| /* |
| * QEMU model of the Xilinx Zynq SPI controller |
| * |
| * Copyright (c) 2012 Peter A. G. Crosthwaite |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "hw/sysbus.h" |
| #include "hw/irq.h" |
| #include "hw/ptimer.h" |
| #include "hw/qdev-properties.h" |
| #include "qemu/log.h" |
| #include "qemu/module.h" |
| #include "qemu/bitops.h" |
| #include "hw/ssi/xilinx_spips.h" |
| #include "qapi/error.h" |
| #include "hw/register.h" |
| #include "sysemu/dma.h" |
| #include "migration/blocker.h" |
| #include "migration/vmstate.h" |
| |
| #ifndef XILINX_SPIPS_ERR_DEBUG |
| #define XILINX_SPIPS_ERR_DEBUG 0 |
| #endif |
| |
| #define DB_PRINT_L(level, ...) do { \ |
| if (XILINX_SPIPS_ERR_DEBUG > (level)) { \ |
| fprintf(stderr, ": %s: ", __func__); \ |
| fprintf(stderr, ## __VA_ARGS__); \ |
| } \ |
| } while (0) |
| |
| /* config register */ |
| #define R_CONFIG (0x00 / 4) |
| #define IFMODE (1U << 31) |
| #define R_CONFIG_ENDIAN (1 << 26) |
| #define MODEFAIL_GEN_EN (1 << 17) |
| #define MAN_START_COM (1 << 16) |
| #define MAN_START_EN (1 << 15) |
| #define MANUAL_CS (1 << 14) |
| #define CS (0xF << 10) |
| #define CS_SHIFT (10) |
| #define PERI_SEL (1 << 9) |
| #define REF_CLK (1 << 8) |
| #define FIFO_WIDTH (3 << 6) |
| #define BAUD_RATE_DIV (7 << 3) |
| #define CLK_PH (1 << 2) |
| #define CLK_POL (1 << 1) |
| #define MODE_SEL (1 << 0) |
| #define R_CONFIG_RSVD (0x7bf40000) |
| |
| /* interrupt mechanism */ |
| #define R_INTR_STATUS (0x04 / 4) |
| #define R_INTR_STATUS_RESET (0x104) |
| #define R_INTR_EN (0x08 / 4) |
| #define R_INTR_DIS (0x0C / 4) |
| #define R_INTR_MASK (0x10 / 4) |
| #define IXR_TX_FIFO_UNDERFLOW (1 << 6) |
| /* Poll timeout not implemented */ |
| #define IXR_RX_FIFO_EMPTY (1 << 11) |
| #define IXR_GENERIC_FIFO_FULL (1 << 10) |
| #define IXR_GENERIC_FIFO_NOT_FULL (1 << 9) |
| #define IXR_TX_FIFO_EMPTY (1 << 8) |
| #define IXR_GENERIC_FIFO_EMPTY (1 << 7) |
| #define IXR_RX_FIFO_FULL (1 << 5) |
| #define IXR_RX_FIFO_NOT_EMPTY (1 << 4) |
| #define IXR_TX_FIFO_FULL (1 << 3) |
| #define IXR_TX_FIFO_NOT_FULL (1 << 2) |
| #define IXR_TX_FIFO_MODE_FAIL (1 << 1) |
| #define IXR_RX_FIFO_OVERFLOW (1 << 0) |
| #define IXR_ALL ((1 << 13) - 1) |
| #define GQSPI_IXR_MASK 0xFBE |
| #define IXR_SELF_CLEAR \ |
| (IXR_GENERIC_FIFO_EMPTY \ |
| | IXR_GENERIC_FIFO_FULL \ |
| | IXR_GENERIC_FIFO_NOT_FULL \ |
| | IXR_TX_FIFO_EMPTY \ |
| | IXR_TX_FIFO_FULL \ |
| | IXR_TX_FIFO_NOT_FULL \ |
| | IXR_RX_FIFO_EMPTY \ |
| | IXR_RX_FIFO_FULL \ |
| | IXR_RX_FIFO_NOT_EMPTY) |
| |
| #define R_EN (0x14 / 4) |
| #define R_DELAY (0x18 / 4) |
| #define R_TX_DATA (0x1C / 4) |
| #define R_RX_DATA (0x20 / 4) |
| #define R_SLAVE_IDLE_COUNT (0x24 / 4) |
| #define R_TX_THRES (0x28 / 4) |
| #define R_RX_THRES (0x2C / 4) |
| #define R_GPIO (0x30 / 4) |
| #define R_LPBK_DLY_ADJ (0x38 / 4) |
| #define R_LPBK_DLY_ADJ_RESET (0x33) |
| #define R_IOU_TAPDLY_BYPASS (0x3C / 4) |
| #define R_TXD1 (0x80 / 4) |
| #define R_TXD2 (0x84 / 4) |
| #define R_TXD3 (0x88 / 4) |
| |
| #define R_LQSPI_CFG (0xa0 / 4) |
| #define R_LQSPI_CFG_RESET 0x03A002EB |
| #define LQSPI_CFG_LQ_MODE (1U << 31) |
| #define LQSPI_CFG_TWO_MEM (1 << 30) |
| #define LQSPI_CFG_SEP_BUS (1 << 29) |
| #define LQSPI_CFG_U_PAGE (1 << 28) |
| #define LQSPI_CFG_ADDR4 (1 << 27) |
| #define LQSPI_CFG_MODE_EN (1 << 25) |
| #define LQSPI_CFG_MODE_WIDTH 8 |
| #define LQSPI_CFG_MODE_SHIFT 16 |
| #define LQSPI_CFG_DUMMY_WIDTH 3 |
| #define LQSPI_CFG_DUMMY_SHIFT 8 |
| #define LQSPI_CFG_INST_CODE 0xFF |
| |
| #define R_CMND (0xc0 / 4) |
| #define R_CMND_RXFIFO_DRAIN (1 << 19) |
| FIELD(CMND, PARTIAL_BYTE_LEN, 16, 3) |
| #define R_CMND_EXT_ADD (1 << 15) |
| FIELD(CMND, RX_DISCARD, 8, 7) |
| FIELD(CMND, DUMMY_CYCLES, 2, 6) |
| #define R_CMND_DMA_EN (1 << 1) |
| #define R_CMND_PUSH_WAIT (1 << 0) |
| #define R_TRANSFER_SIZE (0xc4 / 4) |
| #define R_LQSPI_STS (0xA4 / 4) |
| #define LQSPI_STS_WR_RECVD (1 << 1) |
| |
| #define R_DUMMY_CYCLE_EN (0xC8 / 4) |
| #define R_ECO (0xF8 / 4) |
| #define R_MOD_ID (0xFC / 4) |
| |
| #define R_GQSPI_SELECT (0x144 / 4) |
| FIELD(GQSPI_SELECT, GENERIC_QSPI_EN, 0, 1) |
| #define R_GQSPI_ISR (0x104 / 4) |
| #define R_GQSPI_IER (0x108 / 4) |
| #define R_GQSPI_IDR (0x10c / 4) |
| #define R_GQSPI_IMR (0x110 / 4) |
| #define R_GQSPI_IMR_RESET (0xfbe) |
| #define R_GQSPI_TX_THRESH (0x128 / 4) |
| #define R_GQSPI_RX_THRESH (0x12c / 4) |
| #define R_GQSPI_GPIO (0x130 / 4) |
| #define R_GQSPI_LPBK_DLY_ADJ (0x138 / 4) |
| #define R_GQSPI_LPBK_DLY_ADJ_RESET (0x33) |
| #define R_GQSPI_CNFG (0x100 / 4) |
| FIELD(GQSPI_CNFG, MODE_EN, 30, 2) |
| FIELD(GQSPI_CNFG, GEN_FIFO_START_MODE, 29, 1) |
| FIELD(GQSPI_CNFG, GEN_FIFO_START, 28, 1) |
| FIELD(GQSPI_CNFG, ENDIAN, 26, 1) |
| /* Poll timeout not implemented */ |
| FIELD(GQSPI_CNFG, EN_POLL_TIMEOUT, 20, 1) |
| /* QEMU doesnt care about any of these last three */ |
| FIELD(GQSPI_CNFG, BR, 3, 3) |
| FIELD(GQSPI_CNFG, CPH, 2, 1) |
| FIELD(GQSPI_CNFG, CPL, 1, 1) |
| #define R_GQSPI_GEN_FIFO (0x140 / 4) |
| #define R_GQSPI_TXD (0x11c / 4) |
| #define R_GQSPI_RXD (0x120 / 4) |
| #define R_GQSPI_FIFO_CTRL (0x14c / 4) |
| FIELD(GQSPI_FIFO_CTRL, RX_FIFO_RESET, 2, 1) |
| FIELD(GQSPI_FIFO_CTRL, TX_FIFO_RESET, 1, 1) |
| FIELD(GQSPI_FIFO_CTRL, GENERIC_FIFO_RESET, 0, 1) |
| #define R_GQSPI_GFIFO_THRESH (0x150 / 4) |
| #define R_GQSPI_DATA_STS (0x15c / 4) |
| /* We use the snapshot register to hold the core state for the currently |
| * or most recently executed command. So the generic fifo format is defined |
| * for the snapshot register |
| */ |
| #define R_GQSPI_GF_SNAPSHOT (0x160 / 4) |
