| /* |
| * S390x MMU related functions |
| * |
| * Copyright (c) 2011 Alexander Graf |
| * Copyright (c) 2015 Thomas Huth, IBM Corporation |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/error-report.h" |
| #include "exec/address-spaces.h" |
| #include "cpu.h" |
| #include "s390x-internal.h" |
| #include "kvm/kvm_s390x.h" |
| #include "sysemu/kvm.h" |
| #include "sysemu/tcg.h" |
| #include "exec/exec-all.h" |
| #include "trace.h" |
| #include "hw/hw.h" |
| #include "hw/s390x/storage-keys.h" |
| #include "hw/boards.h" |
| |
| /* Fetch/store bits in the translation exception code: */ |
| #define FS_READ 0x800 |
| #define FS_WRITE 0x400 |
| |
| static void trigger_access_exception(CPUS390XState *env, uint32_t type, |
| uint64_t tec) |
| { |
| S390CPU *cpu = env_archcpu(env); |
| |
| if (kvm_enabled()) { |
| kvm_s390_access_exception(cpu, type, tec); |
| } else { |
| CPUState *cs = env_cpu(env); |
| if (type != PGM_ADDRESSING) { |
| stq_phys(cs->as, env->psa + offsetof(LowCore, trans_exc_code), tec); |
| } |
| trigger_pgm_exception(env, type); |
| } |
| } |
| |
| /* check whether the address would be proteted by Low-Address Protection */ |
| static bool is_low_address(uint64_t addr) |
| { |
| return addr <= 511 || (addr >= 4096 && addr <= 4607); |
| } |
| |
| /* check whether Low-Address Protection is enabled for mmu_translate() */ |
| static bool lowprot_enabled(const CPUS390XState *env, uint64_t asc) |
| { |
| if (!(env->cregs[0] & CR0_LOWPROT)) { |
| return false; |
| } |
| if (!(env->psw.mask & PSW_MASK_DAT)) { |
| return true; |
| } |
| |
| /* Check the private-space control bit */ |
| switch (asc) { |
| case PSW_ASC_PRIMARY: |
| return !(env->cregs[1] & ASCE_PRIVATE_SPACE); |
| case PSW_ASC_SECONDARY: |
| return !(env->cregs[7] & ASCE_PRIVATE_SPACE); |
| case PSW_ASC_HOME: |
| return !(env->cregs[13] & ASCE_PRIVATE_SPACE); |
| default: |
| /* We don't support access register mode */ |
| error_report("unsupported addressing mode"); |
| exit(1); |
| } |
| } |
| |
| /** |
| * Translate real address to absolute (= physical) |
| * address by taking care of the prefix mapping. |
| */ |
| target_ulong mmu_real2abs(CPUS390XState *env, target_ulong raddr) |
| { |
| if (raddr < 0x2000) { |
| return raddr + env->psa; /* Map the lowcore. */ |
| } else if (raddr >= env->psa && raddr < env->psa + 0x2000) { |
| return raddr - env->psa; /* Map the 0 page. */ |
| } |
| return raddr; |
| } |
| |
| bool mmu_absolute_addr_valid(target_ulong addr, bool is_write) |
| { |
| return address_space_access_valid(&address_space_memory, |
| addr & TARGET_PAGE_MASK, |
| TARGET_PAGE_SIZE, is_write, |
| MEMTXATTRS_UNSPECIFIED); |
| } |
| |
| static inline bool read_table_entry(CPUS390XState *env, hwaddr gaddr, |
| uint64_t *entry) |
| { |
| CPUState *cs = env_cpu(env); |
| |
| /* |
| * According to the PoP, these table addresses are "unpredictably real |
| * or absolute". Also, "it is unpredictable whether the address wraps |
| * or an addressing exception is recognized". |
