| /* |
| * RISC-V CPU helpers for qemu. |
| * |
| * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu |
| * Copyright (c) 2017-2018 SiFive, Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2 or later, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program. If not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/log.h" |
| #include "qemu/main-loop.h" |
| #include "cpu.h" |
| #include "internals.h" |
| #include "pmu.h" |
| #include "exec/exec-all.h" |
| #include "instmap.h" |
| #include "tcg/tcg-op.h" |
| #include "trace.h" |
| #include "semihosting/common-semi.h" |
| #include "sysemu/cpu-timers.h" |
| #include "cpu_bits.h" |
| #include "debug.h" |
| #include "tcg/oversized-guest.h" |
| |
| int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch) |
| { |
| #ifdef CONFIG_USER_ONLY |
| return 0; |
| #else |
| bool virt = env->virt_enabled; |
| int mode = env->priv; |
| |
| /* All priv -> mmu_idx mapping are here */ |
| if (!ifetch) { |
| uint64_t status = env->mstatus; |
| |
| if (mode == PRV_M && get_field(status, MSTATUS_MPRV)) { |
| mode = get_field(env->mstatus, MSTATUS_MPP); |
| virt = get_field(env->mstatus, MSTATUS_MPV) && |
| (mode != PRV_M); |
| if (virt) { |
| status = env->vsstatus; |
| } |
| } |
| if (mode == PRV_S && get_field(status, MSTATUS_SUM)) { |
| mode = MMUIdx_S_SUM; |
| } |
| } |
| |
| return mode | (virt ? MMU_2STAGE_BIT : 0); |
| #endif |
| } |
| |
| void cpu_get_tb_cpu_state(CPURISCVState *env, vaddr *pc, |
| uint64_t *cs_base, uint32_t *pflags) |
| { |
| RISCVCPU *cpu = env_archcpu(env); |
| RISCVExtStatus fs, vs; |
| uint32_t flags = 0; |
| |
| *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc; |
| *cs_base = 0; |
| |
| if (cpu->cfg.ext_zve32f) { |
| /* |
| * If env->vl equals to VLMAX, we can use generic vector operation |
| * expanders (GVEC) to accerlate the vector operations. |
| * However, as LMUL could be a fractional number. The maximum |
| * vector size can be operated might be less than 8 bytes, |
| * which is not supported by GVEC. So we set vl_eq_vlmax flag to true |
| * only when maxsz >= 8 bytes. |
| */ |
| uint32_t vlmax = vext_get_vlmax(cpu, env->vtype); |
| uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW); |
| uint32_t maxsz = vlmax << sew; |
| bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) && |
| (maxsz >= 8); |
| flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill); |
| flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew); |
| flags = FIELD_DP32(flags, TB_FLAGS, LMUL, |
| FIELD_EX64(env->vtype, VTYPE, VLMUL)); |
| flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax); |
| flags = FIELD_DP32(flags, TB_FLAGS, VTA, |
| FIELD_EX64(env->vtype, VTYPE, VTA)); |
| flags = FIELD_DP32(flags, TB_FLAGS, VMA, |
| FIELD_EX64(env->vtype, VTYPE, VMA)); |
| flags = FIELD_DP32(flags, TB_FLAGS, VSTART_EQ_ZERO, env->vstart == 0); |
| } else { |
| flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1); |
| } |
| |
| #ifdef CONFIG_USER_ONLY |
| fs = EXT_STATUS_DIRTY; |
| vs = EXT_STATUS_DIRTY; |
| #else |
| flags = FIELD_DP32(flags, TB_FLAGS, PRIV, env->priv); |
| |
| flags |= cpu_mmu_index(env, 0); |
| fs = get_field(env->mstatus, MSTATUS_FS); |
| vs = get_field(env->mstatus, MSTATUS_VS); |
| |
| if (env->virt_enabled) { |
| flags = FIELD_DP32(flags, TB_FLAGS, VIRT_ENABLED, 1); |
| /* |
| * Merge DISABLED and !DIRTY states using MIN. |
| * We will set both fields when dirtying. |
| */ |
| fs = MIN(fs, get_field(env->mstatus_hs, MSTATUS_FS)); |
| vs = MIN(vs, get_field(env->mstatus_hs, MSTATUS_VS)); |
| } |
| |
| /* With Zfinx, floating point is enabled/disabled by Smstateen. */ |
| if (!riscv_has_ext(env, RVF)) { |
| fs = (smstateen_acc_ok(env, 0, SMSTATEEN0_FCSR) == RISCV_EXCP_NONE) |
| ? EXT_STATUS_DIRTY : EXT_STATUS_DISABLED; |
| } |
| |
| if (cpu->cfg.debug && !icount_enabled()) { |
| flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER, env->itrigger_enabled); |
| } |
| #endif |
| |
| flags = FIELD_DP32(flags, TB_FLAGS, FS, fs); |
| flags = FIELD_DP32(flags, TB_FLAGS, VS, vs); |
| flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl); |
| flags = FIELD_DP32(flags, TB_FLAGS, AXL, cpu_address_xl(env)); |
| if (env->cur_pmmask != 0) { |
| flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1); |
| } |
| if (env->cur_pmbase != 0) { |
| flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1); |
| } |
| |
| *pflags = flags; |
| } |
| |
| void riscv_cpu_update_mask(CPURISCVState *env) |
| { |
| target_ulong mask = 0, base = 0; |
| RISCVMXL xl = env->xl; |
| /* |
| * TODO: Current RVJ spec does not specify |
| * how the extension interacts with XLEN. |
| */ |
| #ifndef CONFIG_USER_ONLY |
| int mode = cpu_address_mode(env); |
| xl = cpu_get_xl(env, mode); |
| if (riscv_has_ext(env, RVJ)) { |
| switch (mode) { |
| case PRV_M: |
| if (env->mmte & M_PM_ENABLE) { |
| mask = env->mpmmask; |
| base = env->mpmbase; |
| } |
| break; |
| case PRV_S: |
| if (env->mmte & S_PM_ENABLE) { |
| mask = env->spmmask; |
| base = env->spmbase; |
| } |
| break; |
| case PRV_U: |
| if (env->mmte & U_PM_ENABLE) { |
| mask = env->upmmask; |
| base = env->upmbase; |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| #endif |
| if (xl == MXL_RV32) { |
| env->cur_pmmask = mask & UINT32_MAX; |
| env->cur_pmbase = base & UINT32_MAX; |
| } else { |
| env->cur_pmmask = mask; |
| env->cur_pmbase = base; |
| } |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| |
| /* |
| * The HS-mode is allowed to configure priority only for the |
| * following VS-mode local interrupts: |
| * |
| * 0 (Reserved interrupt, reads as zero) |
| * 1 Supervisor software interrupt |
| * 4 (Reserved interrupt, reads as zero) |
| * 5 Supervisor timer interrupt |
| * 8 (Reserved interrupt, reads as zero) |
| * 13 (Reserved interrupt) |
| * 14 " |
| * 15 " |
| * 16 " |
| * 17 " |
| * 18 " |
| * 19 " |
| * 20 " |
| * 21 " |
| * 22 " |
| * 23 " |
| */ |
| |
| static const int hviprio_index2irq[] = { |
| 0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 }; |
| static const int hviprio_index2rdzero[] = { |
| 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; |
| |
| int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero) |
| { |
| if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) { |
| return -EINVAL; |
| } |
| |
| if (out_irq) { |
| *out_irq = hviprio_index2irq[index]; |
| } |
| |
| if (out_rdzero) { |
| *out_rdzero = hviprio_index2rdzero[index]; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Default priorities of local interrupts are defined in the |
