| /* |
| * QEMU 16550A UART emulation |
| * |
| * Copyright (c) 2003-2004 Fabrice Bellard |
| * Copyright (c) 2008 Citrix Systems, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| #include "hw.h" |
| #include "qemu-char.h" |
| #include "isa.h" |
| #include "pc.h" |
| #include "qemu-timer.h" |
| #include "sysemu.h" |
| |
| //#define DEBUG_SERIAL |
| |
| #define UART_LCR_DLAB 0x80 /* Divisor latch access bit */ |
| |
| #define UART_IER_MSI 0x08 /* Enable Modem status interrupt */ |
| #define UART_IER_RLSI 0x04 /* Enable receiver line status interrupt */ |
| #define UART_IER_THRI 0x02 /* Enable Transmitter holding register int. */ |
| #define UART_IER_RDI 0x01 /* Enable receiver data interrupt */ |
| |
| #define UART_IIR_NO_INT 0x01 /* No interrupts pending */ |
| #define UART_IIR_ID 0x06 /* Mask for the interrupt ID */ |
| |
| #define UART_IIR_MSI 0x00 /* Modem status interrupt */ |
| #define UART_IIR_THRI 0x02 /* Transmitter holding register empty */ |
| #define UART_IIR_RDI 0x04 /* Receiver data interrupt */ |
| #define UART_IIR_RLSI 0x06 /* Receiver line status interrupt */ |
| #define UART_IIR_CTI 0x0C /* Character Timeout Indication */ |
| |
| #define UART_IIR_FENF 0x80 /* Fifo enabled, but not functionning */ |
| #define UART_IIR_FE 0xC0 /* Fifo enabled */ |
| |
| /* |
| * These are the definitions for the Modem Control Register |
| */ |
| #define UART_MCR_LOOP 0x10 /* Enable loopback test mode */ |
| #define UART_MCR_OUT2 0x08 /* Out2 complement */ |
| #define UART_MCR_OUT1 0x04 /* Out1 complement */ |
| #define UART_MCR_RTS 0x02 /* RTS complement */ |
| #define UART_MCR_DTR 0x01 /* DTR complement */ |
| |
| /* |
| * These are the definitions for the Modem Status Register |
| */ |
| #define UART_MSR_DCD 0x80 /* Data Carrier Detect */ |
| #define UART_MSR_RI 0x40 /* Ring Indicator */ |
| #define UART_MSR_DSR 0x20 /* Data Set Ready */ |
| #define UART_MSR_CTS 0x10 /* Clear to Send */ |
| #define UART_MSR_DDCD 0x08 /* Delta DCD */ |
| #define UART_MSR_TERI 0x04 /* Trailing edge ring indicator */ |
| #define UART_MSR_DDSR 0x02 /* Delta DSR */ |
| #define UART_MSR_DCTS 0x01 /* Delta CTS */ |
| #define UART_MSR_ANY_DELTA 0x0F /* Any of the delta bits! */ |
| |
| #define UART_LSR_TEMT 0x40 /* Transmitter empty */ |
| #define UART_LSR_THRE 0x20 /* Transmit-hold-register empty */ |
| #define UART_LSR_BI 0x10 /* Break interrupt indicator */ |
| #define UART_LSR_FE 0x08 /* Frame error indicator */ |
| #define UART_LSR_PE 0x04 /* Parity error indicator */ |
| #define UART_LSR_OE 0x02 /* Overrun error indicator */ |
| #define UART_LSR_DR 0x01 /* Receiver data ready */ |
| #define UART_LSR_INT_ANY 0x1E /* Any of the lsr-interrupt-triggering status bits */ |
| |
| /* Interrupt trigger levels. The byte-counts are for 16550A - in newer UARTs the byte-count for each ITL is higher. */ |
| |
| #define UART_FCR_ITL_1 0x00 /* 1 byte ITL */ |
| #define UART_FCR_ITL_2 0x40 /* 4 bytes ITL */ |
| #define UART_FCR_ITL_3 0x80 /* 8 bytes ITL */ |
| #define UART_FCR_ITL_4 0xC0 /* 14 bytes ITL */ |
| |
| #define UART_FCR_DMS 0x08 /* DMA Mode Select */ |
| #define UART_FCR_XFR 0x04 /* XMIT Fifo Reset */ |
| #define UART_FCR_RFR 0x02 /* RCVR Fifo Reset */ |
| #define UART_FCR_FE 0x01 /* FIFO Enable */ |
| |
| #define UART_FIFO_LENGTH 16 /* 16550A Fifo Length */ |
| |
| #define XMIT_FIFO 0 |
| #define RECV_FIFO 1 |
| #define MAX_XMIT_RETRY 4 |
| |
| #ifdef DEBUG_SERIAL |