| FIELD(GQSPI_GF_SNAPSHOT, POLL, 19, 1) |
| FIELD(GQSPI_GF_SNAPSHOT, STRIPE, 18, 1) |
| FIELD(GQSPI_GF_SNAPSHOT, RECIEVE, 17, 1) |
| FIELD(GQSPI_GF_SNAPSHOT, TRANSMIT, 16, 1) |
| FIELD(GQSPI_GF_SNAPSHOT, DATA_BUS_SELECT, 14, 2) |
| FIELD(GQSPI_GF_SNAPSHOT, CHIP_SELECT, 12, 2) |
| FIELD(GQSPI_GF_SNAPSHOT, SPI_MODE, 10, 2) |
| FIELD(GQSPI_GF_SNAPSHOT, EXPONENT, 9, 1) |
| FIELD(GQSPI_GF_SNAPSHOT, DATA_XFER, 8, 1) |
| FIELD(GQSPI_GF_SNAPSHOT, IMMEDIATE_DATA, 0, 8) |
| #define R_GQSPI_MOD_ID (0x1fc / 4) |
| #define R_GQSPI_MOD_ID_RESET (0x10a0000) |
| |
| #define R_QSPIDMA_DST_CTRL (0x80c / 4) |
| #define R_QSPIDMA_DST_CTRL_RESET (0x803ffa00) |
| #define R_QSPIDMA_DST_I_MASK (0x820 / 4) |
| #define R_QSPIDMA_DST_I_MASK_RESET (0xfe) |
| #define R_QSPIDMA_DST_CTRL2 (0x824 / 4) |
| #define R_QSPIDMA_DST_CTRL2_RESET (0x081bfff8) |
| |
| /* size of TXRX FIFOs */ |
| #define RXFF_A (128) |
| #define TXFF_A (128) |
| |
| #define RXFF_A_Q (64 * 4) |
| #define TXFF_A_Q (64 * 4) |
| |
| /* 16MB per linear region */ |
| #define LQSPI_ADDRESS_BITS 24 |
| |
| #define SNOOP_CHECKING 0xFF |
| #define SNOOP_ADDR 0xF0 |
| #define SNOOP_NONE 0xEE |
| #define SNOOP_STRIPING 0 |
| |
| #define MIN_NUM_BUSSES 1 |
| #define MAX_NUM_BUSSES 2 |
| |
| static inline int num_effective_busses(XilinxSPIPS *s) |
| { |
| return (s->regs[R_LQSPI_CFG] & LQSPI_CFG_SEP_BUS && |
| s->regs[R_LQSPI_CFG] & LQSPI_CFG_TWO_MEM) ? s->num_busses : 1; |
| } |
| |
| static void xilinx_spips_update_cs(XilinxSPIPS *s, int field) |
| { |
| int i; |
| |
| for (i = 0; i < s->num_cs * s->num_busses; i++) { |
| bool old_state = s->cs_lines_state[i]; |
| bool new_state = field & (1 << i); |
| |
| if (old_state != new_state) { |
| s->cs_lines_state[i] = new_state; |
| s->rx_discard = ARRAY_FIELD_EX32(s->regs, CMND, RX_DISCARD); |
| DB_PRINT_L(1, "%sselecting peripheral %d\n", |
| new_state ? "" : "de", i); |
| } |
| qemu_set_irq(s->cs_lines[i], !new_state); |
| } |
| if (!(field & ((1 << (s->num_cs * s->num_busses)) - 1))) { |
| s->snoop_state = SNOOP_CHECKING; |
| s->cmd_dummies = 0; |
| s->link_state = 1; |
| s->link_state_next = 1; |
| s->link_state_next_when = 0; |
| DB_PRINT_L(1, "moving to snoop check state\n"); |
| } |
| } |
| |
| static void xlnx_zynqmp_qspips_update_cs_lines(XlnxZynqMPQSPIPS *s) |
| { |
| if (s->regs[R_GQSPI_GF_SNAPSHOT]) { |
| int field = ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, CHIP_SELECT); |
| bool upper_cs_sel = field & (1 << 1); |
| bool lower_cs_sel = field & 1; |
| bool bus0_enabled; |
| bool bus1_enabled; |
| uint8_t buses; |
| int cs = 0; |
| |
| buses = ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, DATA_BUS_SELECT); |
| bus0_enabled = buses & 1; |
| bus1_enabled = buses & (1 << 1); |
| |
| if (bus0_enabled && bus1_enabled) { |
| if (lower_cs_sel) { |
| cs |= 1; |
| } |
| if (upper_cs_sel) { |
| cs |= 1 << 3; |
| } |
| } else if (bus0_enabled) { |
| if (lower_cs_sel) { |
| cs |= 1; |
| } |
| if (upper_cs_sel) { |
| cs |= 1 << 1; |
| } |
| } else if (bus1_enabled) { |
| if (lower_cs_sel) { |
| cs |= 1 << 2; |
| } |
| if (upper_cs_sel) { |
| cs |= 1 << 3; |
| } |
| } |
| xilinx_spips_update_cs(XILINX_SPIPS(s), cs); |
| } |
| } |
| |
| static void xilinx_spips_update_cs_lines(XilinxSPIPS *s) |
| { |
| int field = ~((s->regs[R_CONFIG] & CS) >> CS_SHIFT); |
| |
| /* In dual parallel, mirror low CS to both */ |
| if (num_effective_busses(s) == 2) { |
| /* Single bit chip-select for qspi */ |
| field &= 0x1; |
| field |= field << 3; |
| /* Dual stack U-Page */ |
| } else if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_TWO_MEM && |
| s->regs[R_LQSPI_STS] & LQSPI_CFG_U_PAGE) { |
| /* Single bit chip-select for qspi */ |
| field &= 0x1; |
| /* change from CS0 to CS1 */ |
| field <<= 1; |
| } |
| /* Auto CS */ |
| if (!(s->regs[R_CONFIG] & MANUAL_CS) && |
| fifo8_is_empty(&s->tx_fifo)) { |
| field = 0; |
| } |
| xilinx_spips_update_cs(s, field); |
| } |
| |
| static void xilinx_spips_update_ixr(XilinxSPIPS *s) |
| { |
| if (!(s->regs[R_LQSPI_CFG] & LQSPI_CFG_LQ_MODE)) { |
| s->regs[R_INTR_STATUS] &= ~IXR_SELF_CLEAR; |
| s->regs[R_INTR_STATUS] |= |
| (fifo8_is_full(&s->rx_fifo) ? IXR_RX_FIFO_FULL : 0) | |
| (s->rx_fifo.num >= s->regs[R_RX_THRES] ? |
| IXR_RX_FIFO_NOT_EMPTY : 0) | |
| (fifo8_is_full(&s->tx_fifo) ? IXR_TX_FIFO_FULL : 0) | |
| (fifo8_is_empty(&s->tx_fifo) ? IXR_TX_FIFO_EMPTY : 0) | |
| (s->tx_fifo.num < s->regs[R_TX_THRES] ? IXR_TX_FIFO_NOT_FULL : 0); |
| } |
| int new_irqline = !!(s->regs[R_INTR_MASK] & s->regs[R_INTR_STATUS] & |
| IXR_ALL); |
| if (new_irqline != s->irqline) { |
| s->irqline = new_irqline; |
| qemu_set_irq(s->irq, s->irqline); |
| } |
| } |
| |
| static void xlnx_zynqmp_qspips_update_ixr(XlnxZynqMPQSPIPS *s) |
| { |
| uint32_t gqspi_int; |
| int new_irqline; |
| |
| s->regs[R_GQSPI_ISR] &= ~IXR_SELF_CLEAR; |
| s->regs[R_GQSPI_ISR] |= |
| (fifo32_is_empty(&s->fifo_g) ? IXR_GENERIC_FIFO_EMPTY : 0) | |
| (fifo32_is_full(&s->fifo_g) ? IXR_GENERIC_FIFO_FULL : 0) | |
| (s->fifo_g.fifo.num < s->regs[R_GQSPI_GFIFO_THRESH] ? |
| IXR_GENERIC_FIFO_NOT_FULL : 0) | |
| (fifo8_is_empty(&s->rx_fifo_g) ? IXR_RX_FIFO_EMPTY : 0) | |
| (fifo8_is_full(&s->rx_fifo_g) ? IXR_RX_FIFO_FULL : 0) | |
| (s->rx_fifo_g.num >= s->regs[R_GQSPI_RX_THRESH] ? |
| IXR_RX_FIFO_NOT_EMPTY : 0) | |
| (fifo8_is_empty(&s->tx_fifo_g) ? IXR_TX_FIFO_EMPTY : 0) | |
| (fifo8_is_full(&s->tx_fifo_g) ? IXR_TX_FIFO_FULL : 0) | |
| (s->tx_fifo_g.num < s->regs[R_GQSPI_TX_THRESH] ? |
| IXR_TX_FIFO_NOT_FULL : 0); |
| |
| /* GQSPI Interrupt Trigger Status */ |
| gqspi_int = (~s->regs[R_GQSPI_IMR]) & s->regs[R_GQSPI_ISR] & GQSPI_IXR_MASK; |