| * RISC-V Advanced Interrupt Architecture specification. |
| * |
| * ---------------------------------------------------------------- |
| * Default | |
| * Priority | Major Interrupt Numbers |
| * ---------------------------------------------------------------- |
| * Highest | 47, 23, 46, 45, 22, 44, |
| * | 43, 21, 42, 41, 20, 40 |
| * | |
| * | 11 (0b), 3 (03), 7 (07) |
| * | 9 (09), 1 (01), 5 (05) |
| * | 12 (0c) |
| * | 10 (0a), 2 (02), 6 (06) |
| * | |
| * | 39, 19, 38, 37, 18, 36, |
| * Lowest | 35, 17, 34, 33, 16, 32 |
| * ---------------------------------------------------------------- |
| */ |
| static const uint8_t default_iprio[64] = { |
| /* Custom interrupts 48 to 63 */ |
| [63] = IPRIO_MMAXIPRIO, |
| [62] = IPRIO_MMAXIPRIO, |
| [61] = IPRIO_MMAXIPRIO, |
| [60] = IPRIO_MMAXIPRIO, |
| [59] = IPRIO_MMAXIPRIO, |
| [58] = IPRIO_MMAXIPRIO, |
| [57] = IPRIO_MMAXIPRIO, |
| [56] = IPRIO_MMAXIPRIO, |
| [55] = IPRIO_MMAXIPRIO, |
| [54] = IPRIO_MMAXIPRIO, |
| [53] = IPRIO_MMAXIPRIO, |
| [52] = IPRIO_MMAXIPRIO, |
| [51] = IPRIO_MMAXIPRIO, |
| [50] = IPRIO_MMAXIPRIO, |
| [49] = IPRIO_MMAXIPRIO, |
| [48] = IPRIO_MMAXIPRIO, |
| |
| /* Custom interrupts 24 to 31 */ |
| [31] = IPRIO_MMAXIPRIO, |
| [30] = IPRIO_MMAXIPRIO, |
| [29] = IPRIO_MMAXIPRIO, |
| [28] = IPRIO_MMAXIPRIO, |
| [27] = IPRIO_MMAXIPRIO, |
| [26] = IPRIO_MMAXIPRIO, |
| [25] = IPRIO_MMAXIPRIO, |
| [24] = IPRIO_MMAXIPRIO, |
| |
| [47] = IPRIO_DEFAULT_UPPER, |
| [23] = IPRIO_DEFAULT_UPPER + 1, |
| [46] = IPRIO_DEFAULT_UPPER + 2, |
| [45] = IPRIO_DEFAULT_UPPER + 3, |
| [22] = IPRIO_DEFAULT_UPPER + 4, |
| [44] = IPRIO_DEFAULT_UPPER + 5, |
| |
| [43] = IPRIO_DEFAULT_UPPER + 6, |
| [21] = IPRIO_DEFAULT_UPPER + 7, |
| [42] = IPRIO_DEFAULT_UPPER + 8, |
| [41] = IPRIO_DEFAULT_UPPER + 9, |
| [20] = IPRIO_DEFAULT_UPPER + 10, |
| [40] = IPRIO_DEFAULT_UPPER + 11, |
| |
| [11] = IPRIO_DEFAULT_M, |
| [3] = IPRIO_DEFAULT_M + 1, |
| [7] = IPRIO_DEFAULT_M + 2, |
| |
| [9] = IPRIO_DEFAULT_S, |
| [1] = IPRIO_DEFAULT_S + 1, |
| [5] = IPRIO_DEFAULT_S + 2, |
| |
| [12] = IPRIO_DEFAULT_SGEXT, |
| |
| [10] = IPRIO_DEFAULT_VS, |
| [2] = IPRIO_DEFAULT_VS + 1, |
| [6] = IPRIO_DEFAULT_VS + 2, |
| |
| [39] = IPRIO_DEFAULT_LOWER, |
| [19] = IPRIO_DEFAULT_LOWER + 1, |
| [38] = IPRIO_DEFAULT_LOWER + 2, |
| [37] = IPRIO_DEFAULT_LOWER + 3, |
| [18] = IPRIO_DEFAULT_LOWER + 4, |
| [36] = IPRIO_DEFAULT_LOWER + 5, |
| |
| [35] = IPRIO_DEFAULT_LOWER + 6, |
| [17] = IPRIO_DEFAULT_LOWER + 7, |
| [34] = IPRIO_DEFAULT_LOWER + 8, |
| [33] = IPRIO_DEFAULT_LOWER + 9, |
| [16] = IPRIO_DEFAULT_LOWER + 10, |
| [32] = IPRIO_DEFAULT_LOWER + 11, |
| }; |
| |
| uint8_t riscv_cpu_default_priority(int irq) |
| { |
| if (irq < 0 || irq > 63) { |
| return IPRIO_MMAXIPRIO; |
| } |
| |
| return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO; |
| }; |
| |
| static int riscv_cpu_pending_to_irq(CPURISCVState *env, |
| int extirq, unsigned int extirq_def_prio, |
| uint64_t pending, uint8_t *iprio) |
| { |
| int irq, best_irq = RISCV_EXCP_NONE; |
| unsigned int prio, best_prio = UINT_MAX; |
| |
| if (!pending) { |
| return RISCV_EXCP_NONE; |
| } |
| |
| irq = ctz64(pending); |
| if (!((extirq == IRQ_M_EXT) ? riscv_cpu_cfg(env)->ext_smaia : |
| riscv_cpu_cfg(env)->ext_ssaia)) { |
| return irq; |
| } |
| |
| pending = pending >> irq; |
| while (pending) { |
| prio = iprio[irq]; |
| if (!prio) { |
| if (irq == extirq) { |
| prio = extirq_def_prio; |
| } else { |
| prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ? |
| 1 : IPRIO_MMAXIPRIO; |
| } |
| } |
| if ((pending & 0x1) && (prio <= best_prio)) { |
| best_irq = irq; |
| best_prio = prio; |
| } |
| irq++; |
| pending = pending >> 1; |
| } |
| |
| return best_irq; |
| } |
| |
| /* |
| * Doesn't report interrupts inserted using mvip from M-mode firmware or |
| * using hvip bits 13:63 from HS-mode. Those are returned in |
| * riscv_cpu_sirq_pending() and riscv_cpu_vsirq_pending(). |
| */ |
| uint64_t riscv_cpu_all_pending(CPURISCVState *env) |
| { |
| uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN); |
| uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; |
| uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0; |
| |
| return (env->mip | vsgein | vstip) & env->mie; |
| } |
| |
| int riscv_cpu_mirq_pending(CPURISCVState *env) |
| { |
| uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg & |
| ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP); |
| |
| return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M, |
| irqs, env->miprio); |
| } |
| |
| int riscv_cpu_sirq_pending(CPURISCVState *env) |
| { |
| uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg & |
| ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP); |
| uint64_t irqs_f = env->mvip & env->mvien & ~env->mideleg & env->sie; |
| |
| return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, |
| irqs | irqs_f, env->siprio); |
| } |
| |
| int riscv_cpu_vsirq_pending(CPURISCVState *env) |
| { |
| uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg & env->hideleg; |
| uint64_t irqs_f_vs = env->hvip & env->hvien & ~env->hideleg & env->vsie; |
| uint64_t vsbits; |
| |
| /* Bring VS-level bits to correct position */ |
| vsbits = irqs & VS_MODE_INTERRUPTS; |
| irqs &= ~VS_MODE_INTERRUPTS; |
| irqs |= vsbits >> 1; |
| |
| return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, |
| (irqs | irqs_f_vs), env->hviprio); |
| } |
| |
| static int riscv_cpu_local_irq_pending(CPURISCVState *env) |
| { |
| uint64_t irqs, pending, mie, hsie, vsie, irqs_f, irqs_f_vs; |
| uint64_t vsbits, irq_delegated; |
| int virq; |
| |
| /* Determine interrupt enable state of all privilege modes */ |
| if (env->virt_enabled) { |
| mie = 1; |
| hsie = 1; |
| vsie = (env->priv < PRV_S) || |
| (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE)); |
| } else { |
| mie = (env->priv < PRV_M) || |
| (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE)); |
| hsie = (env->priv < PRV_S) || |
| (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE)); |
| vsie = 0; |
| } |
| |
| /* Determine all pending interrupts */ |
| pending = riscv_cpu_all_pending(env); |
| |
| /* Check M-mode interrupts */ |
| irqs = pending & ~env->mideleg & -mie; |
| if (irqs) { |
| return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M, |
| irqs, env->miprio); |
| } |
| |
| /* Check for virtual S-mode interrupts. */ |
| irqs_f = env->mvip & (env->mvien & ~env->mideleg) & env->sie; |
| |
| /* Check HS-mode interrupts */ |
| irqs = ((pending & env->mideleg & ~env->hideleg) | irqs_f) & -hsie; |
| if (irqs) { |
| return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, |
