| /* |
| * Helpers for vax floating point instructions. |
| * |
| * Copyright (c) 2007 Jocelyn Mayer |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "cpu.h" |
| #include "exec/helper-proto.h" |
| #include "fpu/softfloat.h" |
| |
| #define FP_STATUS (env->fp_status) |
| |
| |
| /* F floating (VAX) */ |
| static uint64_t float32_to_f(float32 fa) |
| { |
| uint64_t r, exp, mant, sig; |
| CPU_FloatU a; |
| |
| a.f = fa; |
| sig = ((uint64_t)a.l & 0x80000000) << 32; |
| exp = (a.l >> 23) & 0xff; |
| mant = ((uint64_t)a.l & 0x007fffff) << 29; |
| |
| if (exp == 255) { |
| /* NaN or infinity */ |
| r = 1; /* VAX dirty zero */ |
| } else if (exp == 0) { |
| if (mant == 0) { |
| /* Zero */ |
| r = 0; |
| } else { |
| /* Denormalized */ |
| r = sig | ((exp + 1) << 52) | mant; |
| } |
| } else { |
| if (exp >= 253) { |
| /* Overflow */ |
| r = 1; /* VAX dirty zero */ |
| } else { |
| r = sig | ((exp + 2) << 52); |
| } |
| } |
| |
| return r; |
| } |
| |
| static float32 f_to_float32(CPUAlphaState *env, uintptr_t retaddr, uint64_t a) |
| { |
| uint32_t exp, mant_sig; |
| CPU_FloatU r; |
| |
| exp = ((a >> 55) & 0x80) | ((a >> 52) & 0x7f); |
| mant_sig = ((a >> 32) & 0x80000000) | ((a >> 29) & 0x007fffff); |
| |
| if (unlikely(!exp && mant_sig)) { |
| /* Reserved operands / Dirty zero */ |
| dynamic_excp(env, retaddr, EXCP_OPCDEC, 0); |
| } |
| |
| if (exp < 3) { |
| /* Underflow */ |
| r.l = 0; |
| } else { |
| r.l = ((exp - 2) << 23) | mant_sig; |
| } |
| |
| return r.f; |
| } |
| |
| uint32_t helper_f_to_memory(uint64_t a) |
| { |
| uint32_t r; |
| r = (a & 0x00001fffe0000000ull) >> 13; |
| r |= (a & 0x07ffe00000000000ull) >> 45; |
| r |= (a & 0xc000000000000000ull) >> 48; |
| return r; |
| } |
| |
| uint64_t helper_memory_to_f(uint32_t a) |
| { |
| uint64_t r; |
| r = ((uint64_t)(a & 0x0000c000)) << 48; |
| r |= ((uint64_t)(a & 0x003fffff)) << 45; |
| r |= ((uint64_t)(a & 0xffff0000)) << 13; |
| if (!(a & 0x00004000)) { |
| r |= 0x7ll << 59; |
| } |
| return r; |
| } |
| |
| /* ??? Emulating VAX arithmetic with IEEE arithmetic is wrong. We should |
| either implement VAX arithmetic properly or just signal invalid opcode. */ |
| |
| uint64_t helper_addf(CPUAlphaState *env, uint64_t a, uint64_t b) |
| { |
| float32 fa, fb, fr; |
| |
| fa = f_to_float32(env, GETPC(), a); |
| fb = f_to_float32(env, GETPC(), b); |
| fr = float32_add(fa, fb, &FP_STATUS); |
| return float32_to_f(fr); |
| } |
| |
| uint64_t helper_subf(CPUAlphaState *env, uint64_t a, uint64_t b) |
| { |
| float32 fa, fb, fr; |
| |
| fa = f_to_float32(env, GETPC(), a); |
| fb = f_to_float32(env, GETPC(), b); |
| fr = float32_sub(fa, fb, &FP_STATUS); |
| return float32_to_f(fr); |
