| /* |
| * QTest testcase for the MC146818 real-time clock |
| * |
| * Copyright IBM, Corp. 2012 |
| * |
| * Authors: |
| * Anthony Liguori <aliguori@us.ibm.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include "qemu/osdep.h" |
| |
| #include "libqtest-single.h" |
| #include "qemu/timer.h" |
| #include "hw/rtc/mc146818rtc.h" |
| #include "hw/rtc/mc146818rtc_regs.h" |
| |
| #define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768) |
| |
| static uint8_t base = 0x70; |
| |
| static int bcd2dec(int value) |
| { |
| return (((value >> 4) & 0x0F) * 10) + (value & 0x0F); |
| } |
| |
| static uint8_t cmos_read(uint8_t reg) |
| { |
| outb(base + 0, reg); |
| return inb(base + 1); |
| } |
| |
| static void cmos_write(uint8_t reg, uint8_t val) |
| { |
| outb(base + 0, reg); |
| outb(base + 1, val); |
| } |
| |
| static int tm_cmp(struct tm *lhs, struct tm *rhs) |
| { |
| time_t a, b; |
| struct tm d1, d2; |
| |
| memcpy(&d1, lhs, sizeof(d1)); |
| memcpy(&d2, rhs, sizeof(d2)); |
| |
| a = mktime(&d1); |
| b = mktime(&d2); |
| |
| if (a < b) { |
| return -1; |
| } else if (a > b) { |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| #if 0 |
| static void print_tm(struct tm *tm) |
| { |
| printf("%04d-%02d-%02d %02d:%02d:%02d\n", |
| tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday, |
| tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_gmtoff); |
| } |
| #endif |
| |
| static void cmos_get_date_time(struct tm *date) |
| { |
| int base_year = 2000, hour_offset; |
| int sec, min, hour, mday, mon, year; |
| time_t ts; |
| struct tm dummy; |
| |
| sec = cmos_read(RTC_SECONDS); |
| min = cmos_read(RTC_MINUTES); |
| hour = cmos_read(RTC_HOURS); |
| mday = cmos_read(RTC_DAY_OF_MONTH); |
| mon = cmos_read(RTC_MONTH); |
| year = cmos_read(RTC_YEAR); |
| |
| if ((cmos_read(RTC_REG_B) & REG_B_DM) == 0) { |
| sec = bcd2dec(sec); |
| min = bcd2dec(min); |
| hour = bcd2dec(hour); |
| mday = bcd2dec(mday); |
| mon = bcd2dec(mon); |
| year = bcd2dec(year); |
| hour_offset = 80; |
| } else { |
| hour_offset = 0x80; |
| } |
| |
| if ((cmos_read(0x0B) & REG_B_24H) == 0) { |
| if (hour >= hour_offset) { |
| hour -= hour_offset; |
| hour += 12; |
| } |
| } |
| |
| ts = time(NULL); |
| localtime_r(&ts, &dummy); |
| |
| date->tm_isdst = dummy.tm_isdst; |
| date->tm_sec = sec; |
| date->tm_min = min; |
| date->tm_hour = hour; |
| date->tm_mday = mday; |
| date->tm_mon = mon - 1; |
| date->tm_year = base_year + year - 1900; |
| #ifndef __sun__ |
| date->tm_gmtoff = 0; |
| #endif |
| |
| ts = mktime(date); |
| } |
| |
| static void check_time(int wiggle) |
| { |
| struct tm start, date[4], end; |
| struct tm *datep; |
| time_t ts; |
| |
| /* |
| * This check assumes a few things. First, we cannot guarantee that we get |
| * a consistent reading from the wall clock because we may hit an edge of |
| * the clock while reading. To work around this, we read four clock readings |
| * such that at least two of them should match. We need to assume that one |
| * reading is corrupt so we need four readings to ensure that we have at |
| * least two consecutive identical readings |
| * |
| * It's also possible that we'll cross an edge reading the host clock so |
| * simply check to make sure that the clock reading is within the period of |
| * when we expect it to be. |
| */ |
| |
| ts = time(NULL); |
| gmtime_r(&ts, &start); |
| |
| cmos_get_date_time(&date[0]); |
| cmos_get_date_time(&date[1]); |
| cmos_get_date_time(&date[2]); |
| cmos_get_date_time(&date[3]); |
| |
| ts = time(NULL); |
| gmtime_r(&ts, &end); |
