| /* |
| * Simple C functions to supplement the C library |
| * |
| * Copyright (c) 2006 Fabrice Bellard |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| #include "qemu/osdep.h" |
| #include "qemu-common.h" |
| #include "qemu/host-utils.h" |
| #include <math.h> |
| |
| #include "qemu/sockets.h" |
| #include "qemu/iov.h" |
| #include "net/net.h" |
| #include "qemu/cutils.h" |
| |
| void strpadcpy(char *buf, int buf_size, const char *str, char pad) |
| { |
| int len = qemu_strnlen(str, buf_size); |
| memcpy(buf, str, len); |
| memset(buf + len, pad, buf_size - len); |
| } |
| |
| void pstrcpy(char *buf, int buf_size, const char *str) |
| { |
| int c; |
| char *q = buf; |
| |
| if (buf_size <= 0) |
| return; |
| |
| for(;;) { |
| c = *str++; |
| if (c == 0 || q >= buf + buf_size - 1) |
| break; |
| *q++ = c; |
| } |
| *q = '\0'; |
| } |
| |
| /* strcat and truncate. */ |
| char *pstrcat(char *buf, int buf_size, const char *s) |
| { |
| int len; |
| len = strlen(buf); |
| if (len < buf_size) |
| pstrcpy(buf + len, buf_size - len, s); |
| return buf; |
| } |
| |
| int strstart(const char *str, const char *val, const char **ptr) |
| { |
| const char *p, *q; |
| p = str; |
| q = val; |
| while (*q != '\0') { |
| if (*p != *q) |
| return 0; |
| p++; |
| q++; |
| } |
| if (ptr) |
| *ptr = p; |
| return 1; |
| } |
| |
| int stristart(const char *str, const char *val, const char **ptr) |
| { |
| const char *p, *q; |
| p = str; |
| q = val; |
| while (*q != '\0') { |
| if (qemu_toupper(*p) != qemu_toupper(*q)) |
| return 0; |
| p++; |
| q++; |
| } |
| if (ptr) |
| *ptr = p; |
| return 1; |
| } |
| |
| /* XXX: use host strnlen if available ? */ |
| int qemu_strnlen(const char *s, int max_len) |
| { |
| int i; |
| |
| for(i = 0; i < max_len; i++) { |
| if (s[i] == '\0') { |
| break; |
| } |
| } |
| return i; |
| } |
| |
| char *qemu_strsep(char **input, const char *delim) |
| { |
| char *result = *input; |
| if (result != NULL) { |
| char *p; |
| |
| for (p = result; *p != '\0'; p++) { |
| if (strchr(delim, *p)) { |
| break; |
| } |
| } |
| if (*p == '\0') { |
| *input = NULL; |
| } else { |
| *p = '\0'; |
| *input = p + 1; |
| } |
| } |
| return result; |
| } |
| |
| time_t mktimegm(struct tm *tm) |
| { |
| time_t t; |
| int y = tm->tm_year + 1900, m = tm->tm_mon + 1, d = tm->tm_mday; |
| if (m < 3) { |
| m += 12; |
| y--; |
| } |
| t = 86400ULL * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 + |
| y / 400 - 719469); |
| t += 3600 * tm->tm_hour + 60 * tm->tm_min + tm->tm_sec; |
| return t; |
| } |
| |
| /* |
| * Make sure data goes on disk, but if possible do not bother to |
| * write out the inode just for timestamp updates. |
| * |
| * Unfortunately even in 2009 many operating systems do not support |
| * fdatasync and have to fall back to fsync. |
| */ |
| int qemu_fdatasync(int fd) |
| { |
| #ifdef CONFIG_FDATASYNC |
| return fdatasync(fd); |
| #else |
| return fsync(fd); |
| #endif |
| } |
| |
| /* vector definitions */ |
| #ifdef __ALTIVEC__ |
| #include <altivec.h> |
| /* The altivec.h header says we're allowed to undef these for |
| * C++ compatibility. Here we don't care about C++, but we |
| * undef them anyway to avoid namespace pollution. |
| */ |
| #undef vector |
| #undef pixel |
| #undef bool |
| #define VECTYPE __vector unsigned char |
| #define SPLAT(p) vec_splat(vec_ld(0, p), 0) |
| #define ALL_EQ(v1, v2) vec_all_eq(v1, v2) |
| #define VEC_OR(v1, v2) ((v1) | (v2)) |
