blob: 49a441f4517ea3f8ee7fc53f33c348c594545df9 [file] [log] [blame]
/*
* IMX GPT Timer
*
* Copyright (c) 2008 OK Labs
* Copyright (c) 2011 NICTA Pty Ltd
* Originally written by Hans Jiang
* Updated by Peter Chubb
* Updated by Jean-Christophe Dubois <jcd@tribudubois.net>
*
* This code is licensed under GPL version 2 or later. See
* the COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include "hw/irq.h"
#include "hw/timer/imx_gpt.h"
#include "migration/vmstate.h"
#include "qemu/main-loop.h"
#include "qemu/module.h"
#include "qemu/log.h"
#ifndef DEBUG_IMX_GPT
#define DEBUG_IMX_GPT 0
#endif
#define DPRINTF(fmt, args...) \
do { \
if (DEBUG_IMX_GPT) { \
fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_GPT, \
__func__, ##args); \
} \
} while (0)
static const char *imx_gpt_reg_name(uint32_t reg)
{
switch (reg) {
case 0:
return "CR";
case 1:
return "PR";
case 2:
return "SR";
case 3:
return "IR";
case 4:
return "OCR1";
case 5:
return "OCR2";
case 6:
return "OCR3";
case 7:
return "ICR1";
case 8:
return "ICR2";
case 9:
return "CNT";
default:
return "[?]";
}
}
static const VMStateDescription vmstate_imx_timer_gpt = {
.name = TYPE_IMX_GPT,
.version_id = 3,
.minimum_version_id = 3,
.fields = (VMStateField[]) {
VMSTATE_UINT32(cr, IMXGPTState),
VMSTATE_UINT32(pr, IMXGPTState),
VMSTATE_UINT32(sr, IMXGPTState),
VMSTATE_UINT32(ir, IMXGPTState),
VMSTATE_UINT32(ocr1, IMXGPTState),
VMSTATE_UINT32(ocr2, IMXGPTState),
VMSTATE_UINT32(ocr3, IMXGPTState),
VMSTATE_UINT32(icr1, IMXGPTState),
VMSTATE_UINT32(icr2, IMXGPTState),
VMSTATE_UINT32(cnt, IMXGPTState),
VMSTATE_UINT32(next_timeout, IMXGPTState),
VMSTATE_UINT32(next_int, IMXGPTState),
VMSTATE_UINT32(freq, IMXGPTState),
VMSTATE_PTIMER(timer, IMXGPTState),
VMSTATE_END_OF_LIST()
}
};
static const IMXClk imx25_gpt_clocks[] = {
CLK_NONE, /* 000 No clock source */
CLK_IPG, /* 001 ipg_clk, 532MHz*/
CLK_IPG_HIGH, /* 010 ipg_clk_highfreq */
CLK_NONE, /* 011 not defined */
CLK_32k, /* 100 ipg_clk_32k */
CLK_32k, /* 101 ipg_clk_32k */
CLK_32k, /* 110 ipg_clk_32k */
CLK_32k, /* 111 ipg_clk_32k */
};
static const IMXClk imx31_gpt_clocks[] = {
CLK_NONE, /* 000 No clock source */
CLK_IPG, /* 001 ipg_clk, 532MHz*/
CLK_IPG_HIGH, /* 010 ipg_clk_highfreq */
CLK_NONE, /* 011 not defined */
CLK_32k, /* 100 ipg_clk_32k */
CLK_NONE, /* 101 not defined */
CLK_NONE, /* 110 not defined */
CLK_NONE, /* 111 not defined */
};
static const IMXClk imx6_gpt_clocks[] = {
CLK_NONE, /* 000 No clock source */
CLK_IPG, /* 001 ipg_clk, 532MHz*/
CLK_IPG_HIGH, /* 010 ipg_clk_highfreq */
CLK_EXT, /* 011 External clock */
CLK_32k, /* 100 ipg_clk_32k */
CLK_HIGH_DIV, /* 101 reference clock / 8 */
CLK_NONE, /* 110 not defined */
CLK_HIGH, /* 111 reference clock */
};
static const IMXClk imx7_gpt_clocks[] = {