| |
| if (tm_cmp(&date[0], &date[1]) == 0) { |
| datep = &date[0]; |
| } else if (tm_cmp(&date[1], &date[2]) == 0) { |
| datep = &date[1]; |
| } else if (tm_cmp(&date[2], &date[3]) == 0) { |
| datep = &date[2]; |
| } else { |
| g_assert_not_reached(); |
| } |
| |
| if (!(tm_cmp(&start, datep) <= 0 && tm_cmp(datep, &end) <= 0)) { |
| long t, s; |
| |
| start.tm_isdst = datep->tm_isdst; |
| |
| t = (long)mktime(datep); |
| s = (long)mktime(&start); |
| if (t < s) { |
| g_test_message("RTC is %ld second(s) behind wall-clock", (s - t)); |
| } else { |
| g_test_message("RTC is %ld second(s) ahead of wall-clock", (t - s)); |
| } |
| |
| g_assert_cmpint(ABS(t - s), <=, wiggle); |
| } |
| } |
| |
| static int wiggle = 2; |
| |
| static void set_year_20xx(void) |
| { |
| /* Set BCD mode */ |
| cmos_write(RTC_REG_B, REG_B_24H); |
| cmos_write(RTC_REG_A, 0x76); |
| cmos_write(RTC_YEAR, 0x11); |
| cmos_write(RTC_CENTURY, 0x20); |
| cmos_write(RTC_MONTH, 0x02); |
| cmos_write(RTC_DAY_OF_MONTH, 0x02); |
| cmos_write(RTC_HOURS, 0x02); |
| cmos_write(RTC_MINUTES, 0x04); |
| cmos_write(RTC_SECONDS, 0x58); |
| cmos_write(RTC_REG_A, 0x26); |
| |
| g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02); |
| g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04); |
| g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58); |
| g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02); |
| g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02); |
| g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11); |
| g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20); |
| |
| if (sizeof(time_t) == 4) { |
| return; |
| } |
| |
| /* Set a date in 2080 to ensure there is no year-2038 overflow. */ |
| cmos_write(RTC_REG_A, 0x76); |
| cmos_write(RTC_YEAR, 0x80); |
| cmos_write(RTC_REG_A, 0x26); |
| |
| g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02); |
| g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04); |
| g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58); |
| g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02); |
| g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02); |
| g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80); |
| g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20); |
| |
| cmos_write(RTC_REG_A, 0x76); |
| cmos_write(RTC_YEAR, 0x11); |
| cmos_write(RTC_REG_A, 0x26); |
| |
| g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02); |
| g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04); |
| g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58); |
| g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02); |
| g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02); |
| g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11); |
| g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20); |
| } |
| |
| static void set_year_1980(void) |
| { |
| /* Set BCD mode */ |
| cmos_write(RTC_REG_B, REG_B_24H); |
| cmos_write(RTC_REG_A, 0x76); |
| cmos_write(RTC_YEAR, 0x80); |
| cmos_write(RTC_CENTURY, 0x19); |
| cmos_write(RTC_MONTH, 0x02); |
| cmos_write(RTC_DAY_OF_MONTH, 0x02); |
| cmos_write(RTC_HOURS, 0x02); |
| cmos_write(RTC_MINUTES, 0x04); |
| cmos_write(RTC_SECONDS, 0x58); |
| cmos_write(RTC_REG_A, 0x26); |
| |
| g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02); |
| g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04); |
| g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58); |
| g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02); |
| g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02); |
