| /* |
| * ARM GICv3 emulation: Redistributor |
| * |
| * Copyright (c) 2015 Huawei. |
| * Copyright (c) 2016 Linaro Limited. |
| * Written by Shlomo Pongratz, Peter Maydell |
| * |
| * This code is licensed under the GPL, version 2 or (at your option) |
| * any later version. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/log.h" |
| #include "trace.h" |
| #include "gicv3_internal.h" |
| |
| static uint32_t mask_group(GICv3CPUState *cs, MemTxAttrs attrs) |
| { |
| /* Return a 32-bit mask which should be applied for this set of 32 |
| * interrupts; each bit is 1 if access is permitted by the |
| * combination of attrs.secure and GICR_GROUPR. (GICR_NSACR does |
| * not affect config register accesses, unlike GICD_NSACR.) |
| */ |
| if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { |
| /* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI */ |
| return cs->gicr_igroupr0; |
| } |
| return 0xFFFFFFFFU; |
| } |
| |
| static int gicr_ns_access(GICv3CPUState *cs, int irq) |
| { |
| /* Return the 2 bit NSACR.NS_access field for this SGI */ |
| assert(irq < 16); |
| return extract32(cs->gicr_nsacr, irq * 2, 2); |
| } |
| |
| static void gicr_write_set_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs, |
| uint32_t *reg, uint32_t val) |
| { |
| /* Helper routine to implement writing to a "set-bitmap" register */ |
| val &= mask_group(cs, attrs); |
| *reg |= val; |
| gicv3_redist_update(cs); |
| } |
| |
| static void gicr_write_clear_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs, |
| uint32_t *reg, uint32_t val) |
| { |
| /* Helper routine to implement writing to a "clear-bitmap" register */ |
| val &= mask_group(cs, attrs); |
| *reg &= ~val; |
| gicv3_redist_update(cs); |
| } |
| |
| static uint32_t gicr_read_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs, |
| uint32_t reg) |
| { |
| reg &= mask_group(cs, attrs); |
| return reg; |
| } |
| |
| static bool vcpu_resident(GICv3CPUState *cs, uint64_t vptaddr) |
| { |
| /* |
| * Return true if a vCPU is resident, which is defined by |
| * whether the GICR_VPENDBASER register is marked VALID and |
| * has the right virtual pending table address. |
| */ |
| if (!FIELD_EX64(cs->gicr_vpendbaser, GICR_VPENDBASER, VALID)) { |
| return false; |
| } |
| return vptaddr == (cs->gicr_vpendbaser & R_GICR_VPENDBASER_PHYADDR_MASK); |
| } |
| |
| /** |
| * update_for_one_lpi: Update pending information if this LPI is better |
| * |
| * @cs: GICv3CPUState |
| * @irq: interrupt to look up in the LPI Configuration table |
| * @ctbase: physical address of the LPI Configuration table to use |
| * @ds: true if priority value should not be shifted |
| * @hpp: points to pending information to update |
| * |
| * Look up @irq in the Configuration table specified by @ctbase |
| * to see if it is enabled and what its priority is. If it is an |
| * enabled interrupt with a higher priority than that currently |
| * recorded in @hpp, update @hpp. |
| */ |
| static void update_for_one_lpi(GICv3CPUState *cs, int irq, |
| uint64_t ctbase, bool ds, PendingIrq *hpp) |
| { |
| uint8_t lpite; |
| uint8_t prio; |
| |
| address_space_read(&cs->gic->dma_as, |
| ctbase + ((irq - GICV3_LPI_INTID_START) * sizeof(lpite)), |
| MEMTXATTRS_UNSPECIFIED, &lpite, sizeof(lpite)); |
| |
| if (!(lpite & LPI_CTE_ENABLED)) { |
| return; |
| } |
| |
| if (ds) { |
| prio = lpite & LPI_PRIORITY_MASK; |
| } else { |
| prio = ((lpite & LPI_PRIORITY_MASK) >> 1) | 0x80; |
| } |
| |
| if ((prio < hpp->prio) || |
| ((prio == hpp->prio) && (irq <= hpp->irq))) { |
| hpp->irq = irq; |
| hpp->prio = prio; |
| /* LPIs and vLPIs are always non-secure Grp1 interrupts */ |
| hpp->grp = GICV3_G1NS; |
| } |
| } |
| |
| /** |
| * update_for_all_lpis: Fully scan LPI tables and find best pending LPI |
| * |
| * @cs: GICv3CPUState |
| * @ptbase: physical address of LPI Pending table |
| * @ctbase: physical address of LPI Configuration table |
| * @ptsizebits: size of tables, specified as number of interrupt ID bits minus 1 |
| * @ds: true if priority value should not be shifted |
| * @hpp: points to pending information to set |
| * |
| * Recalculate the highest priority pending enabled LPI from scratch, |
| * and set @hpp accordingly. |
| * |
| * We scan the LPI pending table @ptbase; for each pending LPI, we read the |
| * corresponding entry in the LPI configuration table @ctbase to extract |
| * the priority and enabled information. |
| * |
| * We take @ptsizebits in the form idbits-1 because this is the way that |
| * LPI table sizes are architecturally specified in GICR_PROPBASER.IDBits |
| * and in the VMAPP command's VPT_size field. |