| irqs, env->siprio); |
| } |
| |
| /* Check for virtual VS-mode interrupts. */ |
| irqs_f_vs = env->hvip & env->hvien & ~env->hideleg & env->vsie; |
| |
| /* Check VS-mode interrupts */ |
| irq_delegated = pending & env->mideleg & env->hideleg; |
| |
| /* Bring VS-level bits to correct position */ |
| vsbits = irq_delegated & VS_MODE_INTERRUPTS; |
| irq_delegated &= ~VS_MODE_INTERRUPTS; |
| irq_delegated |= vsbits >> 1; |
| |
| irqs = (irq_delegated | irqs_f_vs) & -vsie; |
| if (irqs) { |
| virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, |
| irqs, env->hviprio); |
| if (virq <= 0 || (virq > 12 && virq <= 63)) { |
| return virq; |
| } else { |
| return virq + 1; |
| } |
| } |
| |
| /* Indicate no pending interrupt */ |
| return RISCV_EXCP_NONE; |
| } |
| |
| bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request) |
| { |
| if (interrupt_request & CPU_INTERRUPT_HARD) { |
| RISCVCPU *cpu = RISCV_CPU(cs); |
| CPURISCVState *env = &cpu->env; |
| int interruptno = riscv_cpu_local_irq_pending(env); |
| if (interruptno >= 0) { |
| cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno; |
| riscv_cpu_do_interrupt(cs); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /* Return true is floating point support is currently enabled */ |
| bool riscv_cpu_fp_enabled(CPURISCVState *env) |
| { |
| if (env->mstatus & MSTATUS_FS) { |
| if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_FS)) { |
| return false; |
| } |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* Return true is vector support is currently enabled */ |
| bool riscv_cpu_vector_enabled(CPURISCVState *env) |
| { |
| if (env->mstatus & MSTATUS_VS) { |
| if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_VS)) { |
| return false; |
| } |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env) |
| { |
| uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | |
| MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE | |
| MSTATUS64_UXL | MSTATUS_VS; |
| |
| if (riscv_has_ext(env, RVF)) { |
| mstatus_mask |= MSTATUS_FS; |
| } |
| bool current_virt = env->virt_enabled; |
| |
| g_assert(riscv_has_ext(env, RVH)); |
| |
| if (current_virt) { |
| /* Current V=1 and we are about to change to V=0 */ |
| env->vsstatus = env->mstatus & mstatus_mask; |
| env->mstatus &= ~mstatus_mask; |
| env->mstatus |= env->mstatus_hs; |
| |
| env->vstvec = env->stvec; |
| env->stvec = env->stvec_hs; |
| |
| env->vsscratch = env->sscratch; |
| env->sscratch = env->sscratch_hs; |
| |
| env->vsepc = env->sepc; |
| env->sepc = env->sepc_hs; |
| |
| env->vscause = env->scause; |
| env->scause = env->scause_hs; |
| |
| env->vstval = env->stval; |
| env->stval = env->stval_hs; |
| |
| env->vsatp = env->satp; |
| env->satp = env->satp_hs; |
| } else { |
| /* Current V=0 and we are about to change to V=1 */ |
| env->mstatus_hs = env->mstatus & mstatus_mask; |
| env->mstatus &= ~mstatus_mask; |
| env->mstatus |= env->vsstatus; |
| |
| env->stvec_hs = env->stvec; |
| env->stvec = env->vstvec; |
| |
| env->sscratch_hs = env->sscratch; |
| env->sscratch = env->vsscratch; |
| |
| env->sepc_hs = env->sepc; |
| env->sepc = env->vsepc; |
| |
| env->scause_hs = env->scause; |
| env->scause = env->vscause; |
| |
| env->stval_hs = env->stval; |
| env->stval = env->vstval; |
| |
| env->satp_hs = env->satp; |
| env->satp = env->vsatp; |
| } |
| } |
| |
| target_ulong riscv_cpu_get_geilen(CPURISCVState *env) |
| { |
| if (!riscv_has_ext(env, RVH)) { |
| return 0; |
| } |
| |
| return env->geilen; |
| } |
| |
| void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen) |
| { |
| if (!riscv_has_ext(env, RVH)) { |
| return; |
| } |
| |
| if (geilen > (TARGET_LONG_BITS - 1)) { |
| return; |
| } |
| |
| env->geilen = geilen; |
| } |
| |
| /* This function can only be called to set virt when RVH is enabled */ |
| void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable) |
| { |
| /* Flush the TLB on all virt mode changes. */ |
| if (env->virt_enabled != enable) { |
| tlb_flush(env_cpu(env)); |
| } |
| |
| env->virt_enabled = enable; |
| |
| if (enable) { |
| /* |
| * The guest external interrupts from an interrupt controller are |
| * delivered only when the Guest/VM is running (i.e. V=1). This means |
| * any guest external interrupt which is triggered while the Guest/VM |
| * is not running (i.e. V=0) will be missed on QEMU resulting in guest |
| * with sluggish response to serial console input and other I/O events. |
| * |
| * To solve this, we check and inject interrupt after setting V=1. |
| */ |
| riscv_cpu_update_mip(env, 0, 0); |
| } |
| } |
| |
| int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts) |
| { |
| CPURISCVState *env = &cpu->env; |
| if (env->miclaim & interrupts) { |
| return -1; |
| } else { |
| env->miclaim |= interrupts; |
| return 0; |
| } |
| } |
| |
| void riscv_cpu_interrupt(CPURISCVState *env) |
| { |
| uint64_t gein, vsgein = 0, vstip = 0, irqf = 0; |
| CPUState *cs = env_cpu(env); |
| |
| BQL_LOCK_GUARD(); |
| |
| if (env->virt_enabled) { |
| gein = get_field(env->hstatus, HSTATUS_VGEIN); |
| vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; |
| irqf = env->hvien & env->hvip & env->vsie; |
| } else { |
| irqf = env->mvien & env->mvip & env->sie; |
| } |
| |
| vstip = env->vstime_irq ? MIP_VSTIP : 0; |
| |
| if (env->mip | vsgein | vstip | irqf) { |
| cpu_interrupt(cs, CPU_INTERRUPT_HARD); |
| } else { |
| cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); |
| } |
| } |
| |
| uint64_t riscv_cpu_update_mip(CPURISCVState *env, uint64_t mask, uint64_t value) |
| { |
| uint64_t old = env->mip; |
| |
| /* No need to update mip for VSTIP */ |
| mask = ((mask == MIP_VSTIP) && env->vstime_irq) ? 0 : mask; |
| |
| BQL_LOCK_GUARD(); |
| |
| env->mip = (env->mip & ~mask) | (value & mask); |
| |
| riscv_cpu_interrupt(env); |
| |
| return old; |
| } |
| |
| void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *), |
| void *arg) |
| { |
| env->rdtime_fn = fn; |
| env->rdtime_fn_arg = arg; |
| } |
| |
| void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv, |
| int (*rmw_fn)(void *arg, |
| target_ulong reg, |
| target_ulong *val, |
| target_ulong new_val, |
| target_ulong write_mask), |
| void *rmw_fn_arg) |
| { |
| if (priv <= PRV_M) { |
| env->aia_ireg_rmw_fn[priv] = rmw_fn; |
| env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg; |
| } |
| } |
| |
| void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv) |
| { |
| g_assert(newpriv <= PRV_M && newpriv != PRV_RESERVED); |
| |
| if (icount_enabled() && newpriv != env->priv) { |