| new_irqline = !!(gqspi_int & IXR_ALL); |
| |
| /* drive external interrupt pin */ |
| if (new_irqline != s->gqspi_irqline) { |
| s->gqspi_irqline = new_irqline; |
| qemu_set_irq(XILINX_SPIPS(s)->irq, s->gqspi_irqline); |
| } |
| } |
| |
| static void xilinx_spips_reset(DeviceState *d) |
| { |
| XilinxSPIPS *s = XILINX_SPIPS(d); |
| |
| memset(s->regs, 0, sizeof(s->regs)); |
| |
| fifo8_reset(&s->rx_fifo); |
| fifo8_reset(&s->rx_fifo); |
| /* non zero resets */ |
| s->regs[R_CONFIG] |= MODEFAIL_GEN_EN; |
| s->regs[R_SLAVE_IDLE_COUNT] = 0xFF; |
| s->regs[R_TX_THRES] = 1; |
| s->regs[R_RX_THRES] = 1; |
| /* FIXME: move magic number definition somewhere sensible */ |
| s->regs[R_MOD_ID] = 0x01090106; |
| s->regs[R_LQSPI_CFG] = R_LQSPI_CFG_RESET; |
| s->link_state = 1; |
| s->link_state_next = 1; |
| s->link_state_next_when = 0; |
| s->snoop_state = SNOOP_CHECKING; |
| s->cmd_dummies = 0; |
| s->man_start_com = false; |
| xilinx_spips_update_ixr(s); |
| xilinx_spips_update_cs_lines(s); |
| } |
| |
| static void xlnx_zynqmp_qspips_reset(DeviceState *d) |
| { |
| XlnxZynqMPQSPIPS *s = XLNX_ZYNQMP_QSPIPS(d); |
| |
| xilinx_spips_reset(d); |
| |
| memset(s->regs, 0, sizeof(s->regs)); |
| |
| fifo8_reset(&s->rx_fifo_g); |
| fifo8_reset(&s->rx_fifo_g); |
| fifo32_reset(&s->fifo_g); |
| s->regs[R_INTR_STATUS] = R_INTR_STATUS_RESET; |
| s->regs[R_GPIO] = 1; |
| s->regs[R_LPBK_DLY_ADJ] = R_LPBK_DLY_ADJ_RESET; |
| s->regs[R_GQSPI_GFIFO_THRESH] = 0x10; |
| s->regs[R_MOD_ID] = 0x01090101; |
| s->regs[R_GQSPI_IMR] = R_GQSPI_IMR_RESET; |
| s->regs[R_GQSPI_TX_THRESH] = 1; |
| s->regs[R_GQSPI_RX_THRESH] = 1; |
| s->regs[R_GQSPI_GPIO] = 1; |
| s->regs[R_GQSPI_LPBK_DLY_ADJ] = R_GQSPI_LPBK_DLY_ADJ_RESET; |
| s->regs[R_GQSPI_MOD_ID] = R_GQSPI_MOD_ID_RESET; |
| s->regs[R_QSPIDMA_DST_CTRL] = R_QSPIDMA_DST_CTRL_RESET; |
| s->regs[R_QSPIDMA_DST_I_MASK] = R_QSPIDMA_DST_I_MASK_RESET; |
| s->regs[R_QSPIDMA_DST_CTRL2] = R_QSPIDMA_DST_CTRL2_RESET; |
| s->man_start_com_g = false; |
| s->gqspi_irqline = 0; |
| xlnx_zynqmp_qspips_update_ixr(s); |
| } |
| |
| /* N way (num) in place bit striper. Lay out row wise bits (MSB to LSB) |
| * column wise (from element 0 to N-1). num is the length of x, and dir |
| * reverses the direction of the transform. Best illustrated by example: |
| * Each digit in the below array is a single bit (num == 3): |
| * |
| * {{ 76543210, } ----- stripe (dir == false) -----> {{ 741gdaFC, } |
| * { hgfedcba, } { 630fcHEB, } |
| * { HGFEDCBA, }} <---- upstripe (dir == true) ----- { 52hebGDA, }} |
| */ |
| |
| static inline void stripe8(uint8_t *x, int num, bool dir) |
| { |
| uint8_t r[MAX_NUM_BUSSES]; |
| int idx[2] = {0, 0}; |
| int bit[2] = {0, 7}; |
| int d = dir; |
| |
| assert(num <= MAX_NUM_BUSSES); |
| memset(r, 0, sizeof(uint8_t) * num); |
| |
| for (idx[0] = 0; idx[0] < num; ++idx[0]) { |
| for (bit[0] = 7; bit[0] >= 0; bit[0]--) { |
| r[idx[!d]] |= x[idx[d]] & 1 << bit[d] ? 1 << bit[!d] : 0; |
| idx[1] = (idx[1] + 1) % num; |
| if (!idx[1]) { |
| bit[1]--; |
| } |
| } |
| } |
| memcpy(x, r, sizeof(uint8_t) * num); |
| } |
| |
| static void xlnx_zynqmp_qspips_flush_fifo_g(XlnxZynqMPQSPIPS *s) |
| { |
| while (s->regs[R_GQSPI_DATA_STS] || !fifo32_is_empty(&s->fifo_g)) { |
| uint8_t tx_rx[2] = { 0 }; |
| int num_stripes = 1; |
| uint8_t busses; |
| int i; |
| |
| if (!s->regs[R_GQSPI_DATA_STS]) { |
| uint8_t imm; |
| |
| s->regs[R_GQSPI_GF_SNAPSHOT] = fifo32_pop(&s->fifo_g); |
| DB_PRINT_L(0, "GQSPI command: %x\n", s->regs[R_GQSPI_GF_SNAPSHOT]); |
| if (!s->regs[R_GQSPI_GF_SNAPSHOT]) { |
| DB_PRINT_L(0, "Dummy GQSPI Delay Command Entry, Do nothing"); |
| continue; |
| } |
| xlnx_zynqmp_qspips_update_cs_lines(s); |
| |
| imm = ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, IMMEDIATE_DATA); |
| if (!ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, DATA_XFER)) { |
| /* immedate transfer */ |
| if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, TRANSMIT) || |
| ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, RECIEVE)) { |
| s->regs[R_GQSPI_DATA_STS] = 1; |
| /* CS setup/hold - do nothing */ |
| } else { |
| s->regs[R_GQSPI_DATA_STS] = 0; |
| } |
| } else if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, EXPONENT)) { |
| if (imm > 31) { |
| qemu_log_mask(LOG_UNIMP, "QSPI exponential transfer too" |
| " long - 2 ^ %" PRId8 " requested\n", imm); |
| } |
| s->regs[R_GQSPI_DATA_STS] = 1ul << imm; |
| } else { |
| s->regs[R_GQSPI_DATA_STS] = imm; |
| } |
| } |
| /* Zero length transfer check */ |
| if (!s->regs[R_GQSPI_DATA_STS]) { |
| continue; |
| } |
| if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, RECIEVE) && |
| fifo8_is_full(&s->rx_fifo_g)) { |
| /* No space in RX fifo for transfer - try again later */ |
| return; |
| } |
| if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, STRIPE) && |
| (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, TRANSMIT) || |
| ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, RECIEVE))) { |
| num_stripes = 2; |
| } |
| if (!ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, DATA_XFER)) { |
| tx_rx[0] = ARRAY_FIELD_EX32(s->regs, |
| GQSPI_GF_SNAPSHOT, IMMEDIATE_DATA); |
| } else if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, TRANSMIT)) { |
| for (i = 0; i < num_stripes; ++i) { |
| if (!fifo8_is_empty(&s->tx_fifo_g)) { |
| tx_rx[i] = fifo8_pop(&s->tx_fifo_g); |
| s->tx_fifo_g_align++; |
| } else { |
| return; |
| } |
| } |
| } |
| if (num_stripes == 1) { |
| /* mirror */ |
| tx_rx[1] = tx_rx[0]; |
| } |
| busses = ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, DATA_BUS_SELECT); |