| */ |
| static void update_for_all_lpis(GICv3CPUState *cs, uint64_t ptbase, |
| uint64_t ctbase, unsigned ptsizebits, |
| bool ds, PendingIrq *hpp) |
| { |
| AddressSpace *as = &cs->gic->dma_as; |
| uint8_t pend; |
| uint32_t pendt_size = (1ULL << (ptsizebits + 1)); |
| int i, bit; |
| |
| hpp->prio = 0xff; |
| |
| for (i = GICV3_LPI_INTID_START / 8; i < pendt_size / 8; i++) { |
| address_space_read(as, ptbase + i, MEMTXATTRS_UNSPECIFIED, &pend, 1); |
| while (pend) { |
| bit = ctz32(pend); |
| update_for_one_lpi(cs, i * 8 + bit, ctbase, ds, hpp); |
| pend &= ~(1 << bit); |
| } |
| } |
| } |
| |
| /** |
| * set_lpi_pending_bit: Set or clear pending bit for an LPI |
| * |
| * @cs: GICv3CPUState |
| * @ptbase: physical address of LPI Pending table |
| * @irq: LPI to change pending state for |
| * @level: false to clear pending state, true to set |
| * |
| * Returns true if we needed to do something, false if the pending bit |
| * was already at @level. |
| */ |
| static bool set_pending_table_bit(GICv3CPUState *cs, uint64_t ptbase, |
| int irq, bool level) |
| { |
| AddressSpace *as = &cs->gic->dma_as; |
| uint64_t addr = ptbase + irq / 8; |
| uint8_t pend; |
| |
| address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED, &pend, 1); |
| if (extract32(pend, irq % 8, 1) == level) { |
| /* Bit already at requested state, no action required */ |
| return false; |
| } |
| pend = deposit32(pend, irq % 8, 1, level ? 1 : 0); |
| address_space_write(as, addr, MEMTXATTRS_UNSPECIFIED, &pend, 1); |
| return true; |
| } |
| |
| static uint8_t gicr_read_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs, |
| int irq) |
| { |
| /* Read the value of GICR_IPRIORITYR<n> for the specified interrupt, |
| * honouring security state (these are RAZ/WI for Group 0 or Secure |
| * Group 1 interrupts). |
| */ |
| uint32_t prio; |
| |
| prio = cs->gicr_ipriorityr[irq]; |
| |
| if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { |
| if (!(cs->gicr_igroupr0 & (1U << irq))) { |
| /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */ |
| return 0; |
| } |
| /* NS view of the interrupt priority */ |
| prio = (prio << 1) & 0xff; |
| } |
| return prio; |
| } |
| |
| static void gicr_write_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs, int irq, |
| uint8_t value) |
| { |
| /* Write the value of GICD_IPRIORITYR<n> for the specified interrupt, |
| * honouring security state (these are RAZ/WI for Group 0 or Secure |
| * Group 1 interrupts). |
| */ |
| if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { |
| if (!(cs->gicr_igroupr0 & (1U << irq))) { |
| /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */ |
| return; |
| } |
| /* NS view of the interrupt priority */ |
| value = 0x80 | (value >> 1); |
| } |
| cs->gicr_ipriorityr[irq] = value; |
| } |
| |
| static void gicv3_redist_update_vlpi_only(GICv3CPUState *cs) |
| { |
| uint64_t ptbase, ctbase, idbits; |
| |
| if (!FIELD_EX64(cs->gicr_vpendbaser, GICR_VPENDBASER, VALID)) { |
| cs->hppvlpi.prio = 0xff; |
| return; |
| } |
| |
| ptbase = cs->gicr_vpendbaser & R_GICR_VPENDBASER_PHYADDR_MASK; |
| ctbase = cs->gicr_vpropbaser & R_GICR_VPROPBASER_PHYADDR_MASK; |
| idbits = FIELD_EX64(cs->gicr_vpropbaser, GICR_VPROPBASER, IDBITS); |
| |
| update_for_all_lpis(cs, ptbase, ctbase, idbits, true, &cs->hppvlpi); |
| } |
| |
| static void gicv3_redist_update_vlpi(GICv3CPUState *cs) |
| { |
| gicv3_redist_update_vlpi_only(cs); |
| gicv3_cpuif_virt_irq_fiq_update(cs); |
| } |
| |
| static void gicr_write_vpendbaser(GICv3CPUState *cs, uint64_t newval) |
| { |
| /* Write @newval to GICR_VPENDBASER, handling its effects */ |
| bool oldvalid = FIELD_EX64(cs->gicr_vpendbaser, GICR_VPENDBASER, VALID); |
| bool newvalid = FIELD_EX64(newval, GICR_VPENDBASER, VALID); |
| bool pendinglast; |
| |
| /* |
| * The DIRTY bit is read-only and for us is always zero; |
| * other fields are writable. |
| */ |
| newval &= R_GICR_VPENDBASER_INNERCACHE_MASK | |
| R_GICR_VPENDBASER_SHAREABILITY_MASK | |
| R_GICR_VPENDBASER_PHYADDR_MASK | |
| R_GICR_VPENDBASER_OUTERCACHE_MASK | |
| R_GICR_VPENDBASER_PENDINGLAST_MASK | |
| R_GICR_VPENDBASER_IDAI_MASK | |
| R_GICR_VPENDBASER_VALID_MASK; |
| |
| if (oldvalid && newvalid) { |
| /* |
| * Changing other fields while VALID is 1 is UNPREDICTABLE; |
| * we choose to log and ignore the write. |
| */ |
| if (cs->gicr_vpendbaser ^ newval) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "%s: Changing GICR_VPENDBASER when VALID=1 " |
| "is UNPREDICTABLE\n", __func__); |
| } |
| return; |
| } |
| if (!oldvalid && !newvalid) { |
| cs->gicr_vpendbaser = newval; |
| return; |
| } |
| |