| #define DPRINTF(fmt, ...) \ |
| do { fprintf(stderr, "serial: " fmt , ## __VA_ARGS__); } while (0) |
| #else |
| #define DPRINTF(fmt, ...) \ |
| do {} while (0) |
| #endif |
| |
| typedef struct SerialFIFO { |
| uint8_t data[UART_FIFO_LENGTH]; |
| uint8_t count; |
| uint8_t itl; /* Interrupt Trigger Level */ |
| uint8_t tail; |
| uint8_t head; |
| } SerialFIFO; |
| |
| struct SerialState { |
| uint16_t divider; |
| uint8_t rbr; /* receive register */ |
| uint8_t thr; /* transmit holding register */ |
| uint8_t tsr; /* transmit shift register */ |
| uint8_t ier; |
| uint8_t iir; /* read only */ |
| uint8_t lcr; |
| uint8_t mcr; |
| uint8_t lsr; /* read only */ |
| uint8_t msr; /* read only */ |
| uint8_t scr; |
| uint8_t fcr; |
| uint8_t fcr_vmstate; /* we can't write directly this value |
| it has side effects */ |
| /* NOTE: this hidden state is necessary for tx irq generation as |
| it can be reset while reading iir */ |
| int thr_ipending; |
| qemu_irq irq; |
| CharDriverState *chr; |
| int last_break_enable; |
| int it_shift; |
| int baudbase; |
| int tsr_retry; |
| |
| uint64_t last_xmit_ts; /* Time when the last byte was successfully sent out of the tsr */ |
| SerialFIFO recv_fifo; |
| SerialFIFO xmit_fifo; |
| |
| struct QEMUTimer *fifo_timeout_timer; |
| int timeout_ipending; /* timeout interrupt pending state */ |
| struct QEMUTimer *transmit_timer; |
| |
| |
| uint64_t char_transmit_time; /* time to transmit a char in ticks*/ |
| int poll_msl; |
| |
| struct QEMUTimer *modem_status_poll; |
| }; |
| |
| typedef struct ISASerialState { |
| ISADevice dev; |
| uint32_t index; |
| uint32_t iobase; |
| uint32_t isairq; |
| SerialState state; |
| } ISASerialState; |
| |
| static void serial_receive1(void *opaque, const uint8_t *buf, int size); |
| |
| static void fifo_clear(SerialState *s, int fifo) |
| { |
| SerialFIFO *f = (fifo) ? &s->recv_fifo : &s->xmit_fifo; |
| memset(f->data, 0, UART_FIFO_LENGTH); |
| f->count = 0; |
| f->head = 0; |
| f->tail = 0; |
| } |
| |
| static int fifo_put(SerialState *s, int fifo, uint8_t chr) |
| { |
| SerialFIFO *f = (fifo) ? &s->recv_fifo : &s->xmit_fifo; |
| |
| /* Receive overruns do not overwrite FIFO contents. */ |
| if (fifo == XMIT_FIFO || f->count < UART_FIFO_LENGTH) { |
| |
| f->data[f->head++] = chr; |
| |
| if (f->head == UART_FIFO_LENGTH) |
| f->head = 0; |
| } |
| |
| if (f->count < UART_FIFO_LENGTH) |
| f->count++; |
| else if (fifo == RECV_FIFO) |
| s->lsr |= UART_LSR_OE; |
| |
| return 1; |
| } |
| |
| static uint8_t fifo_get(SerialState *s, int fifo) |
| { |
| SerialFIFO *f = (fifo) ? &s->recv_fifo : &s->xmit_fifo; |
| uint8_t c; |
| |
| if(f->count == 0) |
| return 0; |
| |
| c = f->data[f->tail++]; |
| if (f->tail == UART_FIFO_LENGTH) |
| f->tail = 0; |
| f->count--; |
| |
| return c; |
| } |
| |
| static void serial_update_irq(SerialState *s) |
| { |
| uint8_t tmp_iir = UART_IIR_NO_INT; |
| |
| if ((s->ier & UART_IER_RLSI) && (s->lsr & UART_LSR_INT_ANY)) { |
| tmp_iir = UART_IIR_RLSI; |
| } else if ((s->ier & UART_IER_RDI) && s->timeout_ipending) { |
| /* Note that(s->ier & UART_IER_RDI) can mask this interrupt, |
| * this is not in the specification but is observed on existing |
| * hardware. */ |
| tmp_iir = UART_IIR_CTI; |
| } else if ((s->ier & UART_IER_RDI) && (s->lsr & UART_LSR_DR) && |
| (!(s->fcr & UART_FCR_FE) || |
| s->recv_fifo.count >= s->recv_fifo.itl)) { |
| tmp_iir = UART_IIR_RDI; |