| riscv_itrigger_update_priv(env); |
| } |
| /* tlb_flush is unnecessary as mode is contained in mmu_idx */ |
| env->priv = newpriv; |
| env->xl = cpu_recompute_xl(env); |
| riscv_cpu_update_mask(env); |
| |
| /* |
| * Clear the load reservation - otherwise a reservation placed in one |
| * context/process can be used by another, resulting in an SC succeeding |
| * incorrectly. Version 2.2 of the ISA specification explicitly requires |
| * this behaviour, while later revisions say that the kernel "should" use |
| * an SC instruction to force the yielding of a load reservation on a |
| * preemptive context switch. As a result, do both. |
| */ |
| env->load_res = -1; |
| } |
| |
| /* |
| * get_physical_address_pmp - check PMP permission for this physical address |
| * |
| * Match the PMP region and check permission for this physical address and it's |
| * TLB page. Returns 0 if the permission checking was successful |
| * |
| * @env: CPURISCVState |
| * @prot: The returned protection attributes |
| * @addr: The physical address to be checked permission |
| * @access_type: The type of MMU access |
| * @mode: Indicates current privilege level. |
| */ |
| static int get_physical_address_pmp(CPURISCVState *env, int *prot, hwaddr addr, |
| int size, MMUAccessType access_type, |
| int mode) |
| { |
| pmp_priv_t pmp_priv; |
| bool pmp_has_privs; |
| |
| if (!riscv_cpu_cfg(env)->pmp) { |
| *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| return TRANSLATE_SUCCESS; |
| } |
| |
| pmp_has_privs = pmp_hart_has_privs(env, addr, size, 1 << access_type, |
| &pmp_priv, mode); |
| if (!pmp_has_privs) { |
| *prot = 0; |
| return TRANSLATE_PMP_FAIL; |
| } |
| |
| *prot = pmp_priv_to_page_prot(pmp_priv); |
| |
| return TRANSLATE_SUCCESS; |
| } |
| |
| /* |
| * get_physical_address - get the physical address for this virtual address |
| * |
| * Do a page table walk to obtain the physical address corresponding to a |
| * virtual address. Returns 0 if the translation was successful |
| * |
| * Adapted from Spike's mmu_t::translate and mmu_t::walk |
| * |
| * @env: CPURISCVState |
| * @physical: This will be set to the calculated physical address |
| * @prot: The returned protection attributes |
| * @addr: The virtual address or guest physical address to be translated |
| * @fault_pte_addr: If not NULL, this will be set to fault pte address |
| * when a error occurs on pte address translation. |
| * This will already be shifted to match htval. |
| * @access_type: The type of MMU access |
| * @mmu_idx: Indicates current privilege level |
| * @first_stage: Are we in first stage translation? |
| * Second stage is used for hypervisor guest translation |
| * @two_stage: Are we going to perform two stage translation |
| * @is_debug: Is this access from a debugger or the monitor? |
| */ |
| static int get_physical_address(CPURISCVState *env, hwaddr *physical, |
| int *ret_prot, vaddr addr, |
| target_ulong *fault_pte_addr, |
| int access_type, int mmu_idx, |
| bool first_stage, bool two_stage, |
| bool is_debug) |
| { |
| /* |
| * NOTE: the env->pc value visible here will not be |
| * correct, but the value visible to the exception handler |
| * (riscv_cpu_do_interrupt) is correct |
| */ |
| MemTxResult res; |
| MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; |
| int mode = mmuidx_priv(mmu_idx); |
| bool use_background = false; |
| hwaddr ppn; |
| int napot_bits = 0; |
| target_ulong napot_mask; |
| |
| /* |
| * Check if we should use the background registers for the two |
| * stage translation. We don't need to check if we actually need |
| * two stage translation as that happened before this function |
| * was called. Background registers will be used if the guest has |
| * forced a two stage translation to be on (in HS or M mode). |
| */ |
| if (!env->virt_enabled && two_stage) { |
| use_background = true; |
| } |
| |
| if (mode == PRV_M || !riscv_cpu_cfg(env)->mmu) { |
| *physical = addr; |
| *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| return TRANSLATE_SUCCESS; |
| } |
| |
| *ret_prot = 0; |
| |
| hwaddr base; |
| int levels, ptidxbits, ptesize, vm, widened; |
| |
| if (first_stage == true) { |
| if (use_background) { |
| if (riscv_cpu_mxl(env) == MXL_RV32) { |
| base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT; |
| vm = get_field(env->vsatp, SATP32_MODE); |
| } else { |
| base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT; |
| vm = get_field(env->vsatp, SATP64_MODE); |
| } |
| } else { |
| if (riscv_cpu_mxl(env) == MXL_RV32) { |
| base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT; |
| vm = get_field(env->satp, SATP32_MODE); |
| } else { |
| base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT; |
| vm = get_field(env->satp, SATP64_MODE); |
| } |
| } |
| widened = 0; |
| } else { |
| if (riscv_cpu_mxl(env) == MXL_RV32) { |
| base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT; |
| vm = get_field(env->hgatp, SATP32_MODE); |
| } else { |
| base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT; |
| vm = get_field(env->hgatp, SATP64_MODE); |
| } |
| widened = 2; |
| } |
| |
| switch (vm) { |
| case VM_1_10_SV32: |
| levels = 2; ptidxbits = 10; ptesize = 4; break; |
| case VM_1_10_SV39: |
| levels = 3; ptidxbits = 9; ptesize = 8; break; |
| case VM_1_10_SV48: |
| levels = 4; ptidxbits = 9; ptesize = 8; break; |
| case VM_1_10_SV57: |
| levels = 5; ptidxbits = 9; ptesize = 8; break; |
| case VM_1_10_MBARE: |
| *physical = addr; |
| *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| return TRANSLATE_SUCCESS; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| CPUState *cs = env_cpu(env); |
| int va_bits = PGSHIFT + levels * ptidxbits + widened; |
| |
| if (first_stage == true) { |
| target_ulong mask, masked_msbs; |
| |
| if (TARGET_LONG_BITS > (va_bits - 1)) { |
| mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1; |
| } else { |
| mask = 0; |
| } |
| masked_msbs = (addr >> (va_bits - 1)) & mask; |
| |
| if (masked_msbs != 0 && masked_msbs != mask) { |
| return TRANSLATE_FAIL; |
| } |
| } else { |
| if (vm != VM_1_10_SV32 && addr >> va_bits != 0) { |
| return TRANSLATE_FAIL; |
| } |
| } |
| |
| bool pbmte = env->menvcfg & MENVCFG_PBMTE; |
| bool adue = env->menvcfg & MENVCFG_ADUE; |
| |
| if (first_stage && two_stage && env->virt_enabled) { |
| pbmte = pbmte && (env->henvcfg & HENVCFG_PBMTE); |
| adue = adue && (env->henvcfg & HENVCFG_ADUE); |
| } |
| |
| int ptshift = (levels - 1) * ptidxbits; |
| target_ulong pte; |
| hwaddr pte_addr; |
| int i; |
| |
| #if !TCG_OVERSIZED_GUEST |