| if (newvalid) { |
| /* |
| * Valid going from 0 to 1: update hppvlpi from tables. |
| * If IDAI is 0 we are allowed to use the info we cached in |
| * the IMPDEF area of the table. |
| * PendingLast is RES1 when we make this transition. |
| */ |
| pendinglast = true; |
| } else { |
| /* |
| * Valid going from 1 to 0: |
| * Set PendingLast if there was a pending enabled interrupt |
| * for the vPE that was just descheduled. |
| * If we cache info in the IMPDEF area, write it out here. |
| */ |
| pendinglast = cs->hppvlpi.prio != 0xff; |
| } |
| |
| newval = FIELD_DP64(newval, GICR_VPENDBASER, PENDINGLAST, pendinglast); |
| cs->gicr_vpendbaser = newval; |
| gicv3_redist_update_vlpi(cs); |
| } |
| |
| static MemTxResult gicr_readb(GICv3CPUState *cs, hwaddr offset, |
| uint64_t *data, MemTxAttrs attrs) |
| { |
| switch (offset) { |
| case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f: |
| *data = gicr_read_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR); |
| return MEMTX_OK; |
| default: |
| return MEMTX_ERROR; |
| } |
| } |
| |
| static MemTxResult gicr_writeb(GICv3CPUState *cs, hwaddr offset, |
| uint64_t value, MemTxAttrs attrs) |
| { |
| switch (offset) { |
| case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f: |
| gicr_write_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR, value); |
| gicv3_redist_update(cs); |
| return MEMTX_OK; |
| default: |
| return MEMTX_ERROR; |
| } |
| } |
| |
| static MemTxResult gicr_readl(GICv3CPUState *cs, hwaddr offset, |
| uint64_t *data, MemTxAttrs attrs) |
| { |
| switch (offset) { |
| case GICR_CTLR: |
| *data = cs->gicr_ctlr; |
| return MEMTX_OK; |
| case GICR_IIDR: |
| *data = gicv3_iidr(); |
| return MEMTX_OK; |
| case GICR_TYPER: |
| *data = extract64(cs->gicr_typer, 0, 32); |
| return MEMTX_OK; |
| case GICR_TYPER + 4: |
| *data = extract64(cs->gicr_typer, 32, 32); |
| return MEMTX_OK; |
| case GICR_STATUSR: |
| /* RAZ/WI for us (this is an optional register and our implementation |
| * does not track RO/WO/reserved violations to report them to the guest) |
| */ |
| *data = 0; |
| return MEMTX_OK; |
| case GICR_WAKER: |
| *data = cs->gicr_waker; |
| return MEMTX_OK; |
| case GICR_PROPBASER: |
| *data = extract64(cs->gicr_propbaser, 0, 32); |
| return MEMTX_OK; |
| case GICR_PROPBASER + 4: |
| *data = extract64(cs->gicr_propbaser, 32, 32); |
| return MEMTX_OK; |
| case GICR_PENDBASER: |
| *data = extract64(cs->gicr_pendbaser, 0, 32); |
| return MEMTX_OK; |
| case GICR_PENDBASER + 4: |
| *data = extract64(cs->gicr_pendbaser, 32, 32); |
| return MEMTX_OK; |
| case GICR_IGROUPR0: |
| if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { |
| *data = 0; |
| return MEMTX_OK; |
| } |
| *data = cs->gicr_igroupr0; |
| return MEMTX_OK; |
| case GICR_ISENABLER0: |
| case GICR_ICENABLER0: |
| *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_ienabler0); |
| return MEMTX_OK; |
| case GICR_ISPENDR0: |
| case GICR_ICPENDR0: |
| { |
| /* The pending register reads as the logical OR of the pending |
| * latch and the input line level for level-triggered interrupts. |
| */ |
| uint32_t val = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level); |
| *data = gicr_read_bitmap_reg(cs, attrs, val); |
| return MEMTX_OK; |
| } |
| case GICR_ISACTIVER0: |
| case GICR_ICACTIVER0: |
| *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_iactiver0); |
| return MEMTX_OK; |
| case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f: |
| { |
| int i, irq = offset - GICR_IPRIORITYR; |
| uint32_t value = 0; |
| |
| for (i = irq + 3; i >= irq; i--) { |
| value <<= 8; |
| value |= gicr_read_ipriorityr(cs, attrs, i); |
| } |
| *data = value; |
| return MEMTX_OK; |
| } |
| case GICR_ICFGR0: |
| case GICR_ICFGR1: |
| { |
| /* Our edge_trigger bitmap is one bit per irq; take the correct |
| * half of it, and spread it out into the odd bits. |
| */ |
| uint32_t value; |
| |
| value = cs->edge_trigger & mask_group(cs, attrs); |
| value = extract32(value, (offset == GICR_ICFGR1) ? 16 : 0, 16); |
| value = half_shuffle32(value) << 1; |
| *data = value; |
| return MEMTX_OK; |
| } |
| case GICR_IGRPMODR0: |
| if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { |
| /* RAZ/WI if security disabled, or if |
| * security enabled and this is an NS access |
| */ |
| *data = 0; |
| return MEMTX_OK; |
| } |
| *data = cs->gicr_igrpmodr0; |
| return MEMTX_OK; |
| case GICR_NSACR: |
| if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { |
| /* RAZ/WI if security disabled, or if |
| * security enabled and this is an NS access |
| */ |
| *data = 0; |
| return MEMTX_OK; |
| } |
| *data = cs->gicr_nsacr; |