| } |
| |
| uint64_t helper_mulf(CPUAlphaState *env, uint64_t a, uint64_t b) |
| { |
| float32 fa, fb, fr; |
| |
| fa = f_to_float32(env, GETPC(), a); |
| fb = f_to_float32(env, GETPC(), b); |
| fr = float32_mul(fa, fb, &FP_STATUS); |
| return float32_to_f(fr); |
| } |
| |
| uint64_t helper_divf(CPUAlphaState *env, uint64_t a, uint64_t b) |
| { |
| float32 fa, fb, fr; |
| |
| fa = f_to_float32(env, GETPC(), a); |
| fb = f_to_float32(env, GETPC(), b); |
| fr = float32_div(fa, fb, &FP_STATUS); |
| return float32_to_f(fr); |
| } |
| |
| uint64_t helper_sqrtf(CPUAlphaState *env, uint64_t t) |
| { |
| float32 ft, fr; |
| |
| ft = f_to_float32(env, GETPC(), t); |
| fr = float32_sqrt(ft, &FP_STATUS); |
| return float32_to_f(fr); |
| } |
| |
| |
| /* G floating (VAX) */ |
| static uint64_t float64_to_g(float64 fa) |
| { |
| uint64_t r, exp, mant, sig; |
| CPU_DoubleU a; |
| |
| a.d = fa; |
| sig = a.ll & 0x8000000000000000ull; |
| exp = (a.ll >> 52) & 0x7ff; |
| mant = a.ll & 0x000fffffffffffffull; |
| |
| if (exp == 2047) { |
| /* NaN or infinity */ |
| r = 1; /* VAX dirty zero */ |
| } else if (exp == 0) { |
| if (mant == 0) { |
| /* Zero */ |
| r = 0; |
| } else { |
| /* Denormalized */ |
| r = sig | ((exp + 1) << 52) | mant; |
| } |
| } else { |
| if (exp >= 2045) { |
| /* Overflow */ |
| r = 1; /* VAX dirty zero */ |
| } else { |
| r = sig | ((exp + 2) << 52); |
| } |
| } |
| |
| return r; |
| } |
| |
| static float64 g_to_float64(CPUAlphaState *env, uintptr_t retaddr, uint64_t a) |
| { |
| uint64_t exp, mant_sig; |
| CPU_DoubleU r; |
| |
| exp = (a >> 52) & 0x7ff; |
| mant_sig = a & 0x800fffffffffffffull; |
| |
| if (!exp && mant_sig) { |
| /* Reserved operands / Dirty zero */ |
| dynamic_excp(env, retaddr, EXCP_OPCDEC, 0); |
| } |
| |
| if (exp < 3) { |
| /* Underflow */ |
| r.ll = 0; |
| } else { |
| r.ll = ((exp - 2) << 52) | mant_sig; |
| } |
| |
| return r.d; |
| } |
| |
| uint64_t helper_g_to_memory(uint64_t a) |
| { |
| uint64_t r; |
| r = (a & 0x000000000000ffffull) << 48; |
| r |= (a & 0x00000000ffff0000ull) << 16; |
| r |= (a & 0x0000ffff00000000ull) >> 16; |
| r |= (a & 0xffff000000000000ull) >> 48; |
| return r; |
| } |
| |
| uint64_t helper_memory_to_g(uint64_t a) |
| { |
| uint64_t r; |
| r = (a & 0x000000000000ffffull) << 48; |
| r |= (a & 0x00000000ffff0000ull) << 16; |
| r |= (a & 0x0000ffff00000000ull) >> 16; |
| r |= (a & 0xffff000000000000ull) >> 48; |
| return r; |
| } |
| |
| uint64_t helper_addg(CPUAlphaState *env, uint64_t a, uint64_t b) |
| { |
| float64 fa, fb, fr; |
| |
| fa = g_to_float64(env, GETPC(), a); |
| fb = g_to_float64(env, GETPC(), b); |
| fr = float64_add(fa, fb, &FP_STATUS); |