| } else if ((s->ier & UART_IER_THRI) && s->thr_ipending) { |
| tmp_iir = UART_IIR_THRI; |
| } else if ((s->ier & UART_IER_MSI) && (s->msr & UART_MSR_ANY_DELTA)) { |
| tmp_iir = UART_IIR_MSI; |
| } |
| |
| s->iir = tmp_iir | (s->iir & 0xF0); |
| |
| if (tmp_iir != UART_IIR_NO_INT) { |
| qemu_irq_raise(s->irq); |
| } else { |
| qemu_irq_lower(s->irq); |
| } |
| } |
| |
| static void serial_update_parameters(SerialState *s) |
| { |
| int speed, parity, data_bits, stop_bits, frame_size; |
| QEMUSerialSetParams ssp; |
| |
| if (s->divider == 0) |
| return; |
| |
| /* Start bit. */ |
| frame_size = 1; |
| if (s->lcr & 0x08) { |
| /* Parity bit. */ |
| frame_size++; |
| if (s->lcr & 0x10) |
| parity = 'E'; |
| else |
| parity = 'O'; |
| } else { |
| parity = 'N'; |
| } |
| if (s->lcr & 0x04) |
| stop_bits = 2; |
| else |
| stop_bits = 1; |
| |
| data_bits = (s->lcr & 0x03) + 5; |
| frame_size += data_bits + stop_bits; |
| speed = s->baudbase / s->divider; |
| ssp.speed = speed; |
| ssp.parity = parity; |
| ssp.data_bits = data_bits; |
| ssp.stop_bits = stop_bits; |
| s->char_transmit_time = (get_ticks_per_sec() / speed) * frame_size; |
| qemu_chr_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp); |
| |
| DPRINTF("speed=%d parity=%c data=%d stop=%d\n", |
| speed, parity, data_bits, stop_bits); |
| } |
| |
| static void serial_update_msl(SerialState *s) |
| { |
| uint8_t omsr; |
| int flags; |
| |
| qemu_del_timer(s->modem_status_poll); |
| |
| if (qemu_chr_ioctl(s->chr,CHR_IOCTL_SERIAL_GET_TIOCM, &flags) == -ENOTSUP) { |
| s->poll_msl = -1; |
| return; |
| } |
| |
| omsr = s->msr; |
| |
| s->msr = (flags & CHR_TIOCM_CTS) ? s->msr | UART_MSR_CTS : s->msr & ~UART_MSR_CTS; |
| s->msr = (flags & CHR_TIOCM_DSR) ? s->msr | UART_MSR_DSR : s->msr & ~UART_MSR_DSR; |
| s->msr = (flags & CHR_TIOCM_CAR) ? s->msr | UART_MSR_DCD : s->msr & ~UART_MSR_DCD; |
| s->msr = (flags & CHR_TIOCM_RI) ? s->msr | UART_MSR_RI : s->msr & ~UART_MSR_RI; |
| |
| if (s->msr != omsr) { |
| /* Set delta bits */ |
| s->msr = s->msr | ((s->msr >> 4) ^ (omsr >> 4)); |
| /* UART_MSR_TERI only if change was from 1 -> 0 */ |
| if ((s->msr & UART_MSR_TERI) && !(omsr & UART_MSR_RI)) |
| s->msr &= ~UART_MSR_TERI; |
| serial_update_irq(s); |
| } |
| |
| /* The real 16550A apparently has a 250ns response latency to line status changes. |
| We'll be lazy and poll only every 10ms, and only poll it at all if MSI interrupts are turned on */ |
| |
| if (s->poll_msl) |
| qemu_mod_timer(s->modem_status_poll, qemu_get_clock(vm_clock) + get_ticks_per_sec() / 100); |
| } |
| |
| static void serial_xmit(void *opaque) |
| { |
| SerialState *s = opaque; |
| uint64_t new_xmit_ts = qemu_get_clock(vm_clock); |
| |
| if (s->tsr_retry <= 0) { |
| if (s->fcr & UART_FCR_FE) { |
| s->tsr = fifo_get(s,XMIT_FIFO); |
| if (!s->xmit_fifo.count) |
| s->lsr |= UART_LSR_THRE; |
| } else { |
| s->tsr = s->thr; |
| s->lsr |= UART_LSR_THRE; |
| } |
| } |
| |
| if (s->mcr & UART_MCR_LOOP) { |
| /* in loopback mode, say that we just received a char */ |
| serial_receive1(s, &s->tsr, 1); |
| } else if (qemu_chr_write(s->chr, &s->tsr, 1) != 1) { |
| if ((s->tsr_retry > 0) && (s->tsr_retry <= MAX_XMIT_RETRY)) { |
| s->tsr_retry++; |
| qemu_mod_timer(s->transmit_timer, new_xmit_ts + s->char_transmit_time); |
| return; |
| } else if (s->poll_msl < 0) { |
| /* If we exceed MAX_XMIT_RETRY and the backend is not a real serial port, then |