| /* altivec.h may redefine the bool macro as vector type. |
| * Reset it to POSIX semantics. */ |
| #define bool _Bool |
| #elif defined __SSE2__ |
| #include <emmintrin.h> |
| #define VECTYPE __m128i |
| #define SPLAT(p) _mm_set1_epi8(*(p)) |
| #define ALL_EQ(v1, v2) (_mm_movemask_epi8(_mm_cmpeq_epi8(v1, v2)) == 0xFFFF) |
| #define VEC_OR(v1, v2) (_mm_or_si128(v1, v2)) |
| #else |
| #define VECTYPE unsigned long |
| #define SPLAT(p) (*(p) * (~0UL / 255)) |
| #define ALL_EQ(v1, v2) ((v1) == (v2)) |
| #define VEC_OR(v1, v2) ((v1) | (v2)) |
| #endif |
| |
| #define BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR 8 |
| |
| static bool |
| can_use_buffer_find_nonzero_offset_inner(const void *buf, size_t len) |
| { |
| return (len % (BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR |
| * sizeof(VECTYPE)) == 0 |
| && ((uintptr_t) buf) % sizeof(VECTYPE) == 0); |
| } |
| |
| /* |
| * Searches for an area with non-zero content in a buffer |
| * |
| * Attention! The len must be a multiple of |
| * BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR * sizeof(VECTYPE) |
| * and addr must be a multiple of sizeof(VECTYPE) due to |
| * restriction of optimizations in this function. |
| * |
| * can_use_buffer_find_nonzero_offset_inner() can be used to |
| * check these requirements. |
| * |
| * The return value is the offset of the non-zero area rounded |
| * down to a multiple of sizeof(VECTYPE) for the first |
| * BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR chunks and down to |
| * BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR * sizeof(VECTYPE) |
| * afterwards. |
| * |
| * If the buffer is all zero the return value is equal to len. |
| */ |
| |
| static size_t buffer_find_nonzero_offset_inner(const void *buf, size_t len) |
| { |
| const VECTYPE *p = buf; |
| const VECTYPE zero = (VECTYPE){0}; |
| size_t i; |
| |
| assert(can_use_buffer_find_nonzero_offset_inner(buf, len)); |
| |
| if (!len) { |
| return 0; |
| } |
| |
| for (i = 0; i < BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR; i++) { |
| if (!ALL_EQ(p[i], zero)) { |
| return i * sizeof(VECTYPE); |
| } |
| } |
| |
| for (i = BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR; |
| i < len / sizeof(VECTYPE); |
| i += BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR) { |
| VECTYPE tmp0 = VEC_OR(p[i + 0], p[i + 1]); |
| VECTYPE tmp1 = VEC_OR(p[i + 2], p[i + 3]); |
| VECTYPE tmp2 = VEC_OR(p[i + 4], p[i + 5]); |
| VECTYPE tmp3 = VEC_OR(p[i + 6], p[i + 7]); |
| VECTYPE tmp01 = VEC_OR(tmp0, tmp1); |
| VECTYPE tmp23 = VEC_OR(tmp2, tmp3); |
| if (!ALL_EQ(VEC_OR(tmp01, tmp23), zero)) { |
| break; |
| } |
| } |
| |
| return i * sizeof(VECTYPE); |
| } |
| |
| #if defined CONFIG_AVX2_OPT |
| #pragma GCC push_options |
| #pragma GCC target("avx2") |
| #include <cpuid.h> |
| #include <immintrin.h> |
| |
| #define AVX2_VECTYPE __m256i |
| #define AVX2_SPLAT(p) _mm256_set1_epi8(*(p)) |
| #define AVX2_ALL_EQ(v1, v2) \ |
| (_mm256_movemask_epi8(_mm256_cmpeq_epi8(v1, v2)) == 0xFFFFFFFF) |
| #define AVX2_VEC_OR(v1, v2) (_mm256_or_si256(v1, v2)) |
| |
| static bool |
| can_use_buffer_find_nonzero_offset_avx2(const void *buf, size_t len) |
| { |
| return (len % (BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR |
| * sizeof(AVX2_VECTYPE)) == 0 |
| && ((uintptr_t) buf) % sizeof(AVX2_VECTYPE) == 0); |
| } |
| |
| static size_t buffer_find_nonzero_offset_avx2(const void *buf, size_t len) |