CLK_NONE, /* 000 No clock source */
CLK_IPG, /* 001 ipg_clk, 532MHz*/
CLK_IPG_HIGH, /* 010 ipg_clk_highfreq */
CLK_EXT, /* 011 External clock */
CLK_32k, /* 100 ipg_clk_32k */
CLK_HIGH, /* 101 reference clock */
CLK_NONE, /* 110 not defined */
CLK_NONE, /* 111 not defined */
};
static void imx_gpt_set_freq(IMXGPTState *s)
{
uint32_t clksrc = extract32(s->cr, GPT_CR_CLKSRC_SHIFT, 3);
s->freq = imx_ccm_get_clock_frequency(s->ccm,
s->clocks[clksrc]) / (1 + s->pr);
DPRINTF("Setting clksrc %d to frequency %d\n", clksrc, s->freq);
if (s->freq) {
ptimer_set_freq(s->timer, s->freq);
}
}
static void imx_gpt_update_int(IMXGPTState *s)
{
if ((s->sr & s->ir) && (s->cr & GPT_CR_EN)) {
qemu_irq_raise(s->irq);
} else {
qemu_irq_lower(s->irq);
}
}
static uint32_t imx_gpt_update_count(IMXGPTState *s)
{
s->cnt = s->next_timeout - (uint32_t)ptimer_get_count(s->timer);
return s->cnt;
}
static inline uint32_t imx_gpt_find_limit(uint32_t count, uint32_t reg,
uint32_t timeout)
{
if ((count < reg) && (timeout > reg)) {
timeout = reg;
}
return timeout;
}
static void imx_gpt_compute_next_timeout(IMXGPTState *s, bool event)
{
uint32_t timeout = GPT_TIMER_MAX;
uint32_t count;
long long limit;
if (!(s->cr & GPT_CR_EN)) {
/* if not enabled just return */
return;
}
/* update the count */
count = imx_gpt_update_count(s);
if (event) {
/*
* This is an event (the ptimer reached 0 and stopped), and the
* timer counter is now equal to s->next_timeout.
*/
if (!(s->cr & GPT_CR_FRR) && (count == s->ocr1)) {
/* We are in restart mode and we crossed the compare channel 1
* value. We need to reset the counter to 0.
*/
count = s->cnt = s->next_timeout = 0;
} else if (count == GPT_TIMER_MAX) {
/* We reached GPT_TIMER_MAX so we need to rollover */
count = s->cnt = s->next_timeout = 0;
}
}
/* now, find the next timeout related to count */
if (s->ir & GPT_IR_OF1IE) {
timeout = imx_gpt_find_limit(count, s->ocr1, timeout);
}
if (s->ir & GPT_IR_OF2IE) {
timeout = imx_gpt_find_limit(count, s->ocr2, timeout);
}
if (s->ir & GPT_IR_OF3IE) {
timeout = imx_gpt_find_limit(count, s->ocr3, timeout);
}
/* find the next set of interrupts to raise for next timer event */
s->next_int = 0;
if ((s->ir & GPT_IR_OF1IE) && (timeout == s->ocr1)) {
s->next_int |= GPT_SR_OF1;
}
if ((s->ir & GPT_IR_OF2IE) && (timeout == s->ocr2)) {
s->next_int |= GPT_SR_OF2;
}
if ((s->ir & GPT_IR_OF3IE) && (timeout == s->ocr3)) {
s->next_int |= GPT_SR_OF3;
}
if ((s->ir & GPT_IR_ROVIE) && (timeout == GPT_TIMER_MAX)) {
s->next_int |= GPT_SR_ROV;
}
/* the new range to count down from */
limit = timeout - imx_gpt_update_count(s);
if (limit < 0) {
/*
* if we reach here, then QEMU is running too slow and we pass the
* timeout limit while computing it. Let's deliver the interrupt
* and compute a new limit.