| drop any further failed writes instantly, until we get one that goes through. |
| This is to prevent guests that log to unconnected pipes or pty's from stalling. */ |
| s->tsr_retry = -1; |
| } |
| } |
| else { |
| s->tsr_retry = 0; |
| } |
| |
| s->last_xmit_ts = qemu_get_clock(vm_clock); |
| if (!(s->lsr & UART_LSR_THRE)) |
| qemu_mod_timer(s->transmit_timer, s->last_xmit_ts + s->char_transmit_time); |
| |
| if (s->lsr & UART_LSR_THRE) { |
| s->lsr |= UART_LSR_TEMT; |
| s->thr_ipending = 1; |
| serial_update_irq(s); |
| } |
| } |
| |
| |
| static void serial_ioport_write(void *opaque, uint32_t addr, uint32_t val) |
| { |
| SerialState *s = opaque; |
| |
| addr &= 7; |
| DPRINTF("write addr=0x%02x val=0x%02x\n", addr, val); |
| switch(addr) { |
| default: |
| case 0: |
| if (s->lcr & UART_LCR_DLAB) { |
| s->divider = (s->divider & 0xff00) | val; |
| serial_update_parameters(s); |
| } else { |
| s->thr = (uint8_t) val; |
| if(s->fcr & UART_FCR_FE) { |
| fifo_put(s, XMIT_FIFO, s->thr); |
| s->thr_ipending = 0; |
| s->lsr &= ~UART_LSR_TEMT; |
| s->lsr &= ~UART_LSR_THRE; |
| serial_update_irq(s); |
| } else { |
| s->thr_ipending = 0; |
| s->lsr &= ~UART_LSR_THRE; |
| serial_update_irq(s); |
| } |
| serial_xmit(s); |
| } |
| break; |
| case 1: |
| if (s->lcr & UART_LCR_DLAB) { |
| s->divider = (s->divider & 0x00ff) | (val << 8); |
| serial_update_parameters(s); |
| } else { |
| s->ier = val & 0x0f; |
| /* If the backend device is a real serial port, turn polling of the modem |
| status lines on physical port on or off depending on UART_IER_MSI state */ |
| if (s->poll_msl >= 0) { |
| if (s->ier & UART_IER_MSI) { |
| s->poll_msl = 1; |
| serial_update_msl(s); |
| } else { |
| qemu_del_timer(s->modem_status_poll); |
| s->poll_msl = 0; |
| } |
| } |
| if (s->lsr & UART_LSR_THRE) { |
| s->thr_ipending = 1; |
| serial_update_irq(s); |
| } |
| } |
| break; |
| case 2: |
| val = val & 0xFF; |
| |
| if (s->fcr == val) |
| break; |
| |
| /* Did the enable/disable flag change? If so, make sure FIFOs get flushed */ |
| if ((val ^ s->fcr) & UART_FCR_FE) |
| val |= UART_FCR_XFR | UART_FCR_RFR; |
| |
| /* FIFO clear */ |
| |
| if (val & UART_FCR_RFR) { |
| qemu_del_timer(s->fifo_timeout_timer); |
| s->timeout_ipending=0; |
| fifo_clear(s,RECV_FIFO); |
| } |
| |
| if (val & UART_FCR_XFR) { |
| fifo_clear(s,XMIT_FIFO); |
| } |
| |
| if (val & UART_FCR_FE) { |
| s->iir |= UART_IIR_FE; |
| /* Set RECV_FIFO trigger Level */ |
| switch (val & 0xC0) { |
| case UART_FCR_ITL_1: |
| s->recv_fifo.itl = 1; |
| break; |
| case UART_FCR_ITL_2: |
| s->recv_fifo.itl = 4; |
| break; |
| case UART_FCR_ITL_3: |
| s->recv_fifo.itl = 8; |
| break; |
| case UART_FCR_ITL_4: |
| s->recv_fifo.itl = 14; |
| break; |
| } |
| } else |
| s->iir &= ~UART_IIR_FE; |
| |
| /* Set fcr - or at least the bits in it that are supposed to "stick" */ |
| s->fcr = val & 0xC9; |
| serial_update_irq(s); |
| break; |
| case 3: |
| { |
| int break_enable; |
| s->lcr = val; |
| serial_update_parameters(s); |
| break_enable = (val >> 6) & 1; |
| if (break_enable != s->last_break_enable) { |
| s->last_break_enable = break_enable; |
| qemu_chr_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK, |
| &break_enable); |
| } |
| } |
| break; |
| case 4: |
| { |
| int flags; |
| int old_mcr = s->mcr; |
| s->mcr = val & 0x1f; |
| if (val & UART_MCR_LOOP) |
| break; |
| |
| if (s->poll_msl >= 0 && old_mcr != s->mcr) { |