| { |
| const AVX2_VECTYPE *p = buf; |
| const AVX2_VECTYPE zero = (AVX2_VECTYPE){0}; |
| size_t i; |
| |
| assert(can_use_buffer_find_nonzero_offset_avx2(buf, len)); |
| |
| if (!len) { |
| return 0; |
| } |
| |
| for (i = 0; i < BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR; i++) { |
| if (!AVX2_ALL_EQ(p[i], zero)) { |
| return i * sizeof(AVX2_VECTYPE); |
| } |
| } |
| |
| for (i = BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR; |
| i < len / sizeof(AVX2_VECTYPE); |
| i += BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR) { |
| AVX2_VECTYPE tmp0 = AVX2_VEC_OR(p[i + 0], p[i + 1]); |
| AVX2_VECTYPE tmp1 = AVX2_VEC_OR(p[i + 2], p[i + 3]); |
| AVX2_VECTYPE tmp2 = AVX2_VEC_OR(p[i + 4], p[i + 5]); |
| AVX2_VECTYPE tmp3 = AVX2_VEC_OR(p[i + 6], p[i + 7]); |
| AVX2_VECTYPE tmp01 = AVX2_VEC_OR(tmp0, tmp1); |
| AVX2_VECTYPE tmp23 = AVX2_VEC_OR(tmp2, tmp3); |
| if (!AVX2_ALL_EQ(AVX2_VEC_OR(tmp01, tmp23), zero)) { |
| break; |
| } |
| } |
| |
| return i * sizeof(AVX2_VECTYPE); |
| } |
| |
| static bool avx2_support(void) |
| { |
| int a, b, c, d; |
| |
| if (__get_cpuid_max(0, NULL) < 7) { |
| return false; |
| } |
| |
| __cpuid_count(7, 0, a, b, c, d); |
| |
| return b & bit_AVX2; |
| } |
| |
| bool can_use_buffer_find_nonzero_offset(const void *buf, size_t len) \ |
| __attribute__ ((ifunc("can_use_buffer_find_nonzero_offset_ifunc"))); |
| size_t buffer_find_nonzero_offset(const void *buf, size_t len) \ |
| __attribute__ ((ifunc("buffer_find_nonzero_offset_ifunc"))); |
| |
| static void *buffer_find_nonzero_offset_ifunc(void) |
| { |
| typeof(buffer_find_nonzero_offset) *func = (avx2_support()) ? |
| buffer_find_nonzero_offset_avx2 : buffer_find_nonzero_offset_inner; |
| |
| return func; |
| } |
| |
| static void *can_use_buffer_find_nonzero_offset_ifunc(void) |
| { |
| typeof(can_use_buffer_find_nonzero_offset) *func = (avx2_support()) ? |
| can_use_buffer_find_nonzero_offset_avx2 : |
| can_use_buffer_find_nonzero_offset_inner; |
| |
| return func; |
| } |
| #pragma GCC pop_options |
| #else |
| bool can_use_buffer_find_nonzero_offset(const void *buf, size_t len) |
| { |
| return can_use_buffer_find_nonzero_offset_inner(buf, len); |
| } |
| |
| size_t buffer_find_nonzero_offset(const void *buf, size_t len) |
| { |
| return buffer_find_nonzero_offset_inner(buf, len); |
| } |
| #endif |
| |
| /* |
| * Checks if a buffer is all zeroes |
| * |
| * Attention! The len must be a multiple of 4 * sizeof(long) due to |
| * restriction of optimizations in this function. |
| */ |
| bool buffer_is_zero(const void *buf, size_t len) |
| { |
| /* |
| * Use long as the biggest available internal data type that fits into the |
| * CPU register and unroll the loop to smooth out the effect of memory |
| * latency. |
| */ |
| |
| size_t i; |
| long d0, d1, d2, d3; |
| const long * const data = buf; |
| |
| /* use vector optimized zero check if possible */ |
| if (can_use_buffer_find_nonzero_offset(buf, len)) { |
| return buffer_find_nonzero_offset(buf, len) == len; |
| } |
| |
| assert(len % (4 * sizeof(long)) == 0); |
| len /= sizeof(long); |
| |
| for (i = 0; i < len; i += 4) { |
| d0 = data[i + 0]; |
| d1 = data[i + 1]; |
| d2 = data[i + 2]; |
| d3 = data[i + 3]; |
| |
| if (d0 || d1 || d2 || d3) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| #ifndef _WIN32 |
| /* Sets a specific flag */ |
| int fcntl_setfl(int fd, int flag) |
| { |
| int flags; |
| |
| flags = fcntl(fd, F_GETFL); |