| return float64_to_g(fr); |
| } |
| |
| uint64_t helper_subg(CPUAlphaState *env, uint64_t a, uint64_t b) |
| { |
| float64 fa, fb, fr; |
| |
| fa = g_to_float64(env, GETPC(), a); |
| fb = g_to_float64(env, GETPC(), b); |
| fr = float64_sub(fa, fb, &FP_STATUS); |
| return float64_to_g(fr); |
| } |
| |
| uint64_t helper_mulg(CPUAlphaState *env, uint64_t a, uint64_t b) |
| { |
| float64 fa, fb, fr; |
| |
| fa = g_to_float64(env, GETPC(), a); |
| fb = g_to_float64(env, GETPC(), b); |
| fr = float64_mul(fa, fb, &FP_STATUS); |
| return float64_to_g(fr); |
| } |
| |
| uint64_t helper_divg(CPUAlphaState *env, uint64_t a, uint64_t b) |
| { |
| float64 fa, fb, fr; |
| |
| fa = g_to_float64(env, GETPC(), a); |
| fb = g_to_float64(env, GETPC(), b); |
| fr = float64_div(fa, fb, &FP_STATUS); |
| return float64_to_g(fr); |
| } |
| |
| uint64_t helper_sqrtg(CPUAlphaState *env, uint64_t a) |
| { |
| float64 fa, fr; |
| |
| fa = g_to_float64(env, GETPC(), a); |
| fr = float64_sqrt(fa, &FP_STATUS); |
| return float64_to_g(fr); |
| } |
| |
| uint64_t helper_cmpgeq(CPUAlphaState *env, uint64_t a, uint64_t b) |
| { |
| float64 fa, fb; |
| |
| fa = g_to_float64(env, GETPC(), a); |
| fb = g_to_float64(env, GETPC(), b); |
| |
| if (float64_eq_quiet(fa, fb, &FP_STATUS)) { |
| return 0x4000000000000000ULL; |
| } else { |
| return 0; |
| } |
| } |
| |
| uint64_t helper_cmpgle(CPUAlphaState *env, uint64_t a, uint64_t b) |
| { |
| float64 fa, fb; |
| |
| fa = g_to_float64(env, GETPC(), a); |
| fb = g_to_float64(env, GETPC(), b); |
| |
| if (float64_le(fa, fb, &FP_STATUS)) { |
| return 0x4000000000000000ULL; |
| } else { |
| return 0; |
| } |
| } |
| |
| uint64_t helper_cmpglt(CPUAlphaState *env, uint64_t a, uint64_t b) |
| { |
| float64 fa, fb; |
| |
| fa = g_to_float64(env, GETPC(), a); |
| fb = g_to_float64(env, GETPC(), b); |
| |
| if (float64_lt(fa, fb, &FP_STATUS)) { |
| return 0x4000000000000000ULL; |
| } else { |
| return 0; |
| } |
| } |
| |
| uint64_t helper_cvtqf(CPUAlphaState *env, uint64_t a) |
| { |
| float32 fr = int64_to_float32(a, &FP_STATUS); |
| return float32_to_f(fr); |
| } |
| |
| uint64_t helper_cvtgf(CPUAlphaState *env, uint64_t a) |
| { |
| float64 fa; |
| float32 fr; |
| |
| fa = g_to_float64(env, GETPC(), a); |
| fr = float64_to_float32(fa, &FP_STATUS); |
| return float32_to_f(fr); |
| } |
| |
| uint64_t helper_cvtgq(CPUAlphaState *env, uint64_t a) |
| { |
| float64 fa = g_to_float64(env, GETPC(), a); |
| return float64_to_int64_round_to_zero(fa, &FP_STATUS); |
| } |
| |
| uint64_t helper_cvtqg(CPUAlphaState *env, uint64_t a) |
| { |
| float64 fr; |
| fr = int64_to_float64(a, &FP_STATUS); |
| return float64_to_g(fr); |
| } |