| |
| qemu_chr_ioctl(s->chr,CHR_IOCTL_SERIAL_GET_TIOCM, &flags); |
| |
| flags &= ~(CHR_TIOCM_RTS | CHR_TIOCM_DTR); |
| |
| if (val & UART_MCR_RTS) |
| flags |= CHR_TIOCM_RTS; |
| if (val & UART_MCR_DTR) |
| flags |= CHR_TIOCM_DTR; |
| |
| qemu_chr_ioctl(s->chr,CHR_IOCTL_SERIAL_SET_TIOCM, &flags); |
| /* Update the modem status after a one-character-send wait-time, since there may be a response |
| from the device/computer at the other end of the serial line */ |
| qemu_mod_timer(s->modem_status_poll, qemu_get_clock(vm_clock) + s->char_transmit_time); |
| } |
| } |
| break; |
| case 5: |
| break; |
| case 6: |
| break; |
| case 7: |
| s->scr = val; |
| break; |
| } |
| } |
| |
| static uint32_t serial_ioport_read(void *opaque, uint32_t addr) |
| { |
| SerialState *s = opaque; |
| uint32_t ret; |
| |
| addr &= 7; |
| switch(addr) { |
| default: |
| case 0: |
| if (s->lcr & UART_LCR_DLAB) { |
| ret = s->divider & 0xff; |
| } else { |
| if(s->fcr & UART_FCR_FE) { |
| ret = fifo_get(s,RECV_FIFO); |
| if (s->recv_fifo.count == 0) |
| s->lsr &= ~(UART_LSR_DR | UART_LSR_BI); |
| else |
| qemu_mod_timer(s->fifo_timeout_timer, qemu_get_clock (vm_clock) + s->char_transmit_time * 4); |
| s->timeout_ipending = 0; |
| } else { |
| ret = s->rbr; |
| s->lsr &= ~(UART_LSR_DR | UART_LSR_BI); |
| } |
| serial_update_irq(s); |
| if (!(s->mcr & UART_MCR_LOOP)) { |
| /* in loopback mode, don't receive any data */ |
| qemu_chr_accept_input(s->chr); |
| } |
| } |
| break; |
| case 1: |
| if (s->lcr & UART_LCR_DLAB) { |
| ret = (s->divider >> 8) & 0xff; |
| } else { |
| ret = s->ier; |
| } |
| break; |
| case 2: |
| ret = s->iir; |
| if ((ret & UART_IIR_ID) == UART_IIR_THRI) { |
| s->thr_ipending = 0; |
| serial_update_irq(s); |
| } |
| break; |
| case 3: |
| ret = s->lcr; |
| break; |
| case 4: |
| ret = s->mcr; |
| break; |
| case 5: |
| ret = s->lsr; |
| /* Clear break and overrun interrupts */ |
| if (s->lsr & (UART_LSR_BI|UART_LSR_OE)) { |
| s->lsr &= ~(UART_LSR_BI|UART_LSR_OE); |
| serial_update_irq(s); |
| } |
| break; |
| case 6: |
| if (s->mcr & UART_MCR_LOOP) { |
| /* in loopback, the modem output pins are connected to the |
| inputs */ |
| ret = (s->mcr & 0x0c) << 4; |
| ret |= (s->mcr & 0x02) << 3; |
| ret |= (s->mcr & 0x01) << 5; |
| } else { |
| if (s->poll_msl >= 0) |
| serial_update_msl(s); |
| ret = s->msr; |
| /* Clear delta bits & msr int after read, if they were set */ |
| if (s->msr & UART_MSR_ANY_DELTA) { |
| s->msr &= 0xF0; |
| serial_update_irq(s); |
| } |
| } |
| break; |
| case 7: |
| ret = s->scr; |
| break; |
| } |
| DPRINTF("read addr=0x%02x val=0x%02x\n", addr, ret); |
| return ret; |
| } |
| |
| static int serial_can_receive(SerialState *s) |
| { |
| if(s->fcr & UART_FCR_FE) { |
| if(s->recv_fifo.count < UART_FIFO_LENGTH) |
| /* Advertise (fifo.itl - fifo.count) bytes when count < ITL, and 1 if above. If UART_FIFO_LENGTH - fifo.count is |
| advertised the effect will be to almost always fill the fifo completely before the guest has a chance to respond, |
| effectively overriding the ITL that the guest has set. */ |
| return (s->recv_fifo.count <= s->recv_fifo.itl) ? s->recv_fifo.itl - s->recv_fifo.count : 1; |
| else |
| return 0; |
| } else { |
| return !(s->lsr & UART_LSR_DR); |
| } |
| } |
| |
| static void serial_receive_break(SerialState *s) |
| { |
| s->rbr = 0; |
| /* When the LSR_DR is set a null byte is pushed into the fifo */ |