| * |
| * We treat them as absolute addresses and don't wrap them. |
| */ |
| if (unlikely(address_space_read(cs->as, gaddr, MEMTXATTRS_UNSPECIFIED, |
| entry, sizeof(*entry)) != |
| MEMTX_OK)) { |
| return false; |
| } |
| *entry = be64_to_cpu(*entry); |
| return true; |
| } |
| |
| static int mmu_translate_asce(CPUS390XState *env, target_ulong vaddr, |
| uint64_t asc, uint64_t asce, target_ulong *raddr, |
| int *flags) |
| { |
| const bool edat1 = (env->cregs[0] & CR0_EDAT) && |
| s390_has_feat(S390_FEAT_EDAT); |
| const bool edat2 = edat1 && s390_has_feat(S390_FEAT_EDAT_2); |
| const bool iep = (env->cregs[0] & CR0_IEP) && |
| s390_has_feat(S390_FEAT_INSTRUCTION_EXEC_PROT); |
| const int asce_tl = asce & ASCE_TABLE_LENGTH; |
| const int asce_p = asce & ASCE_PRIVATE_SPACE; |
| hwaddr gaddr = asce & ASCE_ORIGIN; |
| uint64_t entry; |
| |
| if (asce & ASCE_REAL_SPACE) { |
| /* direct mapping */ |
| *raddr = vaddr; |
| return 0; |
| } |
| |
| switch (asce & ASCE_TYPE_MASK) { |
| case ASCE_TYPE_REGION1: |
| if (VADDR_REGION1_TL(vaddr) > asce_tl) { |
| return PGM_REG_FIRST_TRANS; |
| } |
| gaddr += VADDR_REGION1_TX(vaddr) * 8; |
| break; |
| case ASCE_TYPE_REGION2: |
| if (VADDR_REGION1_TX(vaddr)) { |
| return PGM_ASCE_TYPE; |
| } |
| if (VADDR_REGION2_TL(vaddr) > asce_tl) { |
| return PGM_REG_SEC_TRANS; |
| } |
| gaddr += VADDR_REGION2_TX(vaddr) * 8; |
| break; |
| case ASCE_TYPE_REGION3: |
| if (VADDR_REGION1_TX(vaddr) || VADDR_REGION2_TX(vaddr)) { |
| return PGM_ASCE_TYPE; |
| } |
| if (VADDR_REGION3_TL(vaddr) > asce_tl) { |
| return PGM_REG_THIRD_TRANS; |
| } |
| gaddr += VADDR_REGION3_TX(vaddr) * 8; |
| break; |
| case ASCE_TYPE_SEGMENT: |
| if (VADDR_REGION1_TX(vaddr) || VADDR_REGION2_TX(vaddr) || |
| VADDR_REGION3_TX(vaddr)) { |
| return PGM_ASCE_TYPE; |
| } |
| if (VADDR_SEGMENT_TL(vaddr) > asce_tl) { |
| return PGM_SEGMENT_TRANS; |
| } |
| gaddr += VADDR_SEGMENT_TX(vaddr) * 8; |
| break; |
| } |
| |
| switch (asce & ASCE_TYPE_MASK) { |
| case ASCE_TYPE_REGION1: |
| if (!read_table_entry(env, gaddr, &entry)) { |
| return PGM_ADDRESSING; |
| } |
| if (entry & REGION_ENTRY_I) { |
| return PGM_REG_FIRST_TRANS; |
| } |
| if ((entry & REGION_ENTRY_TT) != REGION_ENTRY_TT_REGION1) { |
| return PGM_TRANS_SPEC; |
| } |
| if (VADDR_REGION2_TL(vaddr) < (entry & REGION_ENTRY_TF) >> 6 || |
| VADDR_REGION2_TL(vaddr) > (entry & REGION_ENTRY_TL)) { |
| return PGM_REG_SEC_TRANS; |
| } |
| if (edat1 && (entry & REGION_ENTRY_P)) { |
| *flags &= ~PAGE_WRITE; |
| } |
| gaddr = (entry & REGION_ENTRY_ORIGIN) + VADDR_REGION2_TX(vaddr) * 8; |
| /* fall through */ |
| case ASCE_TYPE_REGION2: |
| if (!read_table_entry(env, gaddr, &entry)) { |
| return PGM_ADDRESSING; |
| } |
| if (entry & REGION_ENTRY_I) { |
| return PGM_REG_SEC_TRANS; |
| } |
| if ((entry & REGION_ENTRY_TT) != REGION_ENTRY_TT_REGION2) { |
| return PGM_TRANS_SPEC; |
| } |
| if (VADDR_REGION3_TL(vaddr) < (entry & REGION_ENTRY_TF) >> 6 || |