| for (i = 0; i < 2; ++i) { |
| DB_PRINT_L(1, "bus %d tx = %02x\n", i, tx_rx[i]); |
| tx_rx[i] = ssi_transfer(XILINX_SPIPS(s)->spi[i], tx_rx[i]); |
| DB_PRINT_L(1, "bus %d rx = %02x\n", i, tx_rx[i]); |
| } |
| if (s->regs[R_GQSPI_DATA_STS] > 1 && |
| busses == 0x3 && num_stripes == 2) { |
| s->regs[R_GQSPI_DATA_STS] -= 2; |
| } else if (s->regs[R_GQSPI_DATA_STS] > 0) { |
| s->regs[R_GQSPI_DATA_STS]--; |
| } |
| if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, RECIEVE)) { |
| for (i = 0; i < 2; ++i) { |
| if (busses & (1 << i)) { |
| DB_PRINT_L(1, "bus %d push_byte = %02x\n", i, tx_rx[i]); |
| fifo8_push(&s->rx_fifo_g, tx_rx[i]); |
| s->rx_fifo_g_align++; |
| } |
| } |
| } |
| if (!s->regs[R_GQSPI_DATA_STS]) { |
| for (; s->tx_fifo_g_align % 4; s->tx_fifo_g_align++) { |
| fifo8_pop(&s->tx_fifo_g); |
| } |
| for (; s->rx_fifo_g_align % 4; s->rx_fifo_g_align++) { |
| fifo8_push(&s->rx_fifo_g, 0); |
| } |
| } |
| } |
| } |
| |
| static int xilinx_spips_num_dummies(XilinxQSPIPS *qs, uint8_t command) |
| { |
| if (!qs) { |
| /* The SPI device is not a QSPI device */ |
| return -1; |
| } |
| |
| switch (command) { /* check for dummies */ |
| case READ: /* no dummy bytes/cycles */ |
| case PP: |
| case DPP: |
| case QPP: |
| case READ_4: |
| case PP_4: |
| case QPP_4: |
| return 0; |
| case FAST_READ: |
| case DOR: |
| case QOR: |
| case FAST_READ_4: |
| case DOR_4: |
| case QOR_4: |
| return 1; |
| case DIOR: |
| case DIOR_4: |
| return 2; |
| case QIOR: |
| case QIOR_4: |
| return 4; |
| default: |
| return -1; |
| } |
| } |
| |
| static inline uint8_t get_addr_length(XilinxSPIPS *s, uint8_t cmd) |
| { |
| switch (cmd) { |
| case PP_4: |
| case QPP_4: |
| case READ_4: |
| case QIOR_4: |
| case FAST_READ_4: |
| case DOR_4: |
| case QOR_4: |
| case DIOR_4: |
| return 4; |
| default: |
| return (s->regs[R_CMND] & R_CMND_EXT_ADD) ? 4 : 3; |
| } |
| } |
| |
| static void xilinx_spips_flush_txfifo(XilinxSPIPS *s) |
| { |
| int debug_level = 0; |
| XilinxQSPIPS *q = (XilinxQSPIPS *) object_dynamic_cast(OBJECT(s), |
| TYPE_XILINX_QSPIPS); |
| |
| for (;;) { |
| int i; |
| uint8_t tx = 0; |
| uint8_t tx_rx[MAX_NUM_BUSSES] = { 0 }; |
| uint8_t dummy_cycles = 0; |
| uint8_t addr_length; |
| |
| if (fifo8_is_empty(&s->tx_fifo)) { |
| xilinx_spips_update_ixr(s); |
| return; |
| } else if (s->snoop_state == SNOOP_STRIPING || |
| s->snoop_state == SNOOP_NONE) { |
| for (i = 0; i < num_effective_busses(s); ++i) { |
| tx_rx[i] = fifo8_pop(&s->tx_fifo); |
| } |
| stripe8(tx_rx, num_effective_busses(s), false); |
| } else if (s->snoop_state >= SNOOP_ADDR) { |
| tx = fifo8_pop(&s->tx_fifo); |
| for (i = 0; i < num_effective_busses(s); ++i) { |
| tx_rx[i] = tx; |
| } |
| } else { |
| /* Extract a dummy byte and generate dummy cycles according to the |
| * link state */ |
| tx = fifo8_pop(&s->tx_fifo); |
| dummy_cycles = 8 / s->link_state; |
| } |
| |
| for (i = 0; i < num_effective_busses(s); ++i) { |
| int bus = num_effective_busses(s) - 1 - i; |
| if (dummy_cycles) { |
| int d; |
| for (d = 0; d < dummy_cycles; ++d) { |
| tx_rx[0] = ssi_transfer(s->spi[bus], (uint32_t)tx_rx[0]); |
| } |
| } else { |
| DB_PRINT_L(debug_level, "tx = %02x\n", tx_rx[i]); |
| tx_rx[i] = ssi_transfer(s->spi[bus], (uint32_t)tx_rx[i]); |
| DB_PRINT_L(debug_level, "rx = %02x\n", tx_rx[i]); |
| } |
| } |
| |
| if (s->regs[R_CMND] & R_CMND_RXFIFO_DRAIN) { |
| DB_PRINT_L(debug_level, "dircarding drained rx byte\n"); |
| /* Do nothing */ |
| } else if (s->rx_discard) { |
| DB_PRINT_L(debug_level, "dircarding discarded rx byte\n"); |
| s->rx_discard -= 8 / s->link_state; |
| } else if (fifo8_is_full(&s->rx_fifo)) { |
| s->regs[R_INTR_STATUS] |= IXR_RX_FIFO_OVERFLOW; |
| DB_PRINT_L(0, "rx FIFO overflow"); |
| } else if (s->snoop_state == SNOOP_STRIPING) { |
| stripe8(tx_rx, num_effective_busses(s), true); |
| for (i = 0; i < num_effective_busses(s); ++i) { |
| fifo8_push(&s->rx_fifo, (uint8_t)tx_rx[i]); |
| DB_PRINT_L(debug_level, "pushing striped rx byte\n"); |
| } |
| } else { |
| DB_PRINT_L(debug_level, "pushing unstriped rx byte\n"); |
| fifo8_push(&s->rx_fifo, (uint8_t)tx_rx[0]); |
| } |
| |
| if (s->link_state_next_when) { |
| s->link_state_next_when--; |
| if (!s->link_state_next_when) { |
| s->link_state = s->link_state_next; |
| } |
| } |
| |
| DB_PRINT_L(debug_level, "initial snoop state: %x\n", |
| (unsigned)s->snoop_state); |
| switch (s->snoop_state) { |
| case (SNOOP_CHECKING): |
| /* Store the count of dummy bytes in the txfifo */ |
| s->cmd_dummies = xilinx_spips_num_dummies(q, tx); |
| addr_length = get_addr_length(s, tx); |
| if (s->cmd_dummies < 0) { |
| s->snoop_state = SNOOP_NONE; |
| } else { |
| s->snoop_state = SNOOP_ADDR + addr_length - 1; |
| } |
| switch (tx) { |
| case DPP: |
| case DOR: |
| case DOR_4: |
| s->link_state_next = 2; |
| s->link_state_next_when = addr_length + s->cmd_dummies; |
| break; |
| case QPP: |
| case QPP_4: |
| case QOR: |
| case QOR_4: |
| s->link_state_next = 4; |
| s->link_state_next_when = addr_length + s->cmd_dummies; |
| break; |
| case DIOR: |
| case DIOR_4: |
| s->link_state = 2; |
| break; |
| case QIOR: |
| case QIOR_4: |
| s->link_state = 4; |
| break; |
| } |
| break; |
| case (SNOOP_ADDR): |
| /* Address has been transmitted, transmit dummy cycles now if |
| * needed */ |
| if (s->cmd_dummies < 0) { |
| s->snoop_state = SNOOP_NONE; |
| } else { |
| s->snoop_state = s->cmd_dummies; |
| } |
| break; |
| case (SNOOP_STRIPING): |
| case (SNOOP_NONE): |
| /* Once we hit the boring stuff - squelch debug noise */ |
| if (!debug_level) { |