| g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80); |
| g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x19); |
| } |
| |
| static void bcd_check_time(void) |
| { |
| /* Set BCD mode */ |
| cmos_write(RTC_REG_B, REG_B_24H); |
| check_time(wiggle); |
| } |
| |
| static void dec_check_time(void) |
| { |
| /* Set DEC mode */ |
| cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM); |
| check_time(wiggle); |
| } |
| |
| static void alarm_time(void) |
| { |
| struct tm now; |
| time_t ts; |
| int i; |
| |
| ts = time(NULL); |
| gmtime_r(&ts, &now); |
| |
| /* set DEC mode */ |
| cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM); |
| |
| g_assert(!get_irq(RTC_ISA_IRQ)); |
| cmos_read(RTC_REG_C); |
| |
| now.tm_sec = (now.tm_sec + 2) % 60; |
| cmos_write(RTC_SECONDS_ALARM, now.tm_sec); |
| cmos_write(RTC_MINUTES_ALARM, RTC_ALARM_DONT_CARE); |
| cmos_write(RTC_HOURS_ALARM, RTC_ALARM_DONT_CARE); |
| cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_AIE); |
| |
| for (i = 0; i < 2 + wiggle; i++) { |
| if (get_irq(RTC_ISA_IRQ)) { |
| break; |
| } |
| |
| clock_step(1000000000); |
| } |
| |
| g_assert(get_irq(RTC_ISA_IRQ)); |
| g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0); |
| g_assert(cmos_read(RTC_REG_C) == 0); |
| } |
| |
| static void set_time_regs(int h, int m, int s) |
| { |
| cmos_write(RTC_HOURS, h); |
| cmos_write(RTC_MINUTES, m); |
| cmos_write(RTC_SECONDS, s); |
| } |
| |
| static void set_time(int mode, int h, int m, int s) |
| { |
| cmos_write(RTC_REG_B, mode); |
| cmos_write(RTC_REG_A, 0x76); |
| set_time_regs(h, m, s); |
| cmos_write(RTC_REG_A, 0x26); |
| } |
| |
| static void set_datetime_bcd(int h, int min, int s, int d, int m, int y) |
| { |
| cmos_write(RTC_HOURS, h); |
| cmos_write(RTC_MINUTES, min); |
| cmos_write(RTC_SECONDS, s); |
| cmos_write(RTC_YEAR, y & 0xFF); |
| cmos_write(RTC_CENTURY, y >> 8); |
| cmos_write(RTC_MONTH, m); |
| cmos_write(RTC_DAY_OF_MONTH, d); |
| } |
| |
| static void set_datetime_dec(int h, int min, int s, int d, int m, int y) |
| { |
| cmos_write(RTC_HOURS, h); |
| cmos_write(RTC_MINUTES, min); |
| cmos_write(RTC_SECONDS, s); |
| cmos_write(RTC_YEAR, y % 100); |
| cmos_write(RTC_CENTURY, y / 100); |
| cmos_write(RTC_MONTH, m); |
| cmos_write(RTC_DAY_OF_MONTH, d); |
| } |
| |
| static void set_datetime(int mode, int h, int min, int s, int d, int m, int y) |
| { |
| cmos_write(RTC_REG_B, mode); |
| |
| cmos_write(RTC_REG_A, 0x76); |
| if (mode & REG_B_DM) { |
| set_datetime_dec(h, min, s, d, m, y); |
| } else { |
| set_datetime_bcd(h, min, s, d, m, y); |
| } |
| cmos_write(RTC_REG_A, 0x26); |
| } |
| |
| #define assert_time(h, m, s) \ |
| do { \ |
| g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \ |
| g_assert_cmpint(cmos_read(RTC_MINUTES), ==, m); \ |
| g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \ |
| } while(0) |
| |
| #define assert_datetime_bcd(h, min, s, d, m, y) \ |
| do { \ |
| g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \ |
| g_assert_cmpint(cmos_read(RTC_MINUTES), ==, min); \ |
| g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \ |
| g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, d); \ |
| g_assert_cmpint(cmos_read(RTC_MONTH), ==, m); \ |
| g_assert_cmpint(cmos_read(RTC_YEAR), ==, (y & 0xFF)); \ |
| g_assert_cmpint(cmos_read(RTC_CENTURY), ==, (y >> 8)); \ |
| } while(0) |
| |
| static void basic_12h_bcd(void) |
| { |
| /* set BCD 12 hour mode */ |
| set_time(0, 0x81, 0x59, 0x00); |
| clock_step(1000000000LL); |
| assert_time(0x81, 0x59, 0x01); |
| clock_step(59000000000LL); |