| restart: |
| #endif |
| for (i = 0; i < levels; i++, ptshift -= ptidxbits) { |
| target_ulong idx; |
| if (i == 0) { |
| idx = (addr >> (PGSHIFT + ptshift)) & |
| ((1 << (ptidxbits + widened)) - 1); |
| } else { |
| idx = (addr >> (PGSHIFT + ptshift)) & |
| ((1 << ptidxbits) - 1); |
| } |
| |
| /* check that physical address of PTE is legal */ |
| |
| if (two_stage && first_stage) { |
| int vbase_prot; |
| hwaddr vbase; |
| |
| /* Do the second stage translation on the base PTE address. */ |
| int vbase_ret = get_physical_address(env, &vbase, &vbase_prot, |
| base, NULL, MMU_DATA_LOAD, |
| MMUIdx_U, false, true, |
| is_debug); |
| |
| if (vbase_ret != TRANSLATE_SUCCESS) { |
| if (fault_pte_addr) { |
| *fault_pte_addr = (base + idx * ptesize) >> 2; |
| } |
| return TRANSLATE_G_STAGE_FAIL; |
| } |
| |
| pte_addr = vbase + idx * ptesize; |
| } else { |
| pte_addr = base + idx * ptesize; |
| } |
| |
| int pmp_prot; |
| int pmp_ret = get_physical_address_pmp(env, &pmp_prot, pte_addr, |
| sizeof(target_ulong), |
| MMU_DATA_LOAD, PRV_S); |
| if (pmp_ret != TRANSLATE_SUCCESS) { |
| return TRANSLATE_PMP_FAIL; |
| } |
| |
| if (riscv_cpu_mxl(env) == MXL_RV32) { |
| pte = address_space_ldl(cs->as, pte_addr, attrs, &res); |
| } else { |
| pte = address_space_ldq(cs->as, pte_addr, attrs, &res); |
| } |
| |
| if (res != MEMTX_OK) { |
| return TRANSLATE_FAIL; |
| } |
| |
| if (riscv_cpu_sxl(env) == MXL_RV32) { |
| ppn = pte >> PTE_PPN_SHIFT; |
| } else { |
| if (pte & PTE_RESERVED) { |
| return TRANSLATE_FAIL; |
| } |
| |
| if (!pbmte && (pte & PTE_PBMT)) { |
| return TRANSLATE_FAIL; |
| } |
| |
| if (!riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) { |
| return TRANSLATE_FAIL; |
| } |
| |
| ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT; |
| } |
| |
| if (!(pte & PTE_V)) { |
| /* Invalid PTE */ |
| return TRANSLATE_FAIL; |
| } |
| if (pte & (PTE_R | PTE_W | PTE_X)) { |
| goto leaf; |
| } |
| |
| /* Inner PTE, continue walking */ |
| if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) { |
| return TRANSLATE_FAIL; |
| } |
| base = ppn << PGSHIFT; |
| } |
| |
| /* No leaf pte at any translation level. */ |
| return TRANSLATE_FAIL; |
| |
| leaf: |
| if (ppn & ((1ULL << ptshift) - 1)) { |
| /* Misaligned PPN */ |
| return TRANSLATE_FAIL; |
| } |
| if (!pbmte && (pte & PTE_PBMT)) { |
| /* Reserved without Svpbmt. */ |
| return TRANSLATE_FAIL; |
| } |
| |
| /* Check for reserved combinations of RWX flags. */ |
| switch (pte & (PTE_R | PTE_W | PTE_X)) { |
| case PTE_W: |
| case PTE_W | PTE_X: |
| return TRANSLATE_FAIL; |
| } |
| |
| int prot = 0; |
| if (pte & PTE_R) { |
| prot |= PAGE_READ; |
| } |
| if (pte & PTE_W) { |
| prot |= PAGE_WRITE; |
| } |
| if (pte & PTE_X) { |
| bool mxr = false; |
| |
| /* |
| * Use mstatus for first stage or for the second stage without |
| * virt_enabled (MPRV+MPV) |
| */ |
| if (first_stage || !env->virt_enabled) { |
| mxr = get_field(env->mstatus, MSTATUS_MXR); |
| } |
| |
| /* MPRV+MPV case, check VSSTATUS */ |
| if (first_stage && two_stage && !env->virt_enabled) { |
| mxr |= get_field(env->vsstatus, MSTATUS_MXR); |
| } |
| |
| /* |
| * Setting MXR at HS-level overrides both VS-stage and G-stage |
| * execute-only permissions |
| */ |
| if (env->virt_enabled) { |
| mxr |= get_field(env->mstatus_hs, MSTATUS_MXR); |
| } |
| |
| if (mxr) { |
| prot |= PAGE_READ; |
| } |
| prot |= PAGE_EXEC; |
| } |
| |
| if (pte & PTE_U) { |
| if (mode != PRV_U) { |
| if (!mmuidx_sum(mmu_idx)) { |
| return TRANSLATE_FAIL; |
| } |
| /* SUM allows only read+write, not execute. */ |
| prot &= PAGE_READ | PAGE_WRITE; |
| } |
| } else if (mode != PRV_S) { |
| /* Supervisor PTE flags when not S mode */ |
| return TRANSLATE_FAIL; |
| } |
| |
| if (!((prot >> access_type) & 1)) { |
| /* Access check failed */ |
| return TRANSLATE_FAIL; |
| } |
| |
| /* If necessary, set accessed and dirty bits. */ |
| target_ulong updated_pte = pte | PTE_A | |
| (access_type == MMU_DATA_STORE ? PTE_D : 0); |
| |
| /* Page table updates need to be atomic with MTTCG enabled */ |
| if (updated_pte != pte && !is_debug) { |
| if (!adue) { |
| return TRANSLATE_FAIL; |
| } |
| |
| /* |
| * - if accessed or dirty bits need updating, and the PTE is |
| * in RAM, then we do so atomically with a compare and swap. |
| * - if the PTE is in IO space or ROM, then it can't be updated |
| * and we return TRANSLATE_FAIL. |
| * - if the PTE changed by the time we went to update it, then |
| * it is no longer valid and we must re-walk the page table. |
| */ |
| MemoryRegion *mr; |
| hwaddr l = sizeof(target_ulong), addr1; |
| mr = address_space_translate(cs->as, pte_addr, &addr1, &l, |
| false, MEMTXATTRS_UNSPECIFIED); |
| if (memory_region_is_ram(mr)) { |
| target_ulong *pte_pa = qemu_map_ram_ptr(mr->ram_block, addr1); |
| #if TCG_OVERSIZED_GUEST |
| /* |
| * MTTCG is not enabled on oversized TCG guests so |
| * page table updates do not need to be atomic |
| */ |
| *pte_pa = pte = updated_pte; |
| #else |
| target_ulong old_pte = qatomic_cmpxchg(pte_pa, pte, updated_pte); |
| if (old_pte != pte) { |
| goto restart; |
| } |
| pte = updated_pte; |
| #endif |
| } else { |
| /* |
| * Misconfigured PTE in ROM (AD bits are not preset) or |
| * PTE is in IO space and can't be updated atomically. |
| */ |
| return TRANSLATE_FAIL; |
| } |
| } |
| |
| /* For superpage mappings, make a fake leaf PTE for the TLB's benefit. */ |
| target_ulong vpn = addr >> PGSHIFT; |
| |
| if (riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) { |
| napot_bits = ctzl(ppn) + 1; |
| if ((i != (levels - 1)) || (napot_bits != 4)) { |
| return TRANSLATE_FAIL; |
| } |
| } |
| |
| napot_mask = (1 << napot_bits) - 1; |
| *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) | |
| (vpn & (((target_ulong)1 << ptshift) - 1)) |
| ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK); |
| |
| /* |
| * Remove write permission unless this is a store, or the page is |
| * already dirty, so that we TLB miss on later writes to update |
| * the dirty bit. |
| */ |
| if (access_type != MMU_DATA_STORE && !(pte & PTE_D)) { |
| prot &= ~PAGE_WRITE; |
| } |
| *ret_prot = prot; |
| |
| return TRANSLATE_SUCCESS; |
| } |
| |
| static void raise_mmu_exception(CPURISCVState *env, target_ulong address, |
| MMUAccessType access_type, bool pmp_violation, |
| bool first_stage, bool two_stage, |
| bool two_stage_indirect) |
| { |
| CPUState *cs = env_cpu(env); |
| |
| switch (access_type) { |
| case MMU_INST_FETCH: |
| if (env->virt_enabled && !first_stage) { |
| cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT; |