| DB_PRINT_L(0, "squelching debug info ....\n"); |
| debug_level = 1; |
| } |
| break; |
| default: |
| s->snoop_state--; |
| } |
| DB_PRINT_L(debug_level, "final snoop state: %x\n", |
| (unsigned)s->snoop_state); |
| } |
| } |
| |
| static inline void tx_data_bytes(Fifo8 *fifo, uint32_t value, int num, bool be) |
| { |
| int i; |
| for (i = 0; i < num && !fifo8_is_full(fifo); ++i) { |
| if (be) { |
| fifo8_push(fifo, (uint8_t)(value >> 24)); |
| value <<= 8; |
| } else { |
| fifo8_push(fifo, (uint8_t)value); |
| value >>= 8; |
| } |
| } |
| } |
| |
| static void xilinx_spips_check_zero_pump(XilinxSPIPS *s) |
| { |
| if (!s->regs[R_TRANSFER_SIZE]) { |
| return; |
| } |
| if (!fifo8_is_empty(&s->tx_fifo) && s->regs[R_CMND] & R_CMND_PUSH_WAIT) { |
| return; |
| } |
| /* |
| * The zero pump must never fill tx fifo such that rx overflow is |
| * possible |
| */ |
| while (s->regs[R_TRANSFER_SIZE] && |
| s->rx_fifo.num + s->tx_fifo.num < RXFF_A_Q - 3) { |
| /* endianess just doesn't matter when zero pumping */ |
| tx_data_bytes(&s->tx_fifo, 0, 4, false); |
| s->regs[R_TRANSFER_SIZE] &= ~0x03ull; |
| s->regs[R_TRANSFER_SIZE] -= 4; |
| } |
| } |
| |
| static void xilinx_spips_check_flush(XilinxSPIPS *s) |
| { |
| if (s->man_start_com || |
| (!fifo8_is_empty(&s->tx_fifo) && |
| !(s->regs[R_CONFIG] & MAN_START_EN))) { |
| xilinx_spips_check_zero_pump(s); |
| xilinx_spips_flush_txfifo(s); |
| } |
| if (fifo8_is_empty(&s->tx_fifo) && !s->regs[R_TRANSFER_SIZE]) { |
| s->man_start_com = false; |
| } |
| xilinx_spips_update_ixr(s); |
| } |
| |
| static void xlnx_zynqmp_qspips_check_flush(XlnxZynqMPQSPIPS *s) |
| { |
| bool gqspi_has_work = s->regs[R_GQSPI_DATA_STS] || |
| !fifo32_is_empty(&s->fifo_g); |
| |
| if (ARRAY_FIELD_EX32(s->regs, GQSPI_SELECT, GENERIC_QSPI_EN)) { |
| if (s->man_start_com_g || (gqspi_has_work && |
| !ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, GEN_FIFO_START_MODE))) { |
| xlnx_zynqmp_qspips_flush_fifo_g(s); |
| } |
| } else { |
| xilinx_spips_check_flush(XILINX_SPIPS(s)); |
| } |
| if (!gqspi_has_work) { |
| s->man_start_com_g = false; |
| } |
| xlnx_zynqmp_qspips_update_ixr(s); |
| } |
| |
| static inline int rx_data_bytes(Fifo8 *fifo, uint8_t *value, int max) |
| { |
| int i; |
| |
| for (i = 0; i < max && !fifo8_is_empty(fifo); ++i) { |
| value[i] = fifo8_pop(fifo); |
| } |
| return max - i; |
| } |
| |
| static const void *pop_buf(Fifo8 *fifo, uint32_t max, uint32_t *num) |
| { |
| void *ret; |
| |
| if (max == 0 || max > fifo->num) { |
| abort(); |
| } |
| *num = MIN(fifo->capacity - fifo->head, max); |
| ret = &fifo->data[fifo->head]; |
| fifo->head += *num; |
| fifo->head %= fifo->capacity; |
| fifo->num -= *num; |
| return ret; |
| } |
| |
| static void xlnx_zynqmp_qspips_notify(void *opaque) |
| { |
| XlnxZynqMPQSPIPS *rq = XLNX_ZYNQMP_QSPIPS(opaque); |
| XilinxSPIPS *s = XILINX_SPIPS(rq); |
| Fifo8 *recv_fifo; |
| |
| if (ARRAY_FIELD_EX32(rq->regs, GQSPI_SELECT, GENERIC_QSPI_EN)) { |
| if (!(ARRAY_FIELD_EX32(rq->regs, GQSPI_CNFG, MODE_EN) == 2)) { |
| return; |
| } |
| recv_fifo = &rq->rx_fifo_g; |
| } else { |
| if (!(s->regs[R_CMND] & R_CMND_DMA_EN)) { |
| return; |
| } |
| recv_fifo = &s->rx_fifo; |
| } |
| while (recv_fifo->num >= 4 |
| && stream_can_push(rq->dma, xlnx_zynqmp_qspips_notify, rq)) |
| { |
| size_t ret; |
| uint32_t num; |
| const void *rxd; |
| int len; |
| |
| len = recv_fifo->num >= rq->dma_burst_size ? rq->dma_burst_size : |
| recv_fifo->num; |
| rxd = pop_buf(recv_fifo, len, &num); |
| |
| memcpy(rq->dma_buf, rxd, num); |
| |
| ret = stream_push(rq->dma, rq->dma_buf, num, false); |
| assert(ret == num); |
| xlnx_zynqmp_qspips_check_flush(rq); |
| } |
| } |
| |
| static uint64_t xilinx_spips_read(void *opaque, hwaddr addr, |
| unsigned size) |
| { |
| XilinxSPIPS *s = opaque; |
| uint32_t mask = ~0; |
| uint32_t ret; |
| uint8_t rx_buf[4]; |
| int shortfall; |
| |
| addr >>= 2; |
| switch (addr) { |
| case R_CONFIG: |
| mask = ~(R_CONFIG_RSVD | MAN_START_COM); |
| break; |
| case R_INTR_STATUS: |
| ret = s->regs[addr] & IXR_ALL; |
| s->regs[addr] = 0; |
| DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr * 4, ret); |
| xilinx_spips_update_ixr(s); |
| return ret; |
| case R_INTR_MASK: |
| mask = IXR_ALL; |
| break; |
| case R_EN: |
| mask = 0x1; |
| break; |
| case R_SLAVE_IDLE_COUNT: |
| mask = 0xFF; |
| break; |
| case R_MOD_ID: |
| mask = 0x01FFFFFF; |
| break; |
| case R_INTR_EN: |
| case R_INTR_DIS: |
| case R_TX_DATA: |
| mask = 0; |
| break; |
| case R_RX_DATA: |
| memset(rx_buf, 0, sizeof(rx_buf)); |
| shortfall = rx_data_bytes(&s->rx_fifo, rx_buf, s->num_txrx_bytes); |
| ret = s->regs[R_CONFIG] & R_CONFIG_ENDIAN ? |
| cpu_to_be32(*(uint32_t *)rx_buf) : |
| cpu_to_le32(*(uint32_t *)rx_buf); |
| if (!(s->regs[R_CONFIG] & R_CONFIG_ENDIAN)) { |
| ret <<= 8 * shortfall; |
| } |
| DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr * 4, ret); |
| xilinx_spips_check_flush(s); |
| xilinx_spips_update_ixr(s); |
| return ret; |
| } |
| DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr * 4, |
| s->regs[addr] & mask); |
| return s->regs[addr] & mask; |
| |
| } |
| |
| static uint64_t xlnx_zynqmp_qspips_read(void *opaque, |
| hwaddr addr, unsigned size) |
| { |
| XlnxZynqMPQSPIPS *s = XLNX_ZYNQMP_QSPIPS(opaque); |
| uint32_t reg = addr / 4; |
| uint32_t ret; |
| uint8_t rx_buf[4]; |
| int shortfall; |
| |
| if (reg <= R_MOD_ID) { |
| return xilinx_spips_read(opaque, addr, size); |
| } else { |
| switch (reg) { |
| case R_GQSPI_RXD: |
| if (fifo8_is_empty(&s->rx_fifo_g)) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "Read from empty GQSPI RX FIFO\n"); |