| fifo_put(s, RECV_FIFO, '\0'); |
| s->lsr |= UART_LSR_BI | UART_LSR_DR; |
| serial_update_irq(s); |
| } |
| |
| /* There's data in recv_fifo and s->rbr has not been read for 4 char transmit times */ |
| static void fifo_timeout_int (void *opaque) { |
| SerialState *s = opaque; |
| if (s->recv_fifo.count) { |
| s->timeout_ipending = 1; |
| serial_update_irq(s); |
| } |
| } |
| |
| static int serial_can_receive1(void *opaque) |
| { |
| SerialState *s = opaque; |
| return serial_can_receive(s); |
| } |
| |
| static void serial_receive1(void *opaque, const uint8_t *buf, int size) |
| { |
| SerialState *s = opaque; |
| if(s->fcr & UART_FCR_FE) { |
| int i; |
| for (i = 0; i < size; i++) { |
| fifo_put(s, RECV_FIFO, buf[i]); |
| } |
| s->lsr |= UART_LSR_DR; |
| /* call the timeout receive callback in 4 char transmit time */ |
| qemu_mod_timer(s->fifo_timeout_timer, qemu_get_clock (vm_clock) + s->char_transmit_time * 4); |
| } else { |
| if (s->lsr & UART_LSR_DR) |
| s->lsr |= UART_LSR_OE; |
| s->rbr = buf[0]; |
| s->lsr |= UART_LSR_DR; |
| } |
| serial_update_irq(s); |
| } |
| |
| static void serial_event(void *opaque, int event) |
| { |
| SerialState *s = opaque; |
| DPRINTF("event %x\n", event); |
| if (event == CHR_EVENT_BREAK) |
| serial_receive_break(s); |
| } |
| |
| static void serial_pre_save(void *opaque) |
| { |
| SerialState *s = opaque; |
| s->fcr_vmstate = s->fcr; |
| } |
| |
| static int serial_post_load(void *opaque, int version_id) |
| { |
| SerialState *s = opaque; |
| |
| if (version_id < 3) { |
| s->fcr_vmstate = 0; |
| } |
| /* Initialize fcr via setter to perform essential side-effects */ |
| serial_ioport_write(s, 0x02, s->fcr_vmstate); |
| serial_update_parameters(s); |
| return 0; |
| } |
| |
| static const VMStateDescription vmstate_serial = { |
| .name = "serial", |
| .version_id = 3, |
| .minimum_version_id = 2, |
| .pre_save = serial_pre_save, |
| .post_load = serial_post_load, |
| .fields = (VMStateField []) { |
| VMSTATE_UINT16_V(divider, SerialState, 2), |
| VMSTATE_UINT8(rbr, SerialState), |
| VMSTATE_UINT8(ier, SerialState), |
| VMSTATE_UINT8(iir, SerialState), |
| VMSTATE_UINT8(lcr, SerialState), |
| VMSTATE_UINT8(mcr, SerialState), |
| VMSTATE_UINT8(lsr, SerialState), |
| VMSTATE_UINT8(msr, SerialState), |
| VMSTATE_UINT8(scr, SerialState), |
| VMSTATE_UINT8_V(fcr_vmstate, SerialState, 3), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static void serial_reset(void *opaque) |
| { |
| SerialState *s = opaque; |
| |
| s->rbr = 0; |
| s->ier = 0; |
| s->iir = UART_IIR_NO_INT; |
| s->lcr = 0; |
| s->lsr = UART_LSR_TEMT | UART_LSR_THRE; |
| s->msr = UART_MSR_DCD | UART_MSR_DSR | UART_MSR_CTS; |
| /* Default to 9600 baud, 1 start bit, 8 data bits, 1 stop bit, no parity. */ |
| s->divider = 0x0C; |
| s->mcr = UART_MCR_OUT2; |
| s->scr = 0; |
| s->tsr_retry = 0; |
| s->char_transmit_time = (get_ticks_per_sec() / 9600) * 10; |
| s->poll_msl = 0; |
| |
| fifo_clear(s,RECV_FIFO); |
| fifo_clear(s,XMIT_FIFO); |
| |
| s->last_xmit_ts = qemu_get_clock(vm_clock); |
| |
| s->thr_ipending = 0; |
| s->last_break_enable = 0; |
| qemu_irq_lower(s->irq); |
| } |
| |
| static void serial_init_core(SerialState *s) |
| { |
| if (!s->chr) { |
| fprintf(stderr, "Can't create serial device, empty char device\n"); |
| exit(1); |
| } |
| |
| s->modem_status_poll = qemu_new_timer(vm_clock, (QEMUTimerCB *) serial_update_msl, s); |
| |