| } else { |
| cs->exception_index = pmp_violation ? |
| RISCV_EXCP_INST_ACCESS_FAULT : RISCV_EXCP_INST_PAGE_FAULT; |
| } |
| break; |
| case MMU_DATA_LOAD: |
| if (two_stage && !first_stage) { |
| cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT; |
| } else { |
| cs->exception_index = pmp_violation ? |
| RISCV_EXCP_LOAD_ACCESS_FAULT : RISCV_EXCP_LOAD_PAGE_FAULT; |
| } |
| break; |
| case MMU_DATA_STORE: |
| if (two_stage && !first_stage) { |
| cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT; |
| } else { |
| cs->exception_index = pmp_violation ? |
| RISCV_EXCP_STORE_AMO_ACCESS_FAULT : |
| RISCV_EXCP_STORE_PAGE_FAULT; |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| env->badaddr = address; |
| env->two_stage_lookup = two_stage; |
| env->two_stage_indirect_lookup = two_stage_indirect; |
| } |
| |
| hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) |
| { |
| RISCVCPU *cpu = RISCV_CPU(cs); |
| CPURISCVState *env = &cpu->env; |
| hwaddr phys_addr; |
| int prot; |
| int mmu_idx = cpu_mmu_index(&cpu->env, false); |
| |
| if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx, |
| true, env->virt_enabled, true)) { |
| return -1; |
| } |
| |
| if (env->virt_enabled) { |
| if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL, |
| 0, mmu_idx, false, true, true)) { |
| return -1; |
| } |
| } |
| |
| return phys_addr & TARGET_PAGE_MASK; |
| } |
| |
| void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, |
| vaddr addr, unsigned size, |
| MMUAccessType access_type, |
| int mmu_idx, MemTxAttrs attrs, |
| MemTxResult response, uintptr_t retaddr) |
| { |
| RISCVCPU *cpu = RISCV_CPU(cs); |
| CPURISCVState *env = &cpu->env; |
| |
| if (access_type == MMU_DATA_STORE) { |
| cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT; |
| } else if (access_type == MMU_DATA_LOAD) { |
| cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT; |
| } else { |
| cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT; |
| } |
| |
| env->badaddr = addr; |
| env->two_stage_lookup = mmuidx_2stage(mmu_idx); |
| env->two_stage_indirect_lookup = false; |
| cpu_loop_exit_restore(cs, retaddr); |
| } |
| |
| void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr, |
| MMUAccessType access_type, int mmu_idx, |
| uintptr_t retaddr) |
| { |
| RISCVCPU *cpu = RISCV_CPU(cs); |
| CPURISCVState *env = &cpu->env; |
| switch (access_type) { |
| case MMU_INST_FETCH: |
| cs->exception_index = RISCV_EXCP_INST_ADDR_MIS; |
| break; |
| case MMU_DATA_LOAD: |
| cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS; |
| break; |
| case MMU_DATA_STORE: |
| cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| env->badaddr = addr; |
| env->two_stage_lookup = mmuidx_2stage(mmu_idx); |
| env->two_stage_indirect_lookup = false; |
| cpu_loop_exit_restore(cs, retaddr); |
| } |
| |
| |
| static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type) |
| { |
| enum riscv_pmu_event_idx pmu_event_type; |
| |
| switch (access_type) { |
| case MMU_INST_FETCH: |
| pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS; |
| break; |
| case MMU_DATA_LOAD: |
| pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS; |
| break; |
| case MMU_DATA_STORE: |
| pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS; |
| break; |
| default: |
| return; |
| } |
| |
| riscv_pmu_incr_ctr(cpu, pmu_event_type); |
| } |
| |
| bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size, |
| MMUAccessType access_type, int mmu_idx, |
| bool probe, uintptr_t retaddr) |
| { |
| RISCVCPU *cpu = RISCV_CPU(cs); |
| CPURISCVState *env = &cpu->env; |
| vaddr im_address; |
| hwaddr pa = 0; |
| int prot, prot2, prot_pmp; |
| bool pmp_violation = false; |
| bool first_stage_error = true; |
| bool two_stage_lookup = mmuidx_2stage(mmu_idx); |
| bool two_stage_indirect_error = false; |
| int ret = TRANSLATE_FAIL; |
| int mode = mmu_idx; |
| /* default TLB page size */ |
| target_ulong tlb_size = TARGET_PAGE_SIZE; |
| |
| env->guest_phys_fault_addr = 0; |
| |
| qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n", |
| __func__, address, access_type, mmu_idx); |
| |
| pmu_tlb_fill_incr_ctr(cpu, access_type); |
| if (two_stage_lookup) { |
| /* Two stage lookup */ |
| ret = get_physical_address(env, &pa, &prot, address, |
| &env->guest_phys_fault_addr, access_type, |
| mmu_idx, true, true, false); |
| |
| /* |
| * A G-stage exception may be triggered during two state lookup. |
| * And the env->guest_phys_fault_addr has already been set in |
| * get_physical_address(). |
| */ |
| if (ret == TRANSLATE_G_STAGE_FAIL) { |
| first_stage_error = false; |
| two_stage_indirect_error = true; |
| } |
| |
| qemu_log_mask(CPU_LOG_MMU, |
| "%s 1st-stage address=%" VADDR_PRIx " ret %d physical " |
| HWADDR_FMT_plx " prot %d\n", |
| __func__, address, ret, pa, prot); |
| |
| if (ret == TRANSLATE_SUCCESS) { |
| /* Second stage lookup */ |
| im_address = pa; |
| |
| ret = get_physical_address(env, &pa, &prot2, im_address, NULL, |
| access_type, MMUIdx_U, false, true, |
| false); |
| |
| qemu_log_mask(CPU_LOG_MMU, |
| "%s 2nd-stage address=%" VADDR_PRIx |
| " ret %d physical " |
| HWADDR_FMT_plx " prot %d\n", |
| __func__, im_address, ret, pa, prot2); |
| |
| prot &= prot2; |
| |
| if (ret == TRANSLATE_SUCCESS) { |
| ret = get_physical_address_pmp(env, &prot_pmp, pa, |
| size, access_type, mode); |
| tlb_size = pmp_get_tlb_size(env, pa); |
| |
| qemu_log_mask(CPU_LOG_MMU, |
| "%s PMP address=" HWADDR_FMT_plx " ret %d prot" |
| " %d tlb_size " TARGET_FMT_lu "\n", |
| __func__, pa, ret, prot_pmp, tlb_size); |
| |
| prot &= prot_pmp; |
| } |
| |
| if (ret != TRANSLATE_SUCCESS) { |
| /* |
| * Guest physical address translation failed, this is a HS |
| * level exception |
| */ |
| first_stage_error = false; |
| env->guest_phys_fault_addr = (im_address | |
| (address & |
| (TARGET_PAGE_SIZE - 1))) >> 2; |
| } |
| } |
| } else { |
| /* Single stage lookup */ |
| ret = get_physical_address(env, &pa, &prot, address, NULL, |
| access_type, mmu_idx, true, false, false); |
| |
| qemu_log_mask(CPU_LOG_MMU, |
| "%s address=%" VADDR_PRIx " ret %d physical " |
| HWADDR_FMT_plx " prot %d\n", |
| __func__, address, ret, pa, prot); |
| |
| if (ret == TRANSLATE_SUCCESS) { |
| ret = get_physical_address_pmp(env, &prot_pmp, pa, |
| size, access_type, mode); |
| tlb_size = pmp_get_tlb_size(env, pa); |
| |
| qemu_log_mask(CPU_LOG_MMU, |
| "%s PMP address=" HWADDR_FMT_plx " ret %d prot" |
| " %d tlb_size " TARGET_FMT_lu "\n", |
| __func__, pa, ret, prot_pmp, tlb_size); |
| |
| prot &= prot_pmp; |
| } |
| } |
| |