| if (flags == -1) |
| return -errno; |
| |
| if (fcntl(fd, F_SETFL, flags | flag) == -1) |
| return -errno; |
| |
| return 0; |
| } |
| #endif |
| |
| static int64_t suffix_mul(char suffix, int64_t unit) |
| { |
| switch (qemu_toupper(suffix)) { |
| case QEMU_STRTOSZ_DEFSUFFIX_B: |
| return 1; |
| case QEMU_STRTOSZ_DEFSUFFIX_KB: |
| return unit; |
| case QEMU_STRTOSZ_DEFSUFFIX_MB: |
| return unit * unit; |
| case QEMU_STRTOSZ_DEFSUFFIX_GB: |
| return unit * unit * unit; |
| case QEMU_STRTOSZ_DEFSUFFIX_TB: |
| return unit * unit * unit * unit; |
| case QEMU_STRTOSZ_DEFSUFFIX_PB: |
| return unit * unit * unit * unit * unit; |
| case QEMU_STRTOSZ_DEFSUFFIX_EB: |
| return unit * unit * unit * unit * unit * unit; |
| } |
| return -1; |
| } |
| |
| /* |
| * Convert string to bytes, allowing either B/b for bytes, K/k for KB, |
| * M/m for MB, G/g for GB or T/t for TB. End pointer will be returned |
| * in *end, if not NULL. Return -ERANGE on overflow, Return -EINVAL on |
| * other error. |
| */ |
| int64_t qemu_strtosz_suffix_unit(const char *nptr, char **end, |
| const char default_suffix, int64_t unit) |
| { |
| int64_t retval = -EINVAL; |
| char *endptr; |
| unsigned char c; |
| int mul_required = 0; |
| double val, mul, integral, fraction; |
| |
| errno = 0; |
| val = strtod(nptr, &endptr); |
| if (isnan(val) || endptr == nptr || errno != 0) { |
| goto fail; |
| } |
| fraction = modf(val, &integral); |
| if (fraction != 0) { |
| mul_required = 1; |
| } |
| c = *endptr; |
| mul = suffix_mul(c, unit); |
| if (mul >= 0) { |
| endptr++; |
| } else { |
| mul = suffix_mul(default_suffix, unit); |
| assert(mul >= 0); |
| } |
| if (mul == 1 && mul_required) { |
| goto fail; |
| } |
| if ((val * mul >= INT64_MAX) || val < 0) { |
| retval = -ERANGE; |
| goto fail; |
| } |
| retval = val * mul; |
| |
| fail: |
| if (end) { |
| *end = endptr; |
| } |
| |
| return retval; |
| } |
| |
| int64_t qemu_strtosz_suffix(const char *nptr, char **end, |
| const char default_suffix) |
| { |
| return qemu_strtosz_suffix_unit(nptr, end, default_suffix, 1024); |
| } |
| |
| int64_t qemu_strtosz(const char *nptr, char **end) |
| { |
| return qemu_strtosz_suffix(nptr, end, QEMU_STRTOSZ_DEFSUFFIX_MB); |
| } |
| |
| /** |
| * Helper function for qemu_strto*l() functions. |
| */ |
| static int check_strtox_error(const char *p, char *endptr, const char **next, |
| int err) |
| { |
| /* If no conversion was performed, prefer BSD behavior over glibc |
| * behavior. |
| */ |
| if (err == 0 && endptr == p) { |
| err = EINVAL; |
| } |
| if (!next && *endptr) { |
| return -EINVAL; |
| } |
| if (next) { |
| *next = endptr; |
| } |
| return -err; |
| } |
| |
| /** |
| * QEMU wrappers for strtol(), strtoll(), strtoul(), strotull() C functions. |
| * |
| * Convert ASCII string @nptr to a long integer value |
| * from the given @base. Parameters @nptr, @endptr, @base |
| * follows same semantics as strtol() C function. |
| * |
| * Unlike from strtol() function, if @endptr is not NULL, this |
| * function will return -EINVAL whenever it cannot fully convert |
| * the string in @nptr with given @base to a long. This function returns |
| * the result of the conversion only through the @result parameter. |
| * |
| * If NULL is passed in @endptr, then the whole string in @ntpr |
| * is a number otherwise it returns -EINVAL. |
| * |
| * RETURN VALUE |
| * Unlike from strtol() function, this wrapper returns either |