| assert_time(0x82, 0x00, 0x00); |
| |
| /* test BCD wraparound */ |
| set_time(0, 0x09, 0x59, 0x59); |
| clock_step(60000000000LL); |
| assert_time(0x10, 0x00, 0x59); |
| |
| /* 12 AM -> 1 AM */ |
| set_time(0, 0x12, 0x59, 0x59); |
| clock_step(1000000000LL); |
| assert_time(0x01, 0x00, 0x00); |
| |
| /* 12 PM -> 1 PM */ |
| set_time(0, 0x92, 0x59, 0x59); |
| clock_step(1000000000LL); |
| assert_time(0x81, 0x00, 0x00); |
| |
| /* 11 AM -> 12 PM */ |
| set_time(0, 0x11, 0x59, 0x59); |
| clock_step(1000000000LL); |
| assert_time(0x92, 0x00, 0x00); |
| /* TODO: test day wraparound */ |
| |
| /* 11 PM -> 12 AM */ |
| set_time(0, 0x91, 0x59, 0x59); |
| clock_step(1000000000LL); |
| assert_time(0x12, 0x00, 0x00); |
| /* TODO: test day wraparound */ |
| } |
| |
| static void basic_12h_dec(void) |
| { |
| /* set decimal 12 hour mode */ |
| set_time(REG_B_DM, 0x81, 59, 0); |
| clock_step(1000000000LL); |
| assert_time(0x81, 59, 1); |
| clock_step(59000000000LL); |
| assert_time(0x82, 0, 0); |
| |
| /* 12 PM -> 1 PM */ |
| set_time(REG_B_DM, 0x8c, 59, 59); |
| clock_step(1000000000LL); |
| assert_time(0x81, 0, 0); |
| |
| /* 12 AM -> 1 AM */ |
| set_time(REG_B_DM, 0x0c, 59, 59); |
| clock_step(1000000000LL); |
| assert_time(0x01, 0, 0); |
| |
| /* 11 AM -> 12 PM */ |
| set_time(REG_B_DM, 0x0b, 59, 59); |
| clock_step(1000000000LL); |
| assert_time(0x8c, 0, 0); |
| |
| /* 11 PM -> 12 AM */ |
| set_time(REG_B_DM, 0x8b, 59, 59); |
| clock_step(1000000000LL); |
| assert_time(0x0c, 0, 0); |
| /* TODO: test day wraparound */ |
| } |
| |
| static void basic_24h_bcd(void) |
| { |
| /* set BCD 24 hour mode */ |
| set_time(REG_B_24H, 0x09, 0x59, 0x00); |
| clock_step(1000000000LL); |
| assert_time(0x09, 0x59, 0x01); |
| clock_step(59000000000LL); |
| assert_time(0x10, 0x00, 0x00); |
| |
| /* test BCD wraparound */ |
| set_time(REG_B_24H, 0x09, 0x59, 0x00); |
| clock_step(60000000000LL); |
| assert_time(0x10, 0x00, 0x00); |
| |
| /* TODO: test day wraparound */ |
| set_time(REG_B_24H, 0x23, 0x59, 0x00); |
| clock_step(60000000000LL); |
| assert_time(0x00, 0x00, 0x00); |
| } |
| |
| static void basic_24h_dec(void) |
| { |
| /* set decimal 24 hour mode */ |
| set_time(REG_B_24H | REG_B_DM, 9, 59, 0); |
| clock_step(1000000000LL); |
| assert_time(9, 59, 1); |
| clock_step(59000000000LL); |
| assert_time(10, 0, 0); |
| |
| /* test BCD wraparound */ |
| set_time(REG_B_24H | REG_B_DM, 9, 59, 0); |
| clock_step(60000000000LL); |
| assert_time(10, 0, 0); |
| |
| /* TODO: test day wraparound */ |
| set_time(REG_B_24H | REG_B_DM, 23, 59, 0); |
| clock_step(60000000000LL); |
| assert_time(0, 0, 0); |
| } |
| |
| static void am_pm_alarm(void) |
| { |
| cmos_write(RTC_MINUTES_ALARM, 0xC0); |
| cmos_write(RTC_SECONDS_ALARM, 0xC0); |
| |
| /* set BCD 12 hour mode */ |
| cmos_write(RTC_REG_B, 0); |
| |
| /* Set time and alarm hour. */ |
| cmos_write(RTC_REG_A, 0x76); |
| cmos_write(RTC_HOURS_ALARM, 0x82); |
| cmos_write(RTC_HOURS, 0x81); |
| cmos_write(RTC_MINUTES, 0x59); |
| cmos_write(RTC_SECONDS, 0x00); |
| cmos_read(RTC_REG_C); |
| cmos_write(RTC_REG_A, 0x26); |
| |
| /* Check that alarm triggers when AM/PM is set. */ |
| clock_step(60000000000LL); |
| g_assert(cmos_read(RTC_HOURS) == 0x82); |
| g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0); |
| |
| /* |
| * Each of the following two tests takes over 60 seconds due to the time |
| * needed to report the PIT interrupts. Unfortunately, our PIT device |
| * model keeps counting even when GATE=0, so we cannot simply disable |
| * it in main(). |
| */ |
