONXtn(const VRegister& vd,
const VRegister& vn,
NEON2RegMiscOp vop);
Instr LoadStoreStructAddrModeField(const MemOperand& addr);
// Encode the specified MemOperand for the specified access size and scaling
// preference.
Instr LoadStoreMemOperand(const MemOperand& addr,
unsigned access_size,
LoadStoreScalingOption option);
// Link the current (not-yet-emitted) instruction to the specified label, then
// return an offset to be encoded in the instruction. If the label is not yet
// bound, an offset of 0 is returned.
ptrdiff_t LinkAndGetByteOffsetTo(Label * label);
ptrdiff_t LinkAndGetInstructionOffsetTo(Label * label);
ptrdiff_t LinkAndGetPageOffsetTo(Label * label);
// A common implementation for the LinkAndGet<Type>OffsetTo helpers.
template <int element_shift>
ptrdiff_t LinkAndGetOffsetTo(Label* label);
// Literal load offset are in words (32-bit).
ptrdiff_t LinkAndGetWordOffsetTo(RawLiteral* literal);
// Emit the instruction in buffer_.
void Emit(Instr instruction) {
VIXL_STATIC_ASSERT(sizeof(instruction) == kInstructionSize);
VIXL_ASSERT(buffer_monitor_ > 0);
buffer_->Emit32(instruction);
}
// Buffer where the code is emitted.
CodeBuffer* buffer_;
PositionIndependentCodeOption pic_;
#ifdef VIXL_DEBUG
int64_t buffer_monitor_;
#endif
};
// All Assembler emits MUST acquire/release the underlying code buffer. The
// helper scope below will do so and optionally ensure the buffer is big enough
// to receive the emit. It is possible to request the scope not to perform any
// checks (kNoCheck) if for example it is known in advance the buffer size is
// adequate or there is some other size checking mechanism in place.
class CodeBufferCheckScope {
public:
// Tell whether or not the scope needs to ensure the associated CodeBuffer
// has enough space for the requested size.
enum CheckPolicy {
kNoCheck,
kCheck
};
// Tell whether or not the scope should assert the amount of code emitted
// within the scope is consistent with the requested amount.
enum AssertPolicy {
kNoAssert, // No assert required.
kExactSize, // The code emitted must be exactly size bytes.
kMaximumSize // The code emitted must be at most size bytes.
};
CodeBufferCheckScope(Assembler* assm,
size_t size,
CheckPolicy check_policy = kCheck,
AssertPolicy assert_policy = kMaximumSize)
: assm_(assm) {
if (check_policy == kCheck) assm->EnsureSpaceFor(size);
#ifdef VIXL_DEBUG
assm->bind(&start_);
size_ = size;
assert_policy_ = assert_policy;
assm->AcquireBuffer();
#else
USE(assert_policy);
#endif
}
// This is a shortcut for CodeBufferCheckScope(assm, 0, kNoCheck, kNoAssert).
explicit CodeBufferCheckScope(Assembler* assm) : assm_(assm) {
#ifdef VIXL_DEBUG
size_ = 0;
assert_policy_ = kNoAssert;
assm->AcquireBuffer();
#endif
}
~CodeBufferCheckScope() {
#ifdef VIXL_DEBUG
assm_->ReleaseBuffer();
switch (assert_policy_) {
case kNoAssert: break;
case kExactSize:
VIXL_ASSERT(assm_->SizeOfCodeGeneratedSince(&start_) == size_);
break;
case kMaximumSize:
VIXL_ASSERT(assm_->SizeOfCodeGeneratedSince(&start_) <= size_);
break;
default:
VIXL_UNREACHABLE();
}
#endif
}
protected:
Assembler* assm_;
#ifdef VIXL_DEBUG
Label start_;
size_t size_;
AssertPolicy assert_policy_;
#endif
};
template <typename T>
void Literal<T>::UpdateValue(T new_value, const Assembler* assembler) {
return UpdateValue(new_value, assembler->GetStartAddress<uint8_t*>());
}
template <typename T>
void Literal<T>::UpdateValue(T high64, T low64, const Assembler* assembler) {
return UpdateValue(high64, low64, assembler->GetStartAddress<uint8_t*>());
}
} // namespace vixl
#endif // VIXL_A64_ASSEMBLER_A64_H_