| VADDR_REGION3_TL(vaddr) > (entry & REGION_ENTRY_TL)) { |
| return PGM_REG_THIRD_TRANS; |
| } |
| if (edat1 && (entry & REGION_ENTRY_P)) { |
| *flags &= ~PAGE_WRITE; |
| } |
| gaddr = (entry & REGION_ENTRY_ORIGIN) + VADDR_REGION3_TX(vaddr) * 8; |
| /* fall through */ |
| case ASCE_TYPE_REGION3: |
| if (!read_table_entry(env, gaddr, &entry)) { |
| return PGM_ADDRESSING; |
| } |
| if (entry & REGION_ENTRY_I) { |
| return PGM_REG_THIRD_TRANS; |
| } |
| if ((entry & REGION_ENTRY_TT) != REGION_ENTRY_TT_REGION3) { |
| return PGM_TRANS_SPEC; |
| } |
| if (edat2 && (entry & REGION3_ENTRY_CR) && asce_p) { |
| return PGM_TRANS_SPEC; |
| } |
| if (edat1 && (entry & REGION_ENTRY_P)) { |
| *flags &= ~PAGE_WRITE; |
| } |
| if (edat2 && (entry & REGION3_ENTRY_FC)) { |
| if (iep && (entry & REGION3_ENTRY_IEP)) { |
| *flags &= ~PAGE_EXEC; |
| } |
| *raddr = (entry & REGION3_ENTRY_RFAA) | |
| (vaddr & ~REGION3_ENTRY_RFAA); |
| return 0; |
| } |
| if (VADDR_SEGMENT_TL(vaddr) < (entry & REGION_ENTRY_TF) >> 6 || |
| VADDR_SEGMENT_TL(vaddr) > (entry & REGION_ENTRY_TL)) { |
| return PGM_SEGMENT_TRANS; |
| } |
| gaddr = (entry & REGION_ENTRY_ORIGIN) + VADDR_SEGMENT_TX(vaddr) * 8; |
| /* fall through */ |
| case ASCE_TYPE_SEGMENT: |
| if (!read_table_entry(env, gaddr, &entry)) { |
| return PGM_ADDRESSING; |
| } |
| if (entry & SEGMENT_ENTRY_I) { |
| return PGM_SEGMENT_TRANS; |
| } |
| if ((entry & SEGMENT_ENTRY_TT) != SEGMENT_ENTRY_TT_SEGMENT) { |
| return PGM_TRANS_SPEC; |
| } |
| if ((entry & SEGMENT_ENTRY_CS) && asce_p) { |
| return PGM_TRANS_SPEC; |
| } |
| if (entry & SEGMENT_ENTRY_P) { |
| *flags &= ~PAGE_WRITE; |
| } |
| if (edat1 && (entry & SEGMENT_ENTRY_FC)) { |
| if (iep && (entry & SEGMENT_ENTRY_IEP)) { |
| *flags &= ~PAGE_EXEC; |
| } |
| *raddr = (entry & SEGMENT_ENTRY_SFAA) | |
| (vaddr & ~SEGMENT_ENTRY_SFAA); |
| return 0; |
| } |
| gaddr = (entry & SEGMENT_ENTRY_ORIGIN) + VADDR_PAGE_TX(vaddr) * 8; |
| break; |
| } |
| |
| if (!read_table_entry(env, gaddr, &entry)) { |
| return PGM_ADDRESSING; |
| } |
| if (entry & PAGE_ENTRY_I) { |
| return PGM_PAGE_TRANS; |
| } |
| if (entry & PAGE_ENTRY_0) { |
| return PGM_TRANS_SPEC; |
| } |
| if (entry & PAGE_ENTRY_P) { |
| *flags &= ~PAGE_WRITE; |
| } |
| if (iep && (entry & PAGE_ENTRY_IEP)) { |
| *flags &= ~PAGE_EXEC; |
| } |
| |
| *raddr = entry & TARGET_PAGE_MASK; |
| return 0; |
| } |
| |
| static void mmu_handle_skey(target_ulong addr, int rw, int *flags) |
| { |
| static S390SKeysClass *skeyclass; |
| static S390SKeysState *ss; |
| uint8_t key, old_key; |
| int rc; |
| |
| /* |
| * We expect to be called with an absolute address that has already been |
| * validated, such that we can reliably use it to lookup the storage key. |
| */ |
| if (unlikely(!ss)) { |
| ss = s390_get_skeys_device(); |
| skeyclass = S390_SKEYS_GET_CLASS(ss); |
| } |
| |
| /* |
| * Don't enable storage keys if they are still disabled, i.e., no actual |
| * storage key instruction was issued yet. |
| */ |
| if (!skeyclass->skeys_are_enabled(ss)) { |