| return 0; |
| } |
| memset(rx_buf, 0, sizeof(rx_buf)); |
| shortfall = rx_data_bytes(&s->rx_fifo_g, rx_buf, |
| XILINX_SPIPS(s)->num_txrx_bytes); |
| ret = ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, ENDIAN) ? |
| cpu_to_be32(*(uint32_t *)rx_buf) : |
| cpu_to_le32(*(uint32_t *)rx_buf); |
| if (!ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, ENDIAN)) { |
| ret <<= 8 * shortfall; |
| } |
| xlnx_zynqmp_qspips_check_flush(s); |
| xlnx_zynqmp_qspips_update_ixr(s); |
| return ret; |
| default: |
| return s->regs[reg]; |
| } |
| } |
| } |
| |
| static void xilinx_spips_write(void *opaque, hwaddr addr, |
| uint64_t value, unsigned size) |
| { |
| int mask = ~0; |
| XilinxSPIPS *s = opaque; |
| bool try_flush = true; |
| |
| DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr, (unsigned)value); |
| addr >>= 2; |
| switch (addr) { |
| case R_CONFIG: |
| mask = ~(R_CONFIG_RSVD | MAN_START_COM); |
| if ((value & MAN_START_COM) && (s->regs[R_CONFIG] & MAN_START_EN)) { |
| s->man_start_com = true; |
| } |
| break; |
| case R_INTR_STATUS: |
| mask = IXR_ALL; |
| s->regs[R_INTR_STATUS] &= ~(mask & value); |
| goto no_reg_update; |
| case R_INTR_DIS: |
| mask = IXR_ALL; |
| s->regs[R_INTR_MASK] &= ~(mask & value); |
| goto no_reg_update; |
| case R_INTR_EN: |
| mask = IXR_ALL; |
| s->regs[R_INTR_MASK] |= mask & value; |
| goto no_reg_update; |
| case R_EN: |
| mask = 0x1; |
| break; |
| case R_SLAVE_IDLE_COUNT: |
| mask = 0xFF; |
| break; |
| case R_RX_DATA: |
| case R_INTR_MASK: |
| case R_MOD_ID: |
| mask = 0; |
| break; |
| case R_TX_DATA: |
| tx_data_bytes(&s->tx_fifo, (uint32_t)value, s->num_txrx_bytes, |
| s->regs[R_CONFIG] & R_CONFIG_ENDIAN); |
| goto no_reg_update; |
| case R_TXD1: |
| tx_data_bytes(&s->tx_fifo, (uint32_t)value, 1, |
| s->regs[R_CONFIG] & R_CONFIG_ENDIAN); |
| goto no_reg_update; |
| case R_TXD2: |
| tx_data_bytes(&s->tx_fifo, (uint32_t)value, 2, |
| s->regs[R_CONFIG] & R_CONFIG_ENDIAN); |
| goto no_reg_update; |
| case R_TXD3: |
| tx_data_bytes(&s->tx_fifo, (uint32_t)value, 3, |
| s->regs[R_CONFIG] & R_CONFIG_ENDIAN); |
| goto no_reg_update; |
| /* Skip SPI bus update for below registers writes */ |
| case R_GPIO: |
| case R_LPBK_DLY_ADJ: |
| case R_IOU_TAPDLY_BYPASS: |
| case R_DUMMY_CYCLE_EN: |
| case R_ECO: |
| try_flush = false; |
| break; |
| } |
| s->regs[addr] = (s->regs[addr] & ~mask) | (value & mask); |
| no_reg_update: |
| if (try_flush) { |
| xilinx_spips_update_cs_lines(s); |
| xilinx_spips_check_flush(s); |
| xilinx_spips_update_cs_lines(s); |
| xilinx_spips_update_ixr(s); |
| } |
| } |
| |
| static const MemoryRegionOps spips_ops = { |
| .read = xilinx_spips_read, |
| .write = xilinx_spips_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static void xilinx_qspips_invalidate_mmio_ptr(XilinxQSPIPS *q) |
| { |
| q->lqspi_cached_addr = ~0ULL; |
| } |
| |
| static void xilinx_qspips_write(void *opaque, hwaddr addr, |
| uint64_t value, unsigned size) |
| { |
| XilinxQSPIPS *q = XILINX_QSPIPS(opaque); |
| XilinxSPIPS *s = XILINX_SPIPS(opaque); |
| |
| xilinx_spips_write(opaque, addr, value, size); |
| addr >>= 2; |
| |
| if (addr == R_LQSPI_CFG) { |
| xilinx_qspips_invalidate_mmio_ptr(q); |
| } |
| if (s->regs[R_CMND] & R_CMND_RXFIFO_DRAIN) { |
| fifo8_reset(&s->rx_fifo); |
| } |
| } |
| |
| static void xlnx_zynqmp_qspips_write(void *opaque, hwaddr addr, |
| uint64_t value, unsigned size) |
| { |
| XlnxZynqMPQSPIPS *s = XLNX_ZYNQMP_QSPIPS(opaque); |
| uint32_t reg = addr / 4; |
| |
| if (reg <= R_MOD_ID) { |
| xilinx_qspips_write(opaque, addr, value, size); |
| } else { |
| switch (reg) { |
| case R_GQSPI_CNFG: |
| if (FIELD_EX32(value, GQSPI_CNFG, GEN_FIFO_START) && |
| ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, GEN_FIFO_START_MODE)) { |
| s->man_start_com_g = true; |
| } |
| s->regs[reg] = value & ~(R_GQSPI_CNFG_GEN_FIFO_START_MASK); |
| break; |
| case R_GQSPI_GEN_FIFO: |
| if (!fifo32_is_full(&s->fifo_g)) { |
| fifo32_push(&s->fifo_g, value); |
| } |
| break; |
| case R_GQSPI_TXD: |
| tx_data_bytes(&s->tx_fifo_g, (uint32_t)value, 4, |
| ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, ENDIAN)); |
| break; |
| case R_GQSPI_FIFO_CTRL: |
| if (FIELD_EX32(value, GQSPI_FIFO_CTRL, GENERIC_FIFO_RESET)) { |
| fifo32_reset(&s->fifo_g); |
| } |
| if (FIELD_EX32(value, GQSPI_FIFO_CTRL, TX_FIFO_RESET)) { |
| fifo8_reset(&s->tx_fifo_g); |
| } |
| if (FIELD_EX32(value, GQSPI_FIFO_CTRL, RX_FIFO_RESET)) { |
| fifo8_reset(&s->rx_fifo_g); |
| } |
| break; |
| case R_GQSPI_IDR: |
| s->regs[R_GQSPI_IMR] |= value; |
| break; |
| case R_GQSPI_IER: |
| s->regs[R_GQSPI_IMR] &= ~value; |
| break; |
| case R_GQSPI_ISR: |
| s->regs[R_GQSPI_ISR] &= ~value; |
| break; |
| case R_GQSPI_IMR: |
| case R_GQSPI_RXD: |
| case R_GQSPI_GF_SNAPSHOT: |
| case R_GQSPI_MOD_ID: |
| break; |
| default: |
| s->regs[reg] = value; |
| break; |
| } |
| xlnx_zynqmp_qspips_update_cs_lines(s); |
| xlnx_zynqmp_qspips_check_flush(s); |
| xlnx_zynqmp_qspips_update_cs_lines(s); |
| xlnx_zynqmp_qspips_update_ixr(s); |
| } |
| xlnx_zynqmp_qspips_notify(s); |
| } |
| |
| static const MemoryRegionOps qspips_ops = { |
| .read = xilinx_spips_read, |
| .write = xilinx_qspips_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static const MemoryRegionOps xlnx_zynqmp_qspips_ops = { |
| .read = xlnx_zynqmp_qspips_read, |
| .write = xlnx_zynqmp_qspips_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| #define LQSPI_CACHE_SIZE 1024 |
| |
| static void lqspi_load_cache(void *opaque, hwaddr addr) |
| { |
| XilinxQSPIPS *q = opaque; |