| return MEMTX_OK; |
| case GICR_IDREGS ... GICR_IDREGS + 0x2f: |
| *data = gicv3_idreg(cs->gic, offset - GICR_IDREGS, GICV3_PIDR0_REDIST); |
| return MEMTX_OK; |
| /* |
| * VLPI frame registers. We don't need a version check for |
| * VPROPBASER and VPENDBASER because gicv3_redist_size() will |
| * prevent pre-v4 GIC from passing us offsets this high. |
| */ |
| case GICR_VPROPBASER: |
| *data = extract64(cs->gicr_vpropbaser, 0, 32); |
| return MEMTX_OK; |
| case GICR_VPROPBASER + 4: |
| *data = extract64(cs->gicr_vpropbaser, 32, 32); |
| return MEMTX_OK; |
| case GICR_VPENDBASER: |
| *data = extract64(cs->gicr_vpendbaser, 0, 32); |
| return MEMTX_OK; |
| case GICR_VPENDBASER + 4: |
| *data = extract64(cs->gicr_vpendbaser, 32, 32); |
| return MEMTX_OK; |
| default: |
| return MEMTX_ERROR; |
| } |
| } |
| |
| static MemTxResult gicr_writel(GICv3CPUState *cs, hwaddr offset, |
| uint64_t value, MemTxAttrs attrs) |
| { |
| switch (offset) { |
| case GICR_CTLR: |
| /* For our implementation, GICR_TYPER.DPGS is 0 and so all |
| * the DPG bits are RAZ/WI. We don't do anything asynchronously, |
| * so UWP and RWP are RAZ/WI. GICR_TYPER.LPIS is 1 (we |
| * implement LPIs) so Enable_LPIs is programmable. |
| */ |
| if (cs->gicr_typer & GICR_TYPER_PLPIS) { |
| if (value & GICR_CTLR_ENABLE_LPIS) { |
| cs->gicr_ctlr |= GICR_CTLR_ENABLE_LPIS; |
| /* Check for any pending interr in pending table */ |
| gicv3_redist_update_lpi(cs); |
| } else { |
| cs->gicr_ctlr &= ~GICR_CTLR_ENABLE_LPIS; |
| /* cs->hppi might have been an LPI; recalculate */ |
| gicv3_redist_update(cs); |
| } |
| } |
| return MEMTX_OK; |
| case GICR_STATUSR: |
| /* RAZ/WI for our implementation */ |
| return MEMTX_OK; |
| case GICR_WAKER: |
| /* Only the ProcessorSleep bit is writable. When the guest sets |
| * it, it requests that we transition the channel between the |
| * redistributor and the cpu interface to quiescent, and that |
| * we set the ChildrenAsleep bit once the inteface has reached the |
| * quiescent state. |
| * Setting the ProcessorSleep to 0 reverses the quiescing, and |
| * ChildrenAsleep is cleared once the transition is complete. |
| * Since our interface is not asynchronous, we complete these |
| * transitions instantaneously, so we set ChildrenAsleep to the |
| * same value as ProcessorSleep here. |
| */ |
| value &= GICR_WAKER_ProcessorSleep; |
| if (value & GICR_WAKER_ProcessorSleep) { |
| value |= GICR_WAKER_ChildrenAsleep; |
| } |
| cs->gicr_waker = value; |
| return MEMTX_OK; |
| case GICR_PROPBASER: |
| cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 0, 32, value); |
| return MEMTX_OK; |
| case GICR_PROPBASER + 4: |
| cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 32, 32, value); |
| return MEMTX_OK; |
| case GICR_PENDBASER: |
| cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 0, 32, value); |
| return MEMTX_OK; |
| case GICR_PENDBASER + 4: |
| cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 32, 32, value); |
| return MEMTX_OK; |
| case GICR_IGROUPR0: |
| if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { |
| return MEMTX_OK; |
| } |
| cs->gicr_igroupr0 = value; |
| gicv3_redist_update(cs); |
| return MEMTX_OK; |
| case GICR_ISENABLER0: |
| gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value); |
| return MEMTX_OK; |
| case GICR_ICENABLER0: |
| gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value); |
| return MEMTX_OK; |
| case GICR_ISPENDR0: |
| gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value); |
| return MEMTX_OK; |
| case GICR_ICPENDR0: |
| gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value); |
| return MEMTX_OK; |
| case GICR_ISACTIVER0: |
| gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value); |
| return MEMTX_OK; |
| case GICR_ICACTIVER0: |
| gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value); |
| return MEMTX_OK; |
| case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f: |
| { |
| int i, irq = offset - GICR_IPRIORITYR; |
| |
| for (i = irq; i < irq + 4; i++, value >>= 8) { |
| gicr_write_ipriorityr(cs, attrs, i, value); |
| } |
| gicv3_redist_update(cs); |
| return MEMTX_OK; |
| } |
| case GICR_ICFGR0: |
| /* Register is all RAZ/WI or RAO/WI bits */ |
| return MEMTX_OK; |
| case GICR_ICFGR1: |
| { |
| uint32_t mask; |
| |
| /* Since our edge_trigger bitmap is one bit per irq, our input |
| * 32-bits will compress down into 16 bits which we need |
| * to write into the bitmap. |
| */ |
| value = half_unshuffle32(value >> 1) << 16; |
| mask = mask_group(cs, attrs) & 0xffff0000U; |
| |
| cs->edge_trigger &= ~mask; |
| cs->edge_trigger |= (value & mask); |