| if (ret == TRANSLATE_PMP_FAIL) { |
| pmp_violation = true; |
| } |
| |
| if (ret == TRANSLATE_SUCCESS) { |
| tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1), |
| prot, mmu_idx, tlb_size); |
| return true; |
| } else if (probe) { |
| return false; |
| } else { |
| raise_mmu_exception(env, address, access_type, pmp_violation, |
| first_stage_error, two_stage_lookup, |
| two_stage_indirect_error); |
| cpu_loop_exit_restore(cs, retaddr); |
| } |
| |
| return true; |
| } |
| |
| static target_ulong riscv_transformed_insn(CPURISCVState *env, |
| target_ulong insn, |
| target_ulong taddr) |
| { |
| target_ulong xinsn = 0; |
| target_ulong access_rs1 = 0, access_imm = 0, access_size = 0; |
| |
| /* |
| * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to |
| * be uncompressed. The Quadrant 1 of RVC instruction space need |
| * not be transformed because these instructions won't generate |
| * any load/store trap. |
| */ |
| |
| if ((insn & 0x3) != 0x3) { |
| /* Transform 16bit instruction into 32bit instruction */ |
| switch (GET_C_OP(insn)) { |
| case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */ |
| switch (GET_C_FUNC(insn)) { |
| case OPC_RISC_C_FUNC_FLD_LQ: |
| if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */ |
| xinsn = OPC_RISC_FLD; |
| xinsn = SET_RD(xinsn, GET_C_RS2S(insn)); |
| access_rs1 = GET_C_RS1S(insn); |
| access_imm = GET_C_LD_IMM(insn); |
| access_size = 8; |
| } |
| break; |
| case OPC_RISC_C_FUNC_LW: /* C.LW */ |
| xinsn = OPC_RISC_LW; |
| xinsn = SET_RD(xinsn, GET_C_RS2S(insn)); |
| access_rs1 = GET_C_RS1S(insn); |
| access_imm = GET_C_LW_IMM(insn); |
| access_size = 4; |
| break; |
| case OPC_RISC_C_FUNC_FLW_LD: |
| if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */ |
| xinsn = OPC_RISC_FLW; |
| xinsn = SET_RD(xinsn, GET_C_RS2S(insn)); |
| access_rs1 = GET_C_RS1S(insn); |
| access_imm = GET_C_LW_IMM(insn); |
| access_size = 4; |
| } else { /* C.LD (RV64/RV128) */ |
| xinsn = OPC_RISC_LD; |
| xinsn = SET_RD(xinsn, GET_C_RS2S(insn)); |
| access_rs1 = GET_C_RS1S(insn); |
| access_imm = GET_C_LD_IMM(insn); |
| access_size = 8; |
| } |
| break; |
| case OPC_RISC_C_FUNC_FSD_SQ: |
| if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */ |
| xinsn = OPC_RISC_FSD; |
| xinsn = SET_RS2(xinsn, GET_C_RS2S(insn)); |
| access_rs1 = GET_C_RS1S(insn); |
| access_imm = GET_C_SD_IMM(insn); |
| access_size = 8; |
| } |
| break; |
| case OPC_RISC_C_FUNC_SW: /* C.SW */ |
| xinsn = OPC_RISC_SW; |
| xinsn = SET_RS2(xinsn, GET_C_RS2S(insn)); |
| access_rs1 = GET_C_RS1S(insn); |
| access_imm = GET_C_SW_IMM(insn); |
| access_size = 4; |
| break; |
| case OPC_RISC_C_FUNC_FSW_SD: |
| if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */ |
| xinsn = OPC_RISC_FSW; |
| xinsn = SET_RS2(xinsn, GET_C_RS2S(insn)); |
| access_rs1 = GET_C_RS1S(insn); |
| access_imm = GET_C_SW_IMM(insn); |
| access_size = 4; |
| } else { /* C.SD (RV64/RV128) */ |
| xinsn = OPC_RISC_SD; |
| xinsn = SET_RS2(xinsn, GET_C_RS2S(insn)); |
| access_rs1 = GET_C_RS1S(insn); |
| access_imm = GET_C_SD_IMM(insn); |
| access_size = 8; |
| } |
| break; |
| default: |
| break; |
| } |
| break; |
| case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */ |
| switch (GET_C_FUNC(insn)) { |
| case OPC_RISC_C_FUNC_FLDSP_LQSP: |
| if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */ |
| xinsn = OPC_RISC_FLD; |
| xinsn = SET_RD(xinsn, GET_C_RD(insn)); |
| access_rs1 = 2; |
| access_imm = GET_C_LDSP_IMM(insn); |
| access_size = 8; |
| } |
| break; |
| case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */ |
| xinsn = OPC_RISC_LW; |
| xinsn = SET_RD(xinsn, GET_C_RD(insn)); |
| access_rs1 = 2; |
| access_imm = GET_C_LWSP_IMM(insn); |
| access_size = 4; |
| break; |
| case OPC_RISC_C_FUNC_FLWSP_LDSP: |
| if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */ |
| xinsn = OPC_RISC_FLW; |
| xinsn = SET_RD(xinsn, GET_C_RD(insn)); |
| access_rs1 = 2; |
| access_imm = GET_C_LWSP_IMM(insn); |
| access_size = 4; |
| } else { /* C.LDSP (RV64/RV128) */ |
| xinsn = OPC_RISC_LD; |
| xinsn = SET_RD(xinsn, GET_C_RD(insn)); |
| access_rs1 = 2; |
| access_imm = GET_C_LDSP_IMM(insn); |
| access_size = 8; |
| } |
| break; |
| case OPC_RISC_C_FUNC_FSDSP_SQSP: |
| if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */ |
| xinsn = OPC_RISC_FSD; |
| xinsn = SET_RS2(xinsn, GET_C_RS2(insn)); |
| access_rs1 = 2; |
| access_imm = GET_C_SDSP_IMM(insn); |
| access_size = 8; |
| } |
| break; |
| case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */ |
| xinsn = OPC_RISC_SW; |
| xinsn = SET_RS2(xinsn, GET_C_RS2(insn)); |
| access_rs1 = 2; |
| access_imm = GET_C_SWSP_IMM(insn); |
| access_size = 4; |
| break; |
| case 7: |
| if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */ |
| xinsn = OPC_RISC_FSW; |
| xinsn = SET_RS2(xinsn, GET_C_RS2(insn)); |
| access_rs1 = 2; |
| access_imm = GET_C_SWSP_IMM(insn); |
| access_size = 4; |
| } else { /* C.SDSP (RV64/RV128) */ |
| xinsn = OPC_RISC_SD; |
| xinsn = SET_RS2(xinsn, GET_C_RS2(insn)); |
| access_rs1 = 2; |
| access_imm = GET_C_SDSP_IMM(insn); |
| access_size = 8; |
| } |
| break; |
| default: |
| break; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| /* |
| * Clear Bit1 of transformed instruction to indicate that |
| * original insruction was a 16bit instruction |
| */ |
| xinsn &= ~((target_ulong)0x2); |
| } else { |
| /* Transform 32bit (or wider) instructions */ |
| switch (MASK_OP_MAJOR(insn)) { |
| case OPC_RISC_ATOMIC: |
| xinsn = insn; |
| access_rs1 = GET_RS1(insn); |
| access_size = 1 << GET_FUNCT3(insn); |
| break; |
| case OPC_RISC_LOAD: |
| case OPC_RISC_FP_LOAD: |
| xinsn = SET_I_IMM(insn, 0); |
| access_rs1 = GET_RS1(insn); |
| access_imm = GET_IMM(insn); |
| access_size = 1 << GET_FUNCT3(insn); |
| break; |
| case OPC_RISC_STORE: |
| case OPC_RISC_FP_STORE: |
| xinsn = SET_S_IMM(insn, 0); |
| access_rs1 = GET_RS1(insn); |
| access_imm = GET_STORE_IMM(insn); |
| access_size = 1 << GET_FUNCT3(insn); |
| break; |
| case OPC_RISC_SYSTEM: |
| if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) { |
| xinsn = insn; |
| access_rs1 = GET_RS1(insn); |
| access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3); |
| access_size = 1 << access_size; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| if (access_size) { |
| xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) & |
| (access_size - 1)); |
| } |
| |
| return xinsn; |
| } |
| #endif /* !CONFIG_USER_ONLY */ |
| |
| /* |
| * Handle Traps |
| * |
| * Adapted from Spike's processor_t::take_trap. |
| * |
| */ |
| void riscv_cpu_do_interrupt(CPUState *cs) |