| return; |
| } |
| |
| /* |
| * Whenever we create a new TLB entry, we set the storage key reference |
| * bit. In case we allow write accesses, we set the storage key change |
| * bit. Whenever the guest changes the storage key, we have to flush the |
| * TLBs of all CPUs (the whole TLB or all affected entries), so that the |
| * next reference/change will result in an MMU fault and make us properly |
| * update the storage key here. |
| * |
| * Note 1: "record of references ... is not necessarily accurate", |
| * "change bit may be set in case no storing has occurred". |
| * -> We can set reference/change bits even on exceptions. |
| * Note 2: certain accesses seem to ignore storage keys. For example, |
| * DAT translation does not set reference bits for table accesses. |
| * |
| * TODO: key-controlled protection. Only CPU accesses make use of the |
| * PSW key. CSS accesses are different - we have to pass in the key. |
| * |
| * TODO: we have races between getting and setting the key. |
| */ |
| rc = skeyclass->get_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key); |
| if (rc) { |
| trace_get_skeys_nonzero(rc); |
| return; |
| } |
| old_key = key; |
| |
| switch (rw) { |
| case MMU_DATA_LOAD: |
| case MMU_INST_FETCH: |
| /* |
| * The TLB entry has to remain write-protected on read-faults if |
| * the storage key does not indicate a change already. Otherwise |
| * we might miss setting the change bit on write accesses. |
| */ |
| if (!(key & SK_C)) { |
| *flags &= ~PAGE_WRITE; |
| } |
| break; |
| case MMU_DATA_STORE: |
| key |= SK_C; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| /* Any store/fetch sets the reference bit */ |
| key |= SK_R; |
| |
| if (key != old_key) { |
| rc = skeyclass->set_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key); |
| if (rc) { |
| trace_set_skeys_nonzero(rc); |
| } |
| } |
| } |
| |
| /** |
| * Translate a virtual (logical) address into a physical (absolute) address. |
| * @param vaddr the virtual address |
| * @param rw 0 = read, 1 = write, 2 = code fetch, < 0 = load real address |
| * @param asc address space control (one of the PSW_ASC_* modes) |
| * @param raddr the translated address is stored to this pointer |
| * @param flags the PAGE_READ/WRITE/EXEC flags are stored to this pointer |
| * @param tec the translation exception code if stored to this pointer if |
| * there is an exception to raise |
| * @return 0 = success, != 0, the exception to raise |
| */ |
| int mmu_translate(CPUS390XState *env, target_ulong vaddr, int rw, uint64_t asc, |
| target_ulong *raddr, int *flags, uint64_t *tec) |
| { |
| uint64_t asce; |
| int r; |
| |
| *tec = (vaddr & TARGET_PAGE_MASK) | (asc >> 46) | |
| (rw == MMU_DATA_STORE ? FS_WRITE : FS_READ); |
| *flags = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| |
| if (is_low_address(vaddr & TARGET_PAGE_MASK) && lowprot_enabled(env, asc)) { |
| /* |
| * If any part of this page is currently protected, make sure the |