*/
s->sr |= s->next_int;
imx_gpt_compute_next_timeout(s, event);
imx_gpt_update_int(s);
} else {
/* New timeout value */
s->next_timeout = timeout;
/* reset the limit to the computed range */
ptimer_set_limit(s->timer, limit, 1);
}
}
static uint64_t imx_gpt_read(void *opaque, hwaddr offset, unsigned size)
{
IMXGPTState *s = IMX_GPT(opaque);
uint32_t reg_value = 0;
switch (offset >> 2) {
case 0: /* Control Register */
reg_value = s->cr;
break;
case 1: /* prescaler */
reg_value = s->pr;
break;
case 2: /* Status Register */
reg_value = s->sr;
break;
case 3: /* Interrupt Register */
reg_value = s->ir;
break;
case 4: /* Output Compare Register 1 */
reg_value = s->ocr1;
break;
case 5: /* Output Compare Register 2 */
reg_value = s->ocr2;
break;
case 6: /* Output Compare Register 3 */
reg_value = s->ocr3;
break;
case 7: /* input Capture Register 1 */
qemu_log_mask(LOG_UNIMP, "[%s]%s: icr1 feature is not implemented\n",
TYPE_IMX_GPT, __func__);
reg_value = s->icr1;
break;
case 8: /* input Capture Register 2 */
qemu_log_mask(LOG_UNIMP, "[%s]%s: icr2 feature is not implemented\n",
TYPE_IMX_GPT, __func__);
reg_value = s->icr2;
break;
case 9: /* cnt */
imx_gpt_update_count(s);
reg_value = s->cnt;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
HWADDR_PRIx "\n", TYPE_IMX_GPT, __func__, offset);
break;
}
DPRINTF("(%s) = 0x%08x\n", imx_gpt_reg_name(offset >> 2), reg_value);
return reg_value;
}
static void imx_gpt_reset_common(IMXGPTState *s, bool is_soft_reset)
{
/* stop timer */
ptimer_stop(s->timer);
/* Soft reset and hard reset differ only in their handling of the CR
* register -- soft reset preserves the values of some bits there.
*/
if (is_soft_reset) {
/* Clear all CR bits except those that are preserved by soft reset. */
s->cr &= GPT_CR_EN | GPT_CR_ENMOD | GPT_CR_STOPEN | GPT_CR_DOZEN |
GPT_CR_WAITEN | GPT_CR_DBGEN |
(GPT_CR_CLKSRC_MASK << GPT_CR_CLKSRC_SHIFT);
} else {
s->cr = 0;
}
s->sr = 0;
s->pr = 0;
s->ir = 0;
s->cnt = 0;
s->ocr1 = GPT_TIMER_MAX;
s->ocr2 = GPT_TIMER_MAX;
s->ocr3 = GPT_TIMER_MAX;
s->icr1 = 0;
s->icr2 = 0;
s->next_timeout = GPT_TIMER_MAX;
s->next_int = 0;
/* compute new freq */
imx_gpt_set_freq(s);
/* reset the limit to GPT_TIMER_MAX */
ptimer_set_limit(s->timer, GPT_TIMER_MAX, 1);
/* if the timer is still enabled, restart it */
if (s->freq && (s->cr & GPT_CR_EN)) {
ptimer_run(s->timer, 1);
}
}
static void imx_gpt_soft_reset(DeviceState *dev)
{
IMXGPTState *s = IMX_GPT(dev);
imx_gpt_reset_common(s, true);
}
static void imx_gpt_reset(DeviceState *dev)
{
IMXGPTState *s = IMX_GPT(dev);
imx_gpt_reset_common(s, false);
}
static void imx_gpt_write(void *opaque, hwaddr offset, uint64_t value,
unsigned size)
{
IMXGPTState *s = IMX_GPT(opaque);
uint32_t oldreg;
DPRINTF("(%s, value = 0x%08x)\n", imx_gpt_reg_name(offset >> 2),
(uint32_t)value);
switch (offset >> 2) {
case 0:
oldreg = s->cr;
s->cr = value & ~0x7c14;
if (s->cr & GPT_CR_SWR) { /* force reset */
/* handle the reset */
imx_gpt_soft_reset(DEVICE(s));
} else {
/* set our freq, as the source might have changed */
imx_gpt_set_freq(s);
if ((oldreg ^ s->cr) & GPT_CR_EN) {
if (s->cr & GPT_CR_EN) {
if (s->cr & GPT_CR_ENMOD) {
s->next_timeout = GPT_TIMER_MAX;
ptimer_set_count(s->timer, GPT_TIMER_MAX);
imx_gpt_compute_next_timeout(s, false);
}