| |
| gicv3_redist_update(cs); |
| return MEMTX_OK; |
| } |
| case GICR_IGRPMODR0: |
| if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { |
| /* RAZ/WI if security disabled, or if |
| * security enabled and this is an NS access |
| */ |
| return MEMTX_OK; |
| } |
| cs->gicr_igrpmodr0 = value; |
| gicv3_redist_update(cs); |
| return MEMTX_OK; |
| case GICR_NSACR: |
| if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { |
| /* RAZ/WI if security disabled, or if |
| * security enabled and this is an NS access |
| */ |
| return MEMTX_OK; |
| } |
| cs->gicr_nsacr = value; |
| /* no update required as this only affects access permission checks */ |
| return MEMTX_OK; |
| case GICR_IIDR: |
| case GICR_TYPER: |
| case GICR_IDREGS ... GICR_IDREGS + 0x2f: |
| /* RO registers, ignore the write */ |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "%s: invalid guest write to RO register at offset " |
| TARGET_FMT_plx "\n", __func__, offset); |
| return MEMTX_OK; |
| /* |
| * VLPI frame registers. We don't need a version check for |
| * VPROPBASER and VPENDBASER because gicv3_redist_size() will |
| * prevent pre-v4 GIC from passing us offsets this high. |
| */ |
| case GICR_VPROPBASER: |
| cs->gicr_vpropbaser = deposit64(cs->gicr_vpropbaser, 0, 32, value); |
| return MEMTX_OK; |
| case GICR_VPROPBASER + 4: |
| cs->gicr_vpropbaser = deposit64(cs->gicr_vpropbaser, 32, 32, value); |
| return MEMTX_OK; |
| case GICR_VPENDBASER: |
| gicr_write_vpendbaser(cs, deposit64(cs->gicr_vpendbaser, 0, 32, value)); |
| return MEMTX_OK; |
| case GICR_VPENDBASER + 4: |
| gicr_write_vpendbaser(cs, deposit64(cs->gicr_vpendbaser, 32, 32, value)); |
| return MEMTX_OK; |
| default: |
| return MEMTX_ERROR; |
| } |
| } |
| |
| static MemTxResult gicr_readll(GICv3CPUState *cs, hwaddr offset, |
| uint64_t *data, MemTxAttrs attrs) |
| { |
| switch (offset) { |
| case GICR_TYPER: |
| *data = cs->gicr_typer; |
| return MEMTX_OK; |
| case GICR_PROPBASER: |
| *data = cs->gicr_propbaser; |
| return MEMTX_OK; |
| case GICR_PENDBASER: |
| *data = cs->gicr_pendbaser; |
| return MEMTX_OK; |
| /* |
| * VLPI frame registers. We don't need a version check for |
| * VPROPBASER and VPENDBASER because gicv3_redist_size() will |
| * prevent pre-v4 GIC from passing us offsets this high. |
| */ |
| case GICR_VPROPBASER: |
| *data = cs->gicr_vpropbaser; |
| return MEMTX_OK; |
| case GICR_VPENDBASER: |
| *data = cs->gicr_vpendbaser; |
| return MEMTX_OK; |
| default: |
| return MEMTX_ERROR; |
| } |
| } |
| |
| static MemTxResult gicr_writell(GICv3CPUState *cs, hwaddr offset, |
| uint64_t value, MemTxAttrs attrs) |
| { |
| switch (offset) { |
| case GICR_PROPBASER: |
| cs->gicr_propbaser = value; |
| return MEMTX_OK; |
| case GICR_PENDBASER: |
| cs->gicr_pendbaser = value; |
| return MEMTX_OK; |
| case GICR_TYPER: |
| /* RO register, ignore the write */ |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "%s: invalid guest write to RO register at offset " |
| TARGET_FMT_plx "\n", __func__, offset); |
| return MEMTX_OK; |
| /* |
| * VLPI frame registers. We don't need a version check for |
| * VPROPBASER and VPENDBASER because gicv3_redist_size() will |
| * prevent pre-v4 GIC from passing us offsets this high. |
| */ |
| case GICR_VPROPBASER: |
| cs->gicr_vpropbaser = value; |
| return MEMTX_OK; |
| case GICR_VPENDBASER: |
| gicr_write_vpendbaser(cs, value); |
| return MEMTX_OK; |
| default: |
| return MEMTX_ERROR; |
| } |
| } |
| |
| MemTxResult gicv3_redist_read(void *opaque, hwaddr offset, uint64_t *data, |
| unsigned size, MemTxAttrs attrs) |
| { |
| GICv3RedistRegion *region = opaque; |
| GICv3State *s = region->gic; |
| GICv3CPUState *cs; |
| MemTxResult r; |
| int cpuidx; |
| |
| assert((offset & (size - 1)) == 0); |
| |
| /* |
| * There are (for GICv3) two 64K redistributor pages per CPU. |
| * In some cases the redistributor pages for all CPUs are not |
| * contiguous (eg on the virt board they are split into two |
| * parts if there are too many CPUs to all fit in the same place |
| * in the memory map); if so then the GIC has multiple MemoryRegions |
| * for the redistributors. |
| */ |
| cpuidx = region->cpuidx + offset / gicv3_redist_size(s); |
| offset %= gicv3_redist_size(s); |
| |
| cs = &s->cpu[cpuidx]; |
| |
| switch (size) { |
| case 1: |
| r = gicr_readb(cs, offset, data, attrs); |
| break; |
| case 4: |
| r = gicr_readl(cs, offset, data, attrs); |
| break; |
| case 8: |
| r = gicr_readll(cs, offset, data, attrs); |
| break; |
| default: |
| r = MEMTX_ERROR; |
| break; |
| } |
| |
| if (r != MEMTX_OK) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "%s: invalid guest read at offset " TARGET_FMT_plx |