| * TLB entry will not be reused. |
| * |
| * As the protected range is always the first 512 bytes of the |
| * two first pages, we are able to catch all writes to these areas |
| * just by looking at the start address (triggering the tlb miss). |
| */ |
| *flags |= PAGE_WRITE_INV; |
| if (is_low_address(vaddr) && rw == MMU_DATA_STORE) { |
| /* LAP sets bit 56 */ |
| *tec |= 0x80; |
| return PGM_PROTECTION; |
| } |
| } |
| |
| vaddr &= TARGET_PAGE_MASK; |
| |
| if (!(env->psw.mask & PSW_MASK_DAT)) { |
| *raddr = vaddr; |
| goto nodat; |
| } |
| |
| switch (asc) { |
| case PSW_ASC_PRIMARY: |
| asce = env->cregs[1]; |
| break; |
| case PSW_ASC_HOME: |
| asce = env->cregs[13]; |
| break; |
| case PSW_ASC_SECONDARY: |
| asce = env->cregs[7]; |
| break; |
| case PSW_ASC_ACCREG: |
| default: |
| hw_error("guest switched to unknown asc mode\n"); |
| break; |
| } |
| |
| /* perform the DAT translation */ |
| r = mmu_translate_asce(env, vaddr, asc, asce, raddr, flags); |
| if (unlikely(r)) { |
| return r; |
| } |
| |
| /* check for DAT protection */ |
| if (unlikely(rw == MMU_DATA_STORE && !(*flags & PAGE_WRITE))) { |
| /* DAT sets bit 61 only */ |
| *tec |= 0x4; |
| return PGM_PROTECTION; |
| } |
| |
| /* check for Instruction-Execution-Protection */ |
| if (unlikely(rw == MMU_INST_FETCH && !(*flags & PAGE_EXEC))) { |
| /* IEP sets bit 56 and 61 */ |
| *tec |= 0x84; |
| return PGM_PROTECTION; |
| } |
| |
| nodat: |
| if (rw >= 0) { |
| /* Convert real address -> absolute address */ |
| *raddr = mmu_real2abs(env, *raddr); |
| |
| if (!mmu_absolute_addr_valid(*raddr, rw == MMU_DATA_STORE)) { |
| *tec = 0; /* unused */ |
| return PGM_ADDRESSING; |
| } |
| |
| mmu_handle_skey(*raddr, rw, flags); |
| } |
| return 0; |
| } |
| |
| /** |
| * translate_pages: Translate a set of consecutive logical page addresses |
| * to absolute addresses. This function is used for TCG and old KVM without |
| * the MEMOP interface. |
| */ |
| static int translate_pages(S390CPU *cpu, vaddr addr, int nr_pages, |
| target_ulong *pages, bool is_write, uint64_t *tec) |
| { |
| uint64_t asc = cpu->env.psw.mask & PSW_MASK_ASC; |
| CPUS390XState *env = &cpu->env; |
| int ret, i, pflags; |
| |
| for (i = 0; i < nr_pages; i++) { |
| ret = mmu_translate(env, addr, is_write, asc, &pages[i], &pflags, tec); |
| if (ret) { |
| return ret; |
| } |
| addr += TARGET_PAGE_SIZE; |
| } |
| |
| return 0; |
| } |
| |
| int s390_cpu_pv_mem_rw(S390CPU *cpu, unsigned int offset, void *hostbuf, |
| int len, bool is_write) |
| { |
| int ret; |
| |
| if (kvm_enabled()) { |
| ret = kvm_s390_mem_op_pv(cpu, offset, hostbuf, len, is_write); |
| } else { |
| /* Protected Virtualization is a KVM/Hardware only feature */ |
| g_assert_not_reached(); |
| } |
| return ret; |
| } |
| |
| /** |
| * s390_cpu_virt_mem_rw: |
| * @laddr: the logical start address |
| * @ar: the access register number |
| * @hostbuf: buffer in host memory. NULL = do only checks w/o copying |
| * @len: length that should be transferred |