| if (g_test_quick()) { |
| return; |
| } |
| |
| /* set DEC 12 hour mode */ |
| cmos_write(RTC_REG_B, REG_B_DM); |
| |
| /* Set time and alarm hour. */ |
| cmos_write(RTC_REG_A, 0x76); |
| cmos_write(RTC_HOURS_ALARM, 0x82); |
| cmos_write(RTC_HOURS, 3); |
| cmos_write(RTC_MINUTES, 0); |
| cmos_write(RTC_SECONDS, 0); |
| cmos_read(RTC_REG_C); |
| cmos_write(RTC_REG_A, 0x26); |
| |
| /* Check that alarm triggers. */ |
| clock_step(3600 * 11 * 1000000000LL); |
| g_assert(cmos_read(RTC_HOURS) == 0x82); |
| g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0); |
| |
| /* Same as above, with inverted HOURS and HOURS_ALARM. */ |
| cmos_write(RTC_REG_A, 0x76); |
| cmos_write(RTC_HOURS_ALARM, 2); |
| cmos_write(RTC_HOURS, 3); |
| cmos_write(RTC_MINUTES, 0); |
| cmos_write(RTC_SECONDS, 0); |
| cmos_read(RTC_REG_C); |
| cmos_write(RTC_REG_A, 0x26); |
| |
| /* Check that alarm does not trigger if hours differ only by AM/PM. */ |
| clock_step(3600 * 11 * 1000000000LL); |
| g_assert(cmos_read(RTC_HOURS) == 0x82); |
| g_assert((cmos_read(RTC_REG_C) & REG_C_AF) == 0); |
| } |
| |
| /* success if no crash or abort */ |
| static void fuzz_registers(void) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < 1000; i++) { |
| uint8_t reg, val; |
| |
| reg = (uint8_t)g_test_rand_int_range(0, 16); |
| val = (uint8_t)g_test_rand_int_range(0, 256); |
| |
| cmos_write(reg, val); |
| cmos_read(reg); |
| } |
| } |
| |
| static void register_b_set_flag(void) |
| { |
| if (cmos_read(RTC_REG_A) & REG_A_UIP) { |
| clock_step(UIP_HOLD_LENGTH + NANOSECONDS_PER_SECOND / 5); |
| } |
| g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0); |
| |
| /* Enable binary-coded decimal (BCD) mode and SET flag in Register B*/ |
| cmos_write(RTC_REG_B, REG_B_24H | REG_B_SET); |
| |
| set_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011); |
| |
| assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011); |
| |
| /* Since SET flag is still enabled, time does not advance. */ |
| clock_step(1000000000LL); |
| assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011); |
| |
| /* Disable SET flag in Register B */ |
| cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) & ~REG_B_SET); |
| |
| assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011); |
| |
| /* Since SET flag is disabled, the clock now advances. */ |
| clock_step(1000000000LL); |
| assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011); |
| } |
| |
| static void divider_reset(void) |
| { |
| /* Enable binary-coded decimal (BCD) mode in Register B*/ |
| cmos_write(RTC_REG_B, REG_B_24H); |
| |
| /* Enter divider reset */ |
| cmos_write(RTC_REG_A, 0x76); |
| set_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011); |
| |
| assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011); |
| |
| /* Since divider reset flag is still enabled, these are equality checks. */ |
| clock_step(1000000000LL); |
| assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011); |
| |
| /* The first update ends 500 ms after divider reset */ |
| cmos_write(RTC_REG_A, 0x26); |
| clock_step(500000000LL - UIP_HOLD_LENGTH - 1); |
| g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0); |
| assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011); |
| |
| clock_step(1); |
| g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, !=, 0); |
| clock_step(UIP_HOLD_LENGTH); |
| g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0); |
| |
| assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011); |
| } |
| |
| static void uip_stuck(void) |
| { |