| { |
| #if !defined(CONFIG_USER_ONLY) |
| |
| RISCVCPU *cpu = RISCV_CPU(cs); |
| CPURISCVState *env = &cpu->env; |
| bool write_gva = false; |
| uint64_t s; |
| |
| /* |
| * cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide |
| * so we mask off the MSB and separate into trap type and cause. |
| */ |
| bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG); |
| target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK; |
| uint64_t deleg = async ? env->mideleg : env->medeleg; |
| bool s_injected = env->mvip & (1 << cause) & env->mvien && |
| !(env->mip & (1 << cause)); |
| bool vs_injected = env->hvip & (1 << cause) & env->hvien && |
| !(env->mip & (1 << cause)); |
| target_ulong tval = 0; |
| target_ulong tinst = 0; |
| target_ulong htval = 0; |
| target_ulong mtval2 = 0; |
| |
| if (!async) { |
| /* set tval to badaddr for traps with address information */ |
| switch (cause) { |
| case RISCV_EXCP_SEMIHOST: |
| do_common_semihosting(cs); |
| env->pc += 4; |
| return; |
| case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT: |
| case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT: |
| case RISCV_EXCP_LOAD_ADDR_MIS: |
| case RISCV_EXCP_STORE_AMO_ADDR_MIS: |
| case RISCV_EXCP_LOAD_ACCESS_FAULT: |
| case RISCV_EXCP_STORE_AMO_ACCESS_FAULT: |
| case RISCV_EXCP_LOAD_PAGE_FAULT: |
| case RISCV_EXCP_STORE_PAGE_FAULT: |
| write_gva = env->two_stage_lookup; |
| tval = env->badaddr; |
| if (env->two_stage_indirect_lookup) { |
| /* |
| * special pseudoinstruction for G-stage fault taken while |
| * doing VS-stage page table walk. |
| */ |
| tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000; |
| } else { |
| /* |
| * The "Addr. Offset" field in transformed instruction is |
| * non-zero only for misaligned access. |
| */ |
| tinst = riscv_transformed_insn(env, env->bins, tval); |
| } |
| break; |
| case RISCV_EXCP_INST_GUEST_PAGE_FAULT: |
| case RISCV_EXCP_INST_ADDR_MIS: |
| case RISCV_EXCP_INST_ACCESS_FAULT: |
| case RISCV_EXCP_INST_PAGE_FAULT: |
| write_gva = env->two_stage_lookup; |
| tval = env->badaddr; |
| if (env->two_stage_indirect_lookup) { |
| /* |
| * special pseudoinstruction for G-stage fault taken while |
| * doing VS-stage page table walk. |
| */ |
| tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000; |
| } |
| break; |
| case RISCV_EXCP_ILLEGAL_INST: |
| case RISCV_EXCP_VIRT_INSTRUCTION_FAULT: |
| tval = env->bins; |
| break; |
| case RISCV_EXCP_BREAKPOINT: |
| if (cs->watchpoint_hit) { |
| tval = cs->watchpoint_hit->hitaddr; |
| cs->watchpoint_hit = NULL; |
| } |
| break; |
| default: |
| break; |
| } |
| /* ecall is dispatched as one cause so translate based on mode */ |
| if (cause == RISCV_EXCP_U_ECALL) { |
| assert(env->priv <= 3); |
| |
| if (env->priv == PRV_M) { |
| cause = RISCV_EXCP_M_ECALL; |
| } else if (env->priv == PRV_S && env->virt_enabled) { |
| cause = RISCV_EXCP_VS_ECALL; |
| } else if (env->priv == PRV_S && !env->virt_enabled) { |
| cause = RISCV_EXCP_S_ECALL; |
| } else if (env->priv == PRV_U) { |
| cause = RISCV_EXCP_U_ECALL; |
| } |
| } |
| } |
| |
| trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, |
| riscv_cpu_get_trap_name(cause, async)); |
| |
| qemu_log_mask(CPU_LOG_INT, |
| "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", " |
| "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n", |
| __func__, env->mhartid, async, cause, env->pc, tval, |
| riscv_cpu_get_trap_name(cause, async)); |
| |
| if (env->priv <= PRV_S && cause < 64 && |
| (((deleg >> cause) & 1) || s_injected || vs_injected)) { |
| /* handle the trap in S-mode */ |
| if (riscv_has_ext(env, RVH)) { |
| uint64_t hdeleg = async ? env->hideleg : env->hedeleg; |
| |
| if (env->virt_enabled && |
| (((hdeleg >> cause) & 1) || vs_injected)) { |
| /* Trap to VS mode */ |
| /* |
| * See if we need to adjust cause. Yes if its VS mode interrupt |
| * no if hypervisor has delegated one of hs mode's interrupt |
| */ |
| if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT || |
| cause == IRQ_VS_EXT) { |
| cause = cause - 1; |
| } |
| write_gva = false; |
| } else if (env->virt_enabled) { |
| /* Trap into HS mode, from virt */ |
| riscv_cpu_swap_hypervisor_regs(env); |
| env->hstatus = set_field(env->hstatus, HSTATUS_SPVP, |
| env->priv); |
| env->hstatus = set_field(env->hstatus, HSTATUS_SPV, true); |
| |
| htval = env->guest_phys_fault_addr; |
| |
| riscv_cpu_set_virt_enabled(env, 0); |
| } else { |
| /* Trap into HS mode */ |
| env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false); |
| htval = env->guest_phys_fault_addr; |
| } |
| env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva); |
| } |
| |
| s = env->mstatus; |
| s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE)); |
| s = set_field(s, MSTATUS_SPP, env->priv); |
| s = set_field(s, MSTATUS_SIE, 0); |
| env->mstatus = s; |
| env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1)); |
| env->sepc = env->pc; |
| env->stval = tval; |
| env->htval = htval; |
| env->htinst = tinst; |
| env->pc = (env->stvec >> 2 << 2) + |
| ((async && (env->stvec & 3) == 1) ? cause * 4 : 0); |
| riscv_cpu_set_mode(env, PRV_S); |
| } else { |
| /* handle the trap in M-mode */ |
| if (riscv_has_ext(env, RVH)) { |
| if (env->virt_enabled) { |
| riscv_cpu_swap_hypervisor_regs(env); |
| } |
| env->mstatus = set_field(env->mstatus, MSTATUS_MPV, |
| env->virt_enabled); |
| if (env->virt_enabled && tval) { |
| env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1); |
| } |
| |
| mtval2 = env->guest_phys_fault_addr; |
| |
| /* Trapping to M mode, virt is disabled */ |
| riscv_cpu_set_virt_enabled(env, 0); |
| } |
| |
| s = env->mstatus; |
| s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE)); |
| s = set_field(s, MSTATUS_MPP, env->priv); |
| s = set_field(s, MSTATUS_MIE, 0); |
| env->mstatus = s; |
| env->mcause = cause | ~(((target_ulong)-1) >> async); |
| env->mepc = env->pc; |
| env->mtval = tval; |
| env->mtval2 = mtval2; |
| env->mtinst = tinst; |
| env->pc = (env->mtvec >> 2 << 2) + |
| ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0); |
| riscv_cpu_set_mode(env, PRV_M); |
| } |
| |
| /* |
| * NOTE: it is not necessary to yield load reservations here. It is only |
| * necessary for an SC from "another hart" to cause a load reservation |
| * to be yielded. Refer to the memory consistency model section of the |
| * RISC-V ISA Specification. |
| */ |
| |
| env->two_stage_lookup = false; |
| env->two_stage_indirect_lookup = false; |
| #endif |
| cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */ |
| } |