| * -EINVAL or the errno set by strtol() function (e.g -ERANGE). |
| * If the conversion overflows, -ERANGE is returned, and @result |
| * is set to the max value of the desired type |
| * (e.g. LONG_MAX, LLONG_MAX, ULONG_MAX, ULLONG_MAX). If the case |
| * of underflow, -ERANGE is returned, and @result is set to the min |
| * value of the desired type. For strtol(), strtoll(), @result is set to |
| * LONG_MIN, LLONG_MIN, respectively, and for strtoul(), strtoull() it |
| * is set to 0. |
| */ |
| int qemu_strtol(const char *nptr, const char **endptr, int base, |
| long *result) |
| { |
| char *p; |
| int err = 0; |
| if (!nptr) { |
| if (endptr) { |
| *endptr = nptr; |
| } |
| err = -EINVAL; |
| } else { |
| errno = 0; |
| *result = strtol(nptr, &p, base); |
| err = check_strtox_error(nptr, p, endptr, errno); |
| } |
| return err; |
| } |
| |
| /** |
| * Converts ASCII string to an unsigned long integer. |
| * |
| * If string contains a negative number, value will be converted to |
| * the unsigned representation of the signed value, unless the original |
| * (nonnegated) value would overflow, in this case, it will set @result |
| * to ULONG_MAX, and return ERANGE. |
| * |
| * The same behavior holds, for qemu_strtoull() but sets @result to |
| * ULLONG_MAX instead of ULONG_MAX. |
| * |
| * See qemu_strtol() documentation for more info. |
| */ |
| int qemu_strtoul(const char *nptr, const char **endptr, int base, |
| unsigned long *result) |
| { |
| char *p; |
| int err = 0; |
| if (!nptr) { |
| if (endptr) { |
| *endptr = nptr; |
| } |
| err = -EINVAL; |
| } else { |
| errno = 0; |
| *result = strtoul(nptr, &p, base); |
| /* Windows returns 1 for negative out-of-range values. */ |
| if (errno == ERANGE) { |
| *result = -1; |
| } |
| err = check_strtox_error(nptr, p, endptr, errno); |
| } |
| return err; |
| } |
| |
| /** |
| * Converts ASCII string to a long long integer. |
| * |
| * See qemu_strtol() documentation for more info. |
| */ |
| int qemu_strtoll(const char *nptr, const char **endptr, int base, |
| int64_t *result) |
| { |
| char *p; |
| int err = 0; |
| if (!nptr) { |
| if (endptr) { |
| *endptr = nptr; |
| } |
| err = -EINVAL; |
| } else { |
| errno = 0; |
| *result = strtoll(nptr, &p, base); |
| err = check_strtox_error(nptr, p, endptr, errno); |
| } |
| return err; |
| } |
| |
| /** |
| * Converts ASCII string to an unsigned long long integer. |
| * |
| * See qemu_strtol() documentation for more info. |
| */ |
| int qemu_strtoull(const char *nptr, const char **endptr, int base, |
| uint64_t *result) |
| { |
| char *p; |
| int err = 0; |
| if (!nptr) { |
| if (endptr) { |
| *endptr = nptr; |
| } |
| err = -EINVAL; |
| } else { |
| errno = 0; |
| *result = strtoull(nptr, &p, base); |
| /* Windows returns 1 for negative out-of-range values. */ |
| if (errno == ERANGE) { |
| *result = -1; |
| } |
| err = check_strtox_error(nptr, p, endptr, errno); |
| } |
| return err; |
| } |
| |
| /** |
| * parse_uint: |
| * |
| * @s: String to parse |
| * @value: Destination for parsed integer value |
| * @endptr: Destination for pointer to first character not consumed |
| * @base: integer base, between 2 and 36 inclusive, or 0 |
| * |
| * Parse unsigned integer |
| * |
| * Parsed syntax is like strtoull()'s: arbitrary whitespace, a single optional |
| * '+' or '-', an optional "0x" if @base is 0 or 16, one or more digits. |
| * |
| * If @s is null, or @base is invalid, or @s doesn't start with an |