| set_datetime(REG_B_24H, 0x02, 0x04, 0x58, 0x02, 0x02, 0x2011); |
| |
| /* The first update ends 500 ms after divider reset */ |
| (void)cmos_read(RTC_REG_C); |
| clock_step(500000000LL); |
| g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0); |
| assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011); |
| |
| /* UF is now set. */ |
| cmos_write(RTC_HOURS_ALARM, 0x02); |
| cmos_write(RTC_MINUTES_ALARM, 0xC0); |
| cmos_write(RTC_SECONDS_ALARM, 0xC0); |
| |
| /* Because the alarm will fire soon, reading register A will latch UIP. */ |
| clock_step(1000000000LL - UIP_HOLD_LENGTH / 2); |
| g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, !=, 0); |
| |
| /* Move the alarm far away. This must not cause UIP to remain stuck! */ |
| cmos_write(RTC_HOURS_ALARM, 0x03); |
| clock_step(UIP_HOLD_LENGTH); |
| g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0); |
| } |
| |
| #define RTC_PERIOD_CODE1 13 /* 8 Hz */ |
| #define RTC_PERIOD_CODE2 15 /* 2 Hz */ |
| |
| #define RTC_PERIOD_TEST_NR 50 |
| |
| static uint64_t wait_periodic_interrupt(uint64_t real_time) |
| { |
| while (!get_irq(RTC_ISA_IRQ)) { |
| real_time = clock_step_next(); |
| } |
| |
| g_assert((cmos_read(RTC_REG_C) & REG_C_PF) != 0); |
| return real_time; |
| } |
| |
| static void periodic_timer(void) |
| { |
| int i; |
| uint64_t period_clocks, period_time, start_time, real_time; |
| |
| /* disable all interrupts. */ |
| cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) & |
| ~(REG_B_PIE | REG_B_AIE | REG_B_UIE)); |
| cmos_write(RTC_REG_A, RTC_PERIOD_CODE1); |
| /* enable periodic interrupt after properly configure the period. */ |
| cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_PIE); |
| |
| start_time = real_time = clock_step_next(); |
| |
| for (i = 0; i < RTC_PERIOD_TEST_NR; i++) { |
| cmos_write(RTC_REG_A, RTC_PERIOD_CODE1); |
| real_time = wait_periodic_interrupt(real_time); |
| cmos_write(RTC_REG_A, RTC_PERIOD_CODE2); |
| real_time = wait_periodic_interrupt(real_time); |
| } |
| |
| period_clocks = periodic_period_to_clock(RTC_PERIOD_CODE1) + |
| periodic_period_to_clock(RTC_PERIOD_CODE2); |
| period_clocks *= RTC_PERIOD_TEST_NR; |
| period_time = periodic_clock_to_ns(period_clocks); |
| |
| real_time -= start_time; |
| g_assert_cmpint(ABS((int64_t)(real_time - period_time)), <=, |
| NANOSECONDS_PER_SECOND * 0.5); |
| } |
| |
| int main(int argc, char **argv) |
| { |
| QTestState *s = NULL; |
| int ret; |
| |
| g_test_init(&argc, &argv, NULL); |
| |
| s = qtest_start("-rtc clock=vm"); |
| qtest_irq_intercept_in(s, "ioapic"); |
| |
| qtest_add_func("/rtc/check-time/bcd", bcd_check_time); |
| qtest_add_func("/rtc/check-time/dec", dec_check_time); |
| qtest_add_func("/rtc/alarm/interrupt", alarm_time); |
| qtest_add_func("/rtc/alarm/am-pm", am_pm_alarm); |
| qtest_add_func("/rtc/basic/dec-24h", basic_24h_dec); |
| qtest_add_func("/rtc/basic/bcd-24h", basic_24h_bcd); |
| qtest_add_func("/rtc/basic/dec-12h", basic_12h_dec); |
| qtest_add_func("/rtc/basic/bcd-12h", basic_12h_bcd); |
| qtest_add_func("/rtc/set-year/20xx", set_year_20xx); |
| qtest_add_func("/rtc/set-year/1980", set_year_1980); |
| qtest_add_func("/rtc/update/register_b_set_flag", register_b_set_flag); |
| qtest_add_func("/rtc/update/divider-reset", divider_reset); |
| qtest_add_func("/rtc/update/uip-stuck", uip_stuck); |
| qtest_add_func("/rtc/misc/fuzz-registers", fuzz_registers); |
| qtest_add_func("/rtc/periodic/interrupt", periodic_timer); |
| |
| ret = g_test_run(); |
| |
| if (s) { |
| qtest_quit(s); |
| } |
| |
| return ret; |
| } |