| " size %u\n", __func__, offset, size); |
| trace_gicv3_redist_badread(gicv3_redist_affid(cs), offset, |
| size, attrs.secure); |
| /* The spec requires that reserved registers are RAZ/WI; |
| * so use MEMTX_ERROR returns from leaf functions as a way to |
| * trigger the guest-error logging but don't return it to |
| * the caller, or we'll cause a spurious guest data abort. |
| */ |
| r = MEMTX_OK; |
| *data = 0; |
| } else { |
| trace_gicv3_redist_read(gicv3_redist_affid(cs), offset, *data, |
| size, attrs.secure); |
| } |
| return r; |
| } |
| |
| MemTxResult gicv3_redist_write(void *opaque, hwaddr offset, uint64_t data, |
| unsigned size, MemTxAttrs attrs) |
| { |
| GICv3RedistRegion *region = opaque; |
| GICv3State *s = region->gic; |
| GICv3CPUState *cs; |
| MemTxResult r; |
| int cpuidx; |
| |
| assert((offset & (size - 1)) == 0); |
| |
| /* |
| * There are (for GICv3) two 64K redistributor pages per CPU. |
| * In some cases the redistributor pages for all CPUs are not |
| * contiguous (eg on the virt board they are split into two |
| * parts if there are too many CPUs to all fit in the same place |
| * in the memory map); if so then the GIC has multiple MemoryRegions |
| * for the redistributors. |
| */ |
| cpuidx = region->cpuidx + offset / gicv3_redist_size(s); |
| offset %= gicv3_redist_size(s); |
| |
| cs = &s->cpu[cpuidx]; |
| |
| switch (size) { |
| case 1: |
| r = gicr_writeb(cs, offset, data, attrs); |
| break; |
| case 4: |
| r = gicr_writel(cs, offset, data, attrs); |
| break; |
| case 8: |
| r = gicr_writell(cs, offset, data, attrs); |
| break; |
| default: |
| r = MEMTX_ERROR; |
| break; |
| } |
| |
| if (r != MEMTX_OK) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "%s: invalid guest write at offset " TARGET_FMT_plx |
| " size %u\n", __func__, offset, size); |
| trace_gicv3_redist_badwrite(gicv3_redist_affid(cs), offset, data, |
| size, attrs.secure); |
| /* The spec requires that reserved registers are RAZ/WI; |
| * so use MEMTX_ERROR returns from leaf functions as a way to |
| * trigger the guest-error logging but don't return it to |
| * the caller, or we'll cause a spurious guest data abort. |
| */ |
| r = MEMTX_OK; |
| } else { |
| trace_gicv3_redist_write(gicv3_redist_affid(cs), offset, data, |
| size, attrs.secure); |
| } |
| return r; |
| } |
| |
| static void gicv3_redist_check_lpi_priority(GICv3CPUState *cs, int irq) |
| { |
| uint64_t lpict_baddr = cs->gicr_propbaser & R_GICR_PROPBASER_PHYADDR_MASK; |
| |
| update_for_one_lpi(cs, irq, lpict_baddr, |
| cs->gic->gicd_ctlr & GICD_CTLR_DS, |
| &cs->hpplpi); |
| } |
| |
| void gicv3_redist_update_lpi_only(GICv3CPUState *cs) |
| { |
| /* |
| * This function scans the LPI pending table and for each pending |
| * LPI, reads the corresponding entry from LPI configuration table |
| * to extract the priority info and determine if the current LPI |
| * priority is lower than the last computed high priority lpi interrupt. |
| * If yes, replace current LPI as the new high priority lpi interrupt. |
| */ |
| uint64_t lpipt_baddr, lpict_baddr; |
| uint64_t idbits; |
| |
| idbits = MIN(FIELD_EX64(cs->gicr_propbaser, GICR_PROPBASER, IDBITS), |
| GICD_TYPER_IDBITS); |
| |
| if (!(cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) { |
| return; |
| } |
| |
| lpipt_baddr = cs->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK; |
| lpict_baddr = cs->gicr_propbaser & R_GICR_PROPBASER_PHYADDR_MASK; |
| |
| update_for_all_lpis(cs, lpipt_baddr, lpict_baddr, idbits, |
| cs->gic->gicd_ctlr & GICD_CTLR_DS, &cs->hpplpi); |
| } |
| |
| void gicv3_redist_update_lpi(GICv3CPUState *cs) |
| { |
| gicv3_redist_update_lpi_only(cs); |
| gicv3_redist_update(cs); |
| } |
| |
| void gicv3_redist_lpi_pending(GICv3CPUState *cs, int irq, int level) |
| { |
| /* |
| * This function updates the pending bit in lpi pending table for |
| * the irq being activated or deactivated. |
| */ |
| uint64_t lpipt_baddr; |
| |
| lpipt_baddr = cs->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK; |
| if (!set_pending_table_bit(cs, lpipt_baddr, irq, level)) { |
| /* no change in the value of pending bit, return */ |
| return; |
| } |
| |
| /* |
| * check if this LPI is better than the current hpplpi, if yes |
| * just set hpplpi.prio and .irq without doing a full rescan |
| */ |
| if (level) { |
| gicv3_redist_check_lpi_priority(cs, irq); |
| gicv3_redist_update(cs); |
| } else { |
| if (irq == cs->hpplpi.irq) { |
| gicv3_redist_update_lpi(cs); |
| } |
| } |
| } |
| |
| void gicv3_redist_process_lpi(GICv3CPUState *cs, int irq, int level) |
| { |