| s->fifo_timeout_timer = qemu_new_timer(vm_clock, (QEMUTimerCB *) fifo_timeout_int, s); |
| s->transmit_timer = qemu_new_timer(vm_clock, (QEMUTimerCB *) serial_xmit, s); |
| |
| qemu_register_reset(serial_reset, s); |
| |
| qemu_chr_add_handlers(s->chr, serial_can_receive1, serial_receive1, |
| serial_event, s); |
| } |
| |
| /* Change the main reference oscillator frequency. */ |
| void serial_set_frequency(SerialState *s, uint32_t frequency) |
| { |
| s->baudbase = frequency; |
| serial_update_parameters(s); |
| } |
| |
| static const int isa_serial_io[MAX_SERIAL_PORTS] = { 0x3f8, 0x2f8, 0x3e8, 0x2e8 }; |
| static const int isa_serial_irq[MAX_SERIAL_PORTS] = { 4, 3, 4, 3 }; |
| |
| static int serial_isa_initfn(ISADevice *dev) |
| { |
| static int index; |
| ISASerialState *isa = DO_UPCAST(ISASerialState, dev, dev); |
| SerialState *s = &isa->state; |
| |
| if (isa->index == -1) |
| isa->index = index; |
| if (isa->index >= MAX_SERIAL_PORTS) |
| return -1; |
| if (isa->iobase == -1) |
| isa->iobase = isa_serial_io[isa->index]; |
| if (isa->isairq == -1) |
| isa->isairq = isa_serial_irq[isa->index]; |
| index++; |
| |
| s->baudbase = 115200; |
| isa_init_irq(dev, &s->irq, isa->isairq); |
| serial_init_core(s); |
| qdev_set_legacy_instance_id(&dev->qdev, isa->iobase, 3); |
| |
| register_ioport_write(isa->iobase, 8, 1, serial_ioport_write, s); |
| register_ioport_read(isa->iobase, 8, 1, serial_ioport_read, s); |
| return 0; |
| } |
| |
| SerialState *serial_isa_init(int index, CharDriverState *chr) |
| { |
| ISADevice *dev; |
| |
| dev = isa_create("isa-serial"); |
| qdev_prop_set_uint32(&dev->qdev, "index", index); |
| qdev_prop_set_chr(&dev->qdev, "chardev", chr); |
| if (qdev_init(&dev->qdev) < 0) |
| return NULL; |
| return &DO_UPCAST(ISASerialState, dev, dev)->state; |
| } |
| |
| static const VMStateDescription vmstate_isa_serial = { |
| .name = "serial", |
| .version_id = 3, |
| .minimum_version_id = 2, |
| .fields = (VMStateField []) { |
| VMSTATE_STRUCT(state, ISASerialState, 0, vmstate_serial, SerialState), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| SerialState *serial_init(int base, qemu_irq irq, int baudbase, |
| CharDriverState *chr) |
| { |
| SerialState *s; |
| |
| s = qemu_mallocz(sizeof(SerialState)); |
| |
| s->irq = irq; |
| s->baudbase = baudbase; |
| s->chr = chr; |
| serial_init_core(s); |
| |
| vmstate_register(NULL, base, &vmstate_serial, s); |
| |
| register_ioport_write(base, 8, 1, serial_ioport_write, s); |
| register_ioport_read(base, 8, 1, serial_ioport_read, s); |
| return s; |
| } |
| |
| /* Memory mapped interface */ |
| static uint32_t serial_mm_readb(void *opaque, target_phys_addr_t addr) |
| { |
| SerialState *s = opaque; |
| |
| return serial_ioport_read(s, addr >> s->it_shift) & 0xFF; |
| } |
| |
| static void serial_mm_writeb(void *opaque, target_phys_addr_t addr, |
| uint32_t value) |
| { |
| SerialState *s = opaque; |
| |
| serial_ioport_write(s, addr >> s->it_shift, value & 0xFF); |
| } |
| |
| static uint32_t serial_mm_readw_be(void *opaque, target_phys_addr_t addr) |
| { |
| SerialState *s = opaque; |
| uint32_t val; |
| |
| val = serial_ioport_read(s, addr >> s->it_shift) & 0xFFFF; |
| val = bswap16(val); |
| return val; |
| } |
| |
| static uint32_t serial_mm_readw_le(void *opaque, target_phys_addr_t addr) |
| { |
| SerialState *s = opaque; |
| uint32_t val; |
| |