| XilinxSPIPS *s = opaque; |
| int i; |
| int flash_addr = ((addr & ~(LQSPI_CACHE_SIZE - 1)) |
| / num_effective_busses(s)); |
| int peripheral = flash_addr >> LQSPI_ADDRESS_BITS; |
| int cache_entry = 0; |
| uint32_t u_page_save = s->regs[R_LQSPI_STS] & ~LQSPI_CFG_U_PAGE; |
| |
| if (addr < q->lqspi_cached_addr || |
| addr > q->lqspi_cached_addr + LQSPI_CACHE_SIZE - 4) { |
| xilinx_qspips_invalidate_mmio_ptr(q); |
| s->regs[R_LQSPI_STS] &= ~LQSPI_CFG_U_PAGE; |
| s->regs[R_LQSPI_STS] |= peripheral ? LQSPI_CFG_U_PAGE : 0; |
| |
| DB_PRINT_L(0, "config reg status: %08x\n", s->regs[R_LQSPI_CFG]); |
| |
| fifo8_reset(&s->tx_fifo); |
| fifo8_reset(&s->rx_fifo); |
| |
| /* instruction */ |
| DB_PRINT_L(0, "pushing read instruction: %02x\n", |
| (unsigned)(uint8_t)(s->regs[R_LQSPI_CFG] & |
| LQSPI_CFG_INST_CODE)); |
| fifo8_push(&s->tx_fifo, s->regs[R_LQSPI_CFG] & LQSPI_CFG_INST_CODE); |
| /* read address */ |
| DB_PRINT_L(0, "pushing read address %06x\n", flash_addr); |
| if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_ADDR4) { |
| fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 24)); |
| } |
| fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 16)); |
| fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 8)); |
| fifo8_push(&s->tx_fifo, (uint8_t)flash_addr); |
| /* mode bits */ |
| if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_MODE_EN) { |
| fifo8_push(&s->tx_fifo, extract32(s->regs[R_LQSPI_CFG], |
| LQSPI_CFG_MODE_SHIFT, |
| LQSPI_CFG_MODE_WIDTH)); |
| } |
| /* dummy bytes */ |
| for (i = 0; i < (extract32(s->regs[R_LQSPI_CFG], LQSPI_CFG_DUMMY_SHIFT, |
| LQSPI_CFG_DUMMY_WIDTH)); ++i) { |
| DB_PRINT_L(0, "pushing dummy byte\n"); |
| fifo8_push(&s->tx_fifo, 0); |
| } |
| xilinx_spips_update_cs_lines(s); |
| xilinx_spips_flush_txfifo(s); |
| fifo8_reset(&s->rx_fifo); |
| |
| DB_PRINT_L(0, "starting QSPI data read\n"); |
| |
| while (cache_entry < LQSPI_CACHE_SIZE) { |
| for (i = 0; i < 64; ++i) { |
| tx_data_bytes(&s->tx_fifo, 0, 1, false); |
| } |
| xilinx_spips_flush_txfifo(s); |
| for (i = 0; i < 64; ++i) { |
| rx_data_bytes(&s->rx_fifo, &q->lqspi_buf[cache_entry++], 1); |
| } |
| } |
| |
| s->regs[R_LQSPI_STS] &= ~LQSPI_CFG_U_PAGE; |
| s->regs[R_LQSPI_STS] |= u_page_save; |
| xilinx_spips_update_cs_lines(s); |
| |
| q->lqspi_cached_addr = flash_addr * num_effective_busses(s); |
| } |
| } |
| |
| static MemTxResult lqspi_read(void *opaque, hwaddr addr, uint64_t *value, |
| unsigned size, MemTxAttrs attrs) |
| { |
| XilinxQSPIPS *q = XILINX_QSPIPS(opaque); |
| |
| if (addr >= q->lqspi_cached_addr && |
| addr <= q->lqspi_cached_addr + LQSPI_CACHE_SIZE - 4) { |
| uint8_t *retp = &q->lqspi_buf[addr - q->lqspi_cached_addr]; |
| *value = cpu_to_le32(*(uint32_t *)retp); |
| DB_PRINT_L(1, "addr: %08" HWADDR_PRIx ", data: %08" PRIx64 "\n", |
| addr, *value); |
| return MEMTX_OK; |
| } |
| |
| lqspi_load_cache(opaque, addr); |
| return lqspi_read(opaque, addr, value, size, attrs); |
| } |
| |
| static MemTxResult lqspi_write(void *opaque, hwaddr offset, uint64_t value, |
| unsigned size, MemTxAttrs attrs) |
| { |
| /* |
| * From UG1085, Chapter 24 (Quad-SPI controllers): |
| * - Writes are ignored |
| * - AXI writes generate an external AXI slave error (SLVERR) |
| */ |
| qemu_log_mask(LOG_GUEST_ERROR, "%s Unexpected %u-bit access to 0x%" PRIx64 |
| " (value: 0x%" PRIx64 "\n", |
| __func__, size << 3, offset, value); |
| |
| return MEMTX_ERROR; |
| } |
| |
| static const MemoryRegionOps lqspi_ops = { |
| .read_with_attrs = lqspi_read, |
| .write_with_attrs = lqspi_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| .impl = { |
| .min_access_size = 4, |
| .max_access_size = 4, |
| }, |
| .valid = { |
| .min_access_size = 1, |
| .max_access_size = 4 |
| } |
| }; |
| |
| static void xilinx_spips_realize(DeviceState *dev, Error **errp) |
| { |
| XilinxSPIPS *s = XILINX_SPIPS(dev); |
| SysBusDevice *sbd = SYS_BUS_DEVICE(dev); |
| XilinxSPIPSClass *xsc = XILINX_SPIPS_GET_CLASS(s); |
| int i; |
| |
| DB_PRINT_L(0, "realized spips\n"); |
| |
| if (s->num_busses > MAX_NUM_BUSSES) { |
| error_setg(errp, |
| "requested number of SPI busses %u exceeds maximum %d", |
| s->num_busses, MAX_NUM_BUSSES); |
| return; |
| } |
| if (s->num_busses < MIN_NUM_BUSSES) { |
| error_setg(errp, |
| "requested number of SPI busses %u is below minimum %d", |
| s->num_busses, MIN_NUM_BUSSES); |
| return; |
| } |
| |
| s->spi = g_new(SSIBus *, s->num_busses); |
| for (i = 0; i < s->num_busses; ++i) { |
| char bus_name[16]; |
| snprintf(bus_name, 16, "spi%d", i); |
| s->spi[i] = ssi_create_bus(dev, bus_name); |
| } |
| |
| s->cs_lines = g_new0(qemu_irq, s->num_cs * s->num_busses); |
| s->cs_lines_state = g_new0(bool, s->num_cs * s->num_busses); |
| |
| sysbus_init_irq(sbd, &s->irq); |
| for (i = 0; i < s->num_cs * s->num_busses; ++i) { |
| sysbus_init_irq(sbd, &s->cs_lines[i]); |
| } |
| |
| memory_region_init_io(&s->iomem, OBJECT(s), xsc->reg_ops, s, |
| "spi", XLNX_ZYNQMP_SPIPS_R_MAX * 4); |
| sysbus_init_mmio(sbd, &s->iomem); |
| |
| s->irqline = -1; |
| |
| fifo8_create(&s->rx_fifo, xsc->rx_fifo_size); |
| fifo8_create(&s->tx_fifo, xsc->tx_fifo_size); |
| } |
| |
| static void xilinx_qspips_realize(DeviceState *dev, Error **errp) |
| { |
| XilinxSPIPS *s = XILINX_SPIPS(dev); |
| XilinxQSPIPS *q = XILINX_QSPIPS(dev); |
| SysBusDevice *sbd = SYS_BUS_DEVICE(dev); |
| |
| DB_PRINT_L(0, "realized qspips\n"); |
| |
| s->num_busses = 2; |
| s->num_cs = 2; |
| s->num_txrx_bytes = 4; |
| |
| xilinx_spips_realize(dev, errp); |
| memory_region_init_io(&s->mmlqspi, OBJECT(s), &lqspi_ops, s, "lqspi", |