ptimer_run(s->timer, 1);
} else {
/* stop timer */
ptimer_stop(s->timer);
}
}
}
break;
case 1: /* Prescaler */
s->pr = value & 0xfff;
imx_gpt_set_freq(s);
break;
case 2: /* SR */
s->sr &= ~(value & 0x3f);
imx_gpt_update_int(s);
break;
case 3: /* IR -- interrupt register */
s->ir = value & 0x3f;
imx_gpt_update_int(s);
imx_gpt_compute_next_timeout(s, false);
break;
case 4: /* OCR1 -- output compare register */
s->ocr1 = value;
/* In non-freerun mode, reset count when this register is written */
if (!(s->cr & GPT_CR_FRR)) {
s->next_timeout = GPT_TIMER_MAX;
ptimer_set_limit(s->timer, GPT_TIMER_MAX, 1);
}
/* compute the new timeout */
imx_gpt_compute_next_timeout(s, false);
break;
case 5: /* OCR2 -- output compare register */
s->ocr2 = value;
/* compute the new timeout */
imx_gpt_compute_next_timeout(s, false);
break;
case 6: /* OCR3 -- output compare register */
s->ocr3 = value;
/* compute the new timeout */
imx_gpt_compute_next_timeout(s, false);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
HWADDR_PRIx "\n", TYPE_IMX_GPT, __func__, offset);
break;
}
}
static void imx_gpt_timeout(void *opaque)
{
IMXGPTState *s = IMX_GPT(opaque);
DPRINTF("\n");
s->sr |= s->next_int;
s->next_int = 0;
imx_gpt_compute_next_timeout(s, true);
imx_gpt_update_int(s);
if (s->freq && (s->cr & GPT_CR_EN)) {
ptimer_run(s->timer, 1);
}
}
static const MemoryRegionOps imx_gpt_ops = {
.read = imx_gpt_read,
.write = imx_gpt_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void imx_gpt_realize(DeviceState *dev, Error **errp)
{
IMXGPTState *s = IMX_GPT(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
QEMUBH *bh;
sysbus_init_irq(sbd, &s->irq);
memory_region_init_io(&s->iomem, OBJECT(s), &imx_gpt_ops, s, TYPE_IMX_GPT,
0x00001000);
sysbus_init_mmio(sbd, &s->iomem);
bh = qemu_bh_new(imx_gpt_timeout, s);
s->timer = ptimer_init(bh, PTIMER_POLICY_DEFAULT);
}
static void imx_gpt_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = imx_gpt_realize;
dc->reset = imx_gpt_reset;
dc->vmsd = &vmstate_imx_timer_gpt;
dc->desc = "i.MX general timer";
}
static void imx25_gpt_init(Object *obj)
{
IMXGPTState *s = IMX_GPT(obj);
s->clocks = imx25_gpt_clocks;
}
static void imx31_gpt_init(Object *obj)
{
IMXGPTState *s = IMX_GPT(obj);
s->clocks = imx31_gpt_clocks;
}
static void imx6_gpt_init(Object *obj)
{
IMXGPTState *s = IMX_GPT(obj);
s->clocks = imx6_gpt_clocks;
}
static void imx7_gpt_init(Object *obj)
{
IMXGPTState *s = IMX_GPT(obj);
s->clocks = imx7_gpt_clocks;
}
static const TypeInfo imx25_gpt_info = {
.name = TYPE_IMX25_GPT,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(IMXGPTState),
.instance_init = imx25_gpt_init,
.class_init = imx_gpt_class_init,
};
static const TypeInfo imx31_gpt_info = {
.name = TYPE_IMX31_GPT,
.parent = TYPE_IMX25_GPT,
.instance_init = imx31_gpt_init,
};
static const TypeInfo imx6_gpt_info = {
.name = TYPE_IMX6_GPT,
.parent = TYPE_IMX25_GPT,
.instance_init = imx6_gpt_init,
};
static const TypeInfo imx7_gpt_info = {
.name = TYPE_IMX7_GPT,
.parent = TYPE_IMX25_GPT,
.instance_init = imx7_gpt_init,
};
static void imx_gpt_register_types(void)
{
type_register_static(&imx25_gpt_info);
type_register_static(&imx31_gpt_info);
type_register_static(&imx6_gpt_info);
type_register_static(&imx7_gpt_info);
}
type_init(imx_gpt_register_types)