| val = serial_ioport_read(s, addr >> s->it_shift) & 0xFFFF; |
| return val; |
| } |
| |
| static void serial_mm_writew_be(void *opaque, target_phys_addr_t addr, |
| uint32_t value) |
| { |
| SerialState *s = opaque; |
| |
| value = bswap16(value); |
| serial_ioport_write(s, addr >> s->it_shift, value & 0xFFFF); |
| } |
| |
| static void serial_mm_writew_le(void *opaque, target_phys_addr_t addr, |
| uint32_t value) |
| { |
| SerialState *s = opaque; |
| |
| serial_ioport_write(s, addr >> s->it_shift, value & 0xFFFF); |
| } |
| |
| static uint32_t serial_mm_readl_be(void *opaque, target_phys_addr_t addr) |
| { |
| SerialState *s = opaque; |
| uint32_t val; |
| |
| val = serial_ioport_read(s, addr >> s->it_shift); |
| val = bswap32(val); |
| return val; |
| } |
| |
| static uint32_t serial_mm_readl_le(void *opaque, target_phys_addr_t addr) |
| { |
| SerialState *s = opaque; |
| uint32_t val; |
| |
| val = serial_ioport_read(s, addr >> s->it_shift); |
| return val; |
| } |
| |
| static void serial_mm_writel_be(void *opaque, target_phys_addr_t addr, |
| uint32_t value) |
| { |
| SerialState *s = opaque; |
| |
| value = bswap32(value); |
| serial_ioport_write(s, addr >> s->it_shift, value); |
| } |
| |
| static void serial_mm_writel_le(void *opaque, target_phys_addr_t addr, |
| uint32_t value) |
| { |
| SerialState *s = opaque; |
| |
| serial_ioport_write(s, addr >> s->it_shift, value); |
| } |
| |
| static CPUReadMemoryFunc * const serial_mm_read_be[] = { |
| &serial_mm_readb, |
| &serial_mm_readw_be, |
| &serial_mm_readl_be, |
| }; |
| |
| static CPUWriteMemoryFunc * const serial_mm_write_be[] = { |
| &serial_mm_writeb, |
| &serial_mm_writew_be, |
| &serial_mm_writel_be, |
| }; |
| |
| static CPUReadMemoryFunc * const serial_mm_read_le[] = { |
| &serial_mm_readb, |
| &serial_mm_readw_le, |
| &serial_mm_readl_le, |
| }; |
| |
| static CPUWriteMemoryFunc * const serial_mm_write_le[] = { |
| &serial_mm_writeb, |
| &serial_mm_writew_le, |
| &serial_mm_writel_le, |
| }; |
| |
| SerialState *serial_mm_init (target_phys_addr_t base, int it_shift, |
| qemu_irq irq, int baudbase, |
| CharDriverState *chr, int ioregister, |
| int be) |
| { |
| SerialState *s; |
| int s_io_memory; |
| |
| s = qemu_mallocz(sizeof(SerialState)); |
| |
| s->it_shift = it_shift; |
| s->irq = irq; |
| s->baudbase = baudbase; |
| s->chr = chr; |
| |
| serial_init_core(s); |
| vmstate_register(NULL, base, &vmstate_serial, s); |
| |
| if (ioregister) { |
| if (be) { |
| s_io_memory = cpu_register_io_memory(serial_mm_read_be, |
| serial_mm_write_be, s); |
| } else { |
| s_io_memory = cpu_register_io_memory(serial_mm_read_le, |
| serial_mm_write_le, s); |
| } |
| cpu_register_physical_memory(base, 8 << it_shift, s_io_memory); |
| } |
| serial_update_msl(s); |
| return s; |
| } |
| |
| static ISADeviceInfo serial_isa_info = { |
| .qdev.name = "isa-serial", |
| .qdev.size = sizeof(ISASerialState), |
| .qdev.vmsd = &vmstate_isa_serial, |
| .init = serial_isa_initfn, |
| .qdev.props = (Property[]) { |
| DEFINE_PROP_UINT32("index", ISASerialState, index, -1), |
| DEFINE_PROP_HEX32("iobase", ISASerialState, iobase, -1), |
| DEFINE_PROP_UINT32("irq", ISASerialState, isairq, -1), |
| DEFINE_PROP_CHR("chardev", ISASerialState, state.chr), |
| DEFINE_PROP_END_OF_LIST(), |
| }, |
| }; |
| |
| static void serial_register_devices(void) |
| { |
| isa_qdev_register(&serial_isa_info); |
| } |
| |
| device_init(serial_register_devices) |