| uint64_t idbits; |
| |
| idbits = MIN(FIELD_EX64(cs->gicr_propbaser, GICR_PROPBASER, IDBITS), |
| GICD_TYPER_IDBITS); |
| |
| if (!(cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) || |
| (irq > (1ULL << (idbits + 1)) - 1) || irq < GICV3_LPI_INTID_START) { |
| return; |
| } |
| |
| /* set/clear the pending bit for this irq */ |
| gicv3_redist_lpi_pending(cs, irq, level); |
| } |
| |
| void gicv3_redist_inv_lpi(GICv3CPUState *cs, int irq) |
| { |
| /* |
| * The only cached information for LPIs we have is the HPPLPI. |
| * We could be cleverer about identifying when we don't need |
| * to do a full rescan of the pending table, but until we find |
| * this is a performance issue, just always recalculate. |
| */ |
| gicv3_redist_update_lpi(cs); |
| } |
| |
| void gicv3_redist_mov_lpi(GICv3CPUState *src, GICv3CPUState *dest, int irq) |
| { |
| /* |
| * Move the specified LPI's pending state from the source redistributor |
| * to the destination. |
| * |
| * If LPIs are disabled on dest this is CONSTRAINED UNPREDICTABLE: |
| * we choose to NOP. If LPIs are disabled on source there's nothing |
| * to be transferred anyway. |
| */ |
| uint64_t idbits; |
| uint32_t pendt_size; |
| uint64_t src_baddr; |
| |
| if (!(src->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) || |
| !(dest->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) { |
| return; |
| } |
| |
| idbits = MIN(FIELD_EX64(src->gicr_propbaser, GICR_PROPBASER, IDBITS), |
| GICD_TYPER_IDBITS); |
| idbits = MIN(FIELD_EX64(dest->gicr_propbaser, GICR_PROPBASER, IDBITS), |
| idbits); |
| |
| pendt_size = 1ULL << (idbits + 1); |
| if ((irq / 8) >= pendt_size) { |
| return; |
| } |
| |
| src_baddr = src->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK; |
| |
| if (!set_pending_table_bit(src, src_baddr, irq, 0)) { |
| /* Not pending on source, nothing to do */ |
| return; |
| } |
| if (irq == src->hpplpi.irq) { |
| /* |
| * We just made this LPI not-pending so only need to update |
| * if it was previously the highest priority pending LPI |
| */ |
| gicv3_redist_update_lpi(src); |
| } |
| /* Mark it pending on the destination */ |
| gicv3_redist_lpi_pending(dest, irq, 1); |
| } |
| |
| void gicv3_redist_movall_lpis(GICv3CPUState *src, GICv3CPUState *dest) |
| { |
| /* |
| * We must move all pending LPIs from the source redistributor |
| * to the destination. That is, for every pending LPI X on |
| * src, we must set it not-pending on src and pending on dest. |
| * LPIs that are already pending on dest are not cleared. |
| * |
| * If LPIs are disabled on dest this is CONSTRAINED UNPREDICTABLE: |
| * we choose to NOP. If LPIs are disabled on source there's nothing |
| * to be transferred anyway. |
| */ |
| AddressSpace *as = &src->gic->dma_as; |
| uint64_t idbits; |
| uint32_t pendt_size; |
| uint64_t src_baddr, dest_baddr; |
| int i; |
| |
| if (!(src->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) || |
| !(dest->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) { |
| return; |
| } |
| |
| idbits = MIN(FIELD_EX64(src->gicr_propbaser, GICR_PROPBASER, IDBITS), |
| GICD_TYPER_IDBITS); |
| idbits = MIN(FIELD_EX64(dest->gicr_propbaser, GICR_PROPBASER, IDBITS), |
| idbits); |
| |
| pendt_size = 1ULL << (idbits + 1); |
| src_baddr = src->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK; |
| dest_baddr = dest->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK; |
| |
| for (i = GICV3_LPI_INTID_START / 8; i < pendt_size / 8; i++) { |
| uint8_t src_pend, dest_pend; |
| |
| address_space_read(as, src_baddr + i, MEMTXATTRS_UNSPECIFIED, |
| &src_pend, sizeof(src_pend)); |
| if (!src_pend) { |
| continue; |
| } |
| address_space_read(as, dest_baddr + i, MEMTXATTRS_UNSPECIFIED, |
| &dest_pend, sizeof(dest_pend)); |
| dest_pend |= src_pend; |
| src_pend = 0; |
| address_space_write(as, src_baddr + i, MEMTXATTRS_UNSPECIFIED, |
| &src_pend, sizeof(src_pend)); |
| address_space_write(as, dest_baddr + i, MEMTXATTRS_UNSPECIFIED, |
| &dest_pend, sizeof(dest_pend)); |
| } |
| |
| gicv3_redist_update_lpi(src); |
| gicv3_redist_update_lpi(dest); |
| } |
| |
| void gicv3_redist_vlpi_pending(GICv3CPUState *cs, int irq, int level) |
| { |
| /* |
| * Change the pending state of the specified vLPI. |
| * Unlike gicv3_redist_process_vlpi(), we know here that the |
| * vCPU is definitely resident on this redistributor, and that |
| * the irq is in range. |
| */ |
| uint64_t vptbase, ctbase; |
| |
| vptbase = FIELD_EX64(cs->gicr_vpendbaser, GICR_VPENDBASER, PHYADDR) << 16; |
| |
| if (set_pending_table_bit(cs, vptbase, irq, level)) { |
| if (level) { |
| /* Check whether this vLPI is now the best */ |
