cpus-common: lock-free fast path for cpu_exec_start/end
Set cpu->running without taking the cpu_list lock, only requiring it if
there is a concurrent exclusive section. This requires adding a new
field to CPUState, which records whether a running CPU is being counted
in pending_cpus.
When an exclusive section is started concurrently with cpu_exec_start,
cpu_exec_start can use the new field to determine if it has to wait for
the end of the exclusive section. Likewise, cpu_exec_end can use it to
see if start_exclusive is waiting for that CPU.
This a separate patch for easier bisection of issues.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
diff --git a/cpus-common.c b/cpus-common.c
index 38b1d55..3e11452 100644
--- a/cpus-common.c
+++ b/cpus-common.c
@@ -28,6 +28,9 @@
static QemuCond exclusive_resume;
static QemuCond qemu_work_cond;
+/* >= 1 if a thread is inside start_exclusive/end_exclusive. Written
+ * under qemu_cpu_list_lock, read with atomic operations.
+ */
static int pending_cpus;
void qemu_init_cpu_list(void)
@@ -177,18 +180,26 @@
void start_exclusive(void)
{
CPUState *other_cpu;
+ int running_cpus;
qemu_mutex_lock(&qemu_cpu_list_lock);
exclusive_idle();
/* Make all other cpus stop executing. */
- pending_cpus = 1;
+ atomic_set(&pending_cpus, 1);
+
+ /* Write pending_cpus before reading other_cpu->running. */
+ smp_mb();
+ running_cpus = 0;
CPU_FOREACH(other_cpu) {
- if (other_cpu->running) {
- pending_cpus++;
+ if (atomic_read(&other_cpu->running)) {
+ other_cpu->has_waiter = true;
+ running_cpus++;
qemu_cpu_kick(other_cpu);
}
}
+
+ atomic_set(&pending_cpus, running_cpus + 1);
while (pending_cpus > 1) {
qemu_cond_wait(&exclusive_cond, &qemu_cpu_list_lock);
}
@@ -203,7 +214,7 @@
void end_exclusive(void)
{
qemu_mutex_lock(&qemu_cpu_list_lock);
- pending_cpus = 0;
+ atomic_set(&pending_cpus, 0);
qemu_cond_broadcast(&exclusive_resume);
qemu_mutex_unlock(&qemu_cpu_list_lock);
}
@@ -211,24 +222,78 @@
/* Wait for exclusive ops to finish, and begin cpu execution. */
void cpu_exec_start(CPUState *cpu)
{
- qemu_mutex_lock(&qemu_cpu_list_lock);
- exclusive_idle();
- cpu->running = true;
- qemu_mutex_unlock(&qemu_cpu_list_lock);
+ atomic_set(&cpu->running, true);
+
+ /* Write cpu->running before reading pending_cpus. */
+ smp_mb();
+
+ /* 1. start_exclusive saw cpu->running == true and pending_cpus >= 1.
+ * After taking the lock we'll see cpu->has_waiter == true and run---not
+ * for long because start_exclusive kicked us. cpu_exec_end will
+ * decrement pending_cpus and signal the waiter.
+ *
+ * 2. start_exclusive saw cpu->running == false but pending_cpus >= 1.
+ * This includes the case when an exclusive item is running now.
+ * Then we'll see cpu->has_waiter == false and wait for the item to
+ * complete.
+ *
+ * 3. pending_cpus == 0. Then start_exclusive is definitely going to
+ * see cpu->running == true, and it will kick the CPU.
+ */
+ if (unlikely(atomic_read(&pending_cpus))) {
+ qemu_mutex_lock(&qemu_cpu_list_lock);
+ if (!cpu->has_waiter) {
+ /* Not counted in pending_cpus, let the exclusive item
+ * run. Since we have the lock, just set cpu->running to true
+ * while holding it; no need to check pending_cpus again.
+ */
+ atomic_set(&cpu->running, false);
+ exclusive_idle();
+ /* Now pending_cpus is zero. */
+ atomic_set(&cpu->running, true);
+ } else {
+ /* Counted in pending_cpus, go ahead and release the
+ * waiter at cpu_exec_end.
+ */
+ }
+ qemu_mutex_unlock(&qemu_cpu_list_lock);
+ }
}
/* Mark cpu as not executing, and release pending exclusive ops. */
void cpu_exec_end(CPUState *cpu)
{
- qemu_mutex_lock(&qemu_cpu_list_lock);
- cpu->running = false;
- if (pending_cpus > 1) {
- pending_cpus--;
- if (pending_cpus == 1) {
- qemu_cond_signal(&exclusive_cond);
+ atomic_set(&cpu->running, false);
+
+ /* Write cpu->running before reading pending_cpus. */
+ smp_mb();
+
+ /* 1. start_exclusive saw cpu->running == true. Then it will increment
+ * pending_cpus and wait for exclusive_cond. After taking the lock
+ * we'll see cpu->has_waiter == true.
+ *
+ * 2. start_exclusive saw cpu->running == false but here pending_cpus >= 1.
+ * This includes the case when an exclusive item started after setting
+ * cpu->running to false and before we read pending_cpus. Then we'll see
+ * cpu->has_waiter == false and not touch pending_cpus. The next call to
+ * cpu_exec_start will run exclusive_idle if still necessary, thus waiting
+ * for the item to complete.
+ *
+ * 3. pending_cpus == 0. Then start_exclusive is definitely going to
+ * see cpu->running == false, and it can ignore this CPU until the
+ * next cpu_exec_start.
+ */
+ if (unlikely(atomic_read(&pending_cpus))) {
+ qemu_mutex_lock(&qemu_cpu_list_lock);
+ if (cpu->has_waiter) {
+ cpu->has_waiter = false;
+ atomic_set(&pending_cpus, pending_cpus - 1);
+ if (pending_cpus == 1) {
+ qemu_cond_signal(&exclusive_cond);
+ }
}
+ qemu_mutex_unlock(&qemu_cpu_list_lock);
}
- qemu_mutex_unlock(&qemu_cpu_list_lock);
}
void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, void *data)