| * @is_write: true = write, false = read |
| * Returns: 0 on success, non-zero if an exception occurred |
| * |
| * Copy from/to guest memory using logical addresses. Note that we inject a |
| * program interrupt in case there is an error while accessing the memory. |
| * |
| * This function will always return (also for TCG), make sure to call |
| * s390_cpu_virt_mem_handle_exc() to properly exit the CPU loop. |
| */ |
| int s390_cpu_virt_mem_rw(S390CPU *cpu, vaddr laddr, uint8_t ar, void *hostbuf, |
| int len, bool is_write) |
| { |
| int currlen, nr_pages, i; |
| target_ulong *pages; |
| uint64_t tec; |
| int ret; |
| |
| if (kvm_enabled()) { |
| ret = kvm_s390_mem_op(cpu, laddr, ar, hostbuf, len, is_write); |
| if (ret >= 0) { |
| return ret; |
| } |
| } |
| |
| nr_pages = (((laddr & ~TARGET_PAGE_MASK) + len - 1) >> TARGET_PAGE_BITS) |
| + 1; |
| pages = g_malloc(nr_pages * sizeof(*pages)); |
| |
| ret = translate_pages(cpu, laddr, nr_pages, pages, is_write, &tec); |
| if (ret) { |
| trigger_access_exception(&cpu->env, ret, tec); |
| } else if (hostbuf != NULL) { |
| /* Copy data by stepping through the area page by page */ |
| for (i = 0; i < nr_pages; i++) { |
| currlen = MIN(len, TARGET_PAGE_SIZE - (laddr % TARGET_PAGE_SIZE)); |
| cpu_physical_memory_rw(pages[i] | (laddr & ~TARGET_PAGE_MASK), |
| hostbuf, currlen, is_write); |
| laddr += currlen; |
| hostbuf += currlen; |
| len -= currlen; |
| } |
| } |
| |
| g_free(pages); |
| return ret; |
| } |
| |
| void s390_cpu_virt_mem_handle_exc(S390CPU *cpu, uintptr_t ra) |
| { |
| /* KVM will handle the interrupt automatically, TCG has to exit the TB */ |
| #ifdef CONFIG_TCG |
| if (tcg_enabled()) { |
| cpu_loop_exit_restore(CPU(cpu), ra); |
| } |
| #endif |
| } |
| |
| /** |
| * Translate a real address into a physical (absolute) address. |
| * @param raddr the real address |
| * @param rw 0 = read, 1 = write, 2 = code fetch |
| * @param addr the translated address is stored to this pointer |
| * @param flags the PAGE_READ/WRITE/EXEC flags are stored to this pointer |
| * @return 0 = success, != 0, the exception to raise |
| */ |
| int mmu_translate_real(CPUS390XState *env, target_ulong raddr, int rw, |
| target_ulong *addr, int *flags, uint64_t *tec) |
| { |
| const bool lowprot_enabled = env->cregs[0] & CR0_LOWPROT; |
| |
| *flags = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| if (is_low_address(raddr & TARGET_PAGE_MASK) && lowprot_enabled) { |
| /* see comment in mmu_translate() how this works */ |
| *flags |= PAGE_WRITE_INV; |
| if (is_low_address(raddr) && rw == MMU_DATA_STORE) { |
| /* LAP sets bit 56 */ |
| *tec = (raddr & TARGET_PAGE_MASK) | FS_WRITE | 0x80; |
| return PGM_PROTECTION; |
| } |
| } |
| |
| *addr = mmu_real2abs(env, raddr & TARGET_PAGE_MASK); |
| |
| if (!mmu_absolute_addr_valid(*addr, rw == MMU_DATA_STORE)) { |
| /* unused */ |
| *tec = 0; |
| return PGM_ADDRESSING; |
| } |
| |
| mmu_handle_skey(*addr, rw, flags); |
| return 0; |
| } |