| (1 << LQSPI_ADDRESS_BITS) * 2); |
| sysbus_init_mmio(sbd, &s->mmlqspi); |
| |
| q->lqspi_cached_addr = ~0ULL; |
| } |
| |
| static void xlnx_zynqmp_qspips_realize(DeviceState *dev, Error **errp) |
| { |
| XlnxZynqMPQSPIPS *s = XLNX_ZYNQMP_QSPIPS(dev); |
| XilinxSPIPSClass *xsc = XILINX_SPIPS_GET_CLASS(s); |
| |
| if (s->dma_burst_size > QSPI_DMA_MAX_BURST_SIZE) { |
| error_setg(errp, |
| "qspi dma burst size %u exceeds maximum limit %d", |
| s->dma_burst_size, QSPI_DMA_MAX_BURST_SIZE); |
| return; |
| } |
| xilinx_qspips_realize(dev, errp); |
| fifo8_create(&s->rx_fifo_g, xsc->rx_fifo_size); |
| fifo8_create(&s->tx_fifo_g, xsc->tx_fifo_size); |
| fifo32_create(&s->fifo_g, 32); |
| } |
| |
| static void xlnx_zynqmp_qspips_init(Object *obj) |
| { |
| XlnxZynqMPQSPIPS *rq = XLNX_ZYNQMP_QSPIPS(obj); |
| |
| object_property_add_link(obj, "stream-connected-dma", TYPE_STREAM_SINK, |
| (Object **)&rq->dma, |
| object_property_allow_set_link, |
| OBJ_PROP_LINK_STRONG); |
| } |
| |
| static int xilinx_spips_post_load(void *opaque, int version_id) |
| { |
| xilinx_spips_update_ixr((XilinxSPIPS *)opaque); |
| xilinx_spips_update_cs_lines((XilinxSPIPS *)opaque); |
| return 0; |
| } |
| |
| static const VMStateDescription vmstate_xilinx_spips = { |
| .name = "xilinx_spips", |
| .version_id = 2, |
| .minimum_version_id = 2, |
| .post_load = xilinx_spips_post_load, |
| .fields = (VMStateField[]) { |
| VMSTATE_FIFO8(tx_fifo, XilinxSPIPS), |
| VMSTATE_FIFO8(rx_fifo, XilinxSPIPS), |
| VMSTATE_UINT32_ARRAY(regs, XilinxSPIPS, XLNX_SPIPS_R_MAX), |
| VMSTATE_UINT8(snoop_state, XilinxSPIPS), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static int xlnx_zynqmp_qspips_post_load(void *opaque, int version_id) |
| { |
| XlnxZynqMPQSPIPS *s = (XlnxZynqMPQSPIPS *)opaque; |
| XilinxSPIPS *qs = XILINX_SPIPS(s); |
| |
| if (ARRAY_FIELD_EX32(s->regs, GQSPI_SELECT, GENERIC_QSPI_EN) && |
| fifo8_is_empty(&qs->rx_fifo) && fifo8_is_empty(&qs->tx_fifo)) { |
| xlnx_zynqmp_qspips_update_ixr(s); |
| xlnx_zynqmp_qspips_update_cs_lines(s); |
| } |
| return 0; |
| } |
| |
| static const VMStateDescription vmstate_xilinx_qspips = { |
| .name = "xilinx_qspips", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .fields = (VMStateField[]) { |
| VMSTATE_STRUCT(parent_obj, XilinxQSPIPS, 0, |
| vmstate_xilinx_spips, XilinxSPIPS), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static const VMStateDescription vmstate_xlnx_zynqmp_qspips = { |
| .name = "xlnx_zynqmp_qspips", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .post_load = xlnx_zynqmp_qspips_post_load, |
| .fields = (VMStateField[]) { |
| VMSTATE_STRUCT(parent_obj, XlnxZynqMPQSPIPS, 0, |
| vmstate_xilinx_qspips, XilinxQSPIPS), |
| VMSTATE_FIFO8(tx_fifo_g, XlnxZynqMPQSPIPS), |
| VMSTATE_FIFO8(rx_fifo_g, XlnxZynqMPQSPIPS), |
| VMSTATE_FIFO32(fifo_g, XlnxZynqMPQSPIPS), |
| VMSTATE_UINT32_ARRAY(regs, XlnxZynqMPQSPIPS, XLNX_ZYNQMP_SPIPS_R_MAX), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static Property xilinx_zynqmp_qspips_properties[] = { |
| DEFINE_PROP_UINT32("dma-burst-size", XlnxZynqMPQSPIPS, dma_burst_size, 64), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static Property xilinx_spips_properties[] = { |
| DEFINE_PROP_UINT8("num-busses", XilinxSPIPS, num_busses, 1), |
| DEFINE_PROP_UINT8("num-ss-bits", XilinxSPIPS, num_cs, 4), |
| DEFINE_PROP_UINT8("num-txrx-bytes", XilinxSPIPS, num_txrx_bytes, 1), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static void xilinx_qspips_class_init(ObjectClass *klass, void * data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass); |
| |
| dc->realize = xilinx_qspips_realize; |
| xsc->reg_ops = &qspips_ops; |
| xsc->rx_fifo_size = RXFF_A_Q; |
| xsc->tx_fifo_size = TXFF_A_Q; |
| } |
| |
| static void xilinx_spips_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass); |
| |
| dc->realize = xilinx_spips_realize; |
| dc->reset = xilinx_spips_reset; |
| device_class_set_props(dc, xilinx_spips_properties); |
| dc->vmsd = &vmstate_xilinx_spips; |
| |
| xsc->reg_ops = &spips_ops; |
| xsc->rx_fifo_size = RXFF_A; |
| xsc->tx_fifo_size = TXFF_A; |
| } |
| |
| static void xlnx_zynqmp_qspips_class_init(ObjectClass *klass, void * data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass); |
| |
| dc->realize = xlnx_zynqmp_qspips_realize; |
| dc->reset = xlnx_zynqmp_qspips_reset; |
| dc->vmsd = &vmstate_xlnx_zynqmp_qspips; |
| device_class_set_props(dc, xilinx_zynqmp_qspips_properties); |
| xsc->reg_ops = &xlnx_zynqmp_qspips_ops; |
| xsc->rx_fifo_size = RXFF_A_Q; |
| xsc->tx_fifo_size = TXFF_A_Q; |
| } |
| |
| static const TypeInfo xilinx_spips_info = { |
| .name = TYPE_XILINX_SPIPS, |
| .parent = TYPE_SYS_BUS_DEVICE, |
| .instance_size = sizeof(XilinxSPIPS), |
| .class_init = xilinx_spips_class_init, |
| .class_size = sizeof(XilinxSPIPSClass), |
| }; |
| |
| static const TypeInfo xilinx_qspips_info = { |
| .name = TYPE_XILINX_QSPIPS, |
| .parent = TYPE_XILINX_SPIPS, |
| .instance_size = sizeof(XilinxQSPIPS), |
| .class_init = xilinx_qspips_class_init, |
| }; |
| |
| static const TypeInfo xlnx_zynqmp_qspips_info = { |
| .name = TYPE_XLNX_ZYNQMP_QSPIPS, |
| .parent = TYPE_XILINX_QSPIPS, |
| .instance_size = sizeof(XlnxZynqMPQSPIPS), |
| .instance_init = xlnx_zynqmp_qspips_init, |
| .class_init = xlnx_zynqmp_qspips_class_init, |
| }; |
| |
| static void xilinx_spips_register_types(void) |
| { |
| type_register_static(&xilinx_spips_info); |
| type_register_static(&xilinx_qspips_info); |
| type_register_static(&xlnx_zynqmp_qspips_info); |
| } |
| |
| type_init(xilinx_spips_register_types) |