| ctbase = cs->gicr_vpropbaser & R_GICR_VPROPBASER_PHYADDR_MASK; |
| update_for_one_lpi(cs, irq, ctbase, true, &cs->hppvlpi); |
| gicv3_cpuif_virt_irq_fiq_update(cs); |
| } else { |
| /* Only need to recalculate if this was previously the best vLPI */ |
| if (irq == cs->hppvlpi.irq) { |
| gicv3_redist_update_vlpi(cs); |
| } |
| } |
| } |
| } |
| |
| void gicv3_redist_process_vlpi(GICv3CPUState *cs, int irq, uint64_t vptaddr, |
| int doorbell, int level) |
| { |
| bool bit_changed; |
| bool resident = vcpu_resident(cs, vptaddr); |
| uint64_t ctbase; |
| |
| if (resident) { |
| uint32_t idbits = FIELD_EX64(cs->gicr_vpropbaser, GICR_VPROPBASER, IDBITS); |
| if (irq >= (1ULL << (idbits + 1))) { |
| return; |
| } |
| } |
| |
| bit_changed = set_pending_table_bit(cs, vptaddr, irq, level); |
| if (resident && bit_changed) { |
| if (level) { |
| /* Check whether this vLPI is now the best */ |
| ctbase = cs->gicr_vpropbaser & R_GICR_VPROPBASER_PHYADDR_MASK; |
| update_for_one_lpi(cs, irq, ctbase, true, &cs->hppvlpi); |
| gicv3_cpuif_virt_irq_fiq_update(cs); |
| } else { |
| /* Only need to recalculate if this was previously the best vLPI */ |
| if (irq == cs->hppvlpi.irq) { |
| gicv3_redist_update_vlpi(cs); |
| } |
| } |
| } |
| |
| if (!resident && level && doorbell != INTID_SPURIOUS && |
| (cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) { |
| /* vCPU is not currently resident: ring the doorbell */ |
| gicv3_redist_process_lpi(cs, doorbell, 1); |
| } |
| } |
| |
| void gicv3_redist_mov_vlpi(GICv3CPUState *src, uint64_t src_vptaddr, |
| GICv3CPUState *dest, uint64_t dest_vptaddr, |
| int irq, int doorbell) |
| { |
| /* |
| * Move the specified vLPI's pending state from the source redistributor |
| * to the destination. |
| */ |
| if (!set_pending_table_bit(src, src_vptaddr, irq, 0)) { |
| /* Not pending on source, nothing to do */ |
| return; |
| } |
| if (vcpu_resident(src, src_vptaddr) && irq == src->hppvlpi.irq) { |
| /* |
| * Update src's cached highest-priority pending vLPI if we just made |
| * it not-pending |
| */ |
| gicv3_redist_update_vlpi(src); |
| } |
| /* |
| * Mark the vLPI pending on the destination (ringing the doorbell |
| * if the vCPU isn't resident) |
| */ |
| gicv3_redist_process_vlpi(dest, irq, dest_vptaddr, doorbell, irq); |
| } |
| |
| void gicv3_redist_vinvall(GICv3CPUState *cs, uint64_t vptaddr) |
| { |
| if (!vcpu_resident(cs, vptaddr)) { |
| /* We don't have anything cached if the vCPU isn't resident */ |
| return; |
| } |
| |
| /* Otherwise, our only cached information is the HPPVLPI info */ |
| gicv3_redist_update_vlpi(cs); |
| } |
| |
| void gicv3_redist_inv_vlpi(GICv3CPUState *cs, int irq, uint64_t vptaddr) |
| { |
| /* |
| * The only cached information for LPIs we have is the HPPLPI. |
| * We could be cleverer about identifying when we don't need |
| * to do a full rescan of the pending table, but until we find |
| * this is a performance issue, just always recalculate. |
| */ |
| gicv3_redist_vinvall(cs, vptaddr); |
| } |
| |
| void gicv3_redist_set_irq(GICv3CPUState *cs, int irq, int level) |
| { |
| /* Update redistributor state for a change in an external PPI input line */ |
| if (level == extract32(cs->level, irq, 1)) { |
| return; |
| } |
| |
| trace_gicv3_redist_set_irq(gicv3_redist_affid(cs), irq, level); |
| |
| cs->level = deposit32(cs->level, irq, 1, level); |
| |
| if (level) { |
| /* 0->1 edges latch the pending bit for edge-triggered interrupts */ |
| if (extract32(cs->edge_trigger, irq, 1)) { |
| cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1); |
| } |
| } |
| |
| gicv3_redist_update(cs); |
| } |
| |
| void gicv3_redist_send_sgi(GICv3CPUState *cs, int grp, int irq, bool ns) |
| { |
| /* Update redistributor state for a generated SGI */ |
| int irqgrp = gicv3_irq_group(cs->gic, cs, irq); |
| |
| /* If we are asked for a Secure Group 1 SGI and it's actually |
| * configured as Secure Group 0 this is OK (subject to the usual |
| * NSACR checks). |
| */ |
| if (grp == GICV3_G1 && irqgrp == GICV3_G0) { |
| grp = GICV3_G0; |
| } |
| |
| if (grp != irqgrp) { |
| return; |
| } |
| |
| if (ns && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { |
| /* If security is enabled we must test the NSACR bits */ |
| int nsaccess = gicr_ns_access(cs, irq); |
| |
| if ((irqgrp == GICV3_G0 && nsaccess < 1) || |
| (irqgrp == GICV3_G1 && nsaccess < 2)) { |
| return; |
| } |
| } |
| |
| /* OK, we can accept the SGI */ |
| trace_gicv3_redist_send_sgi(gicv3_redist_affid(cs), irq); |
| cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1); |
| gicv3_redist_update(cs); |
| } |