| * integer in the syntax above, set *@value to 0, *@endptr to @s, and |
| * return -EINVAL. |
| * |
| * Set *@endptr to point right beyond the parsed integer (even if the integer |
| * overflows or is negative, all digits will be parsed and *@endptr will |
| * point right beyond them). |
| * |
| * If the integer is negative, set *@value to 0, and return -ERANGE. |
| * |
| * If the integer overflows unsigned long long, set *@value to |
| * ULLONG_MAX, and return -ERANGE. |
| * |
| * Else, set *@value to the parsed integer, and return 0. |
| */ |
| int parse_uint(const char *s, unsigned long long *value, char **endptr, |
| int base) |
| { |
| int r = 0; |
| char *endp = (char *)s; |
| unsigned long long val = 0; |
| |
| if (!s) { |
| r = -EINVAL; |
| goto out; |
| } |
| |
| errno = 0; |
| val = strtoull(s, &endp, base); |
| if (errno) { |
| r = -errno; |
| goto out; |
| } |
| |
| if (endp == s) { |
| r = -EINVAL; |
| goto out; |
| } |
| |
| /* make sure we reject negative numbers: */ |
| while (isspace((unsigned char)*s)) { |
| s++; |
| } |
| if (*s == '-') { |
| val = 0; |
| r = -ERANGE; |
| goto out; |
| } |
| |
| out: |
| *value = val; |
| *endptr = endp; |
| return r; |
| } |
| |
| /** |
| * parse_uint_full: |
| * |
| * @s: String to parse |
| * @value: Destination for parsed integer value |
| * @base: integer base, between 2 and 36 inclusive, or 0 |
| * |
| * Parse unsigned integer from entire string |
| * |
| * Have the same behavior of parse_uint(), but with an additional check |
| * for additional data after the parsed number. If extra characters are present |
| * after the parsed number, the function will return -EINVAL, and *@v will |
| * be set to 0. |
| */ |
| int parse_uint_full(const char *s, unsigned long long *value, int base) |
| { |
| char *endp; |
| int r; |
| |
| r = parse_uint(s, value, &endp, base); |
| if (r < 0) { |
| return r; |
| } |
| if (*endp) { |
| *value = 0; |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| int qemu_parse_fd(const char *param) |
| { |
| long fd; |
| char *endptr; |
| |
| errno = 0; |
| fd = strtol(param, &endptr, 10); |
| if (param == endptr /* no conversion performed */ || |
| errno != 0 /* not representable as long; possibly others */ || |
| *endptr != '\0' /* final string not empty */ || |
| fd < 0 /* invalid as file descriptor */ || |
| fd > INT_MAX /* not representable as int */) { |
| return -1; |
| } |
| return fd; |
| } |
| |
| /* |
| * Implementation of ULEB128 (http://en.wikipedia.org/wiki/LEB128) |
| * Input is limited to 14-bit numbers |
| */ |
| int uleb128_encode_small(uint8_t *out, uint32_t n) |
| { |
| g_assert(n <= 0x3fff); |
| if (n < 0x80) { |
| *out++ = n; |
| return 1; |
| } else { |
| *out++ = (n & 0x7f) | 0x80; |
| *out++ = n >> 7; |
| return 2; |
| } |
| } |
| |
| int uleb128_decode_small(const uint8_t *in, uint32_t *n) |
| { |
| if (!(*in & 0x80)) { |
| *n = *in++; |
| return 1; |
| } else { |
| *n = *in++ & 0x7f; |
| /* we exceed 14 bit number */ |
| if (*in & 0x80) { |
| return -1; |
| } |
| *n |= *in++ << 7; |
| return 2; |
| } |
| } |
| |
| /* |
| * helper to parse debug environment variables |
| */ |
| int parse_debug_env(const char *name, int max, int initial) |
| { |
| char *debug_env = getenv(name); |
| char *inv = NULL; |
| long debug; |
| |
| if (!debug_env) { |
| return initial; |
| } |
| errno = 0; |
| debug = strtol(debug_env, &inv, 10); |
| if (inv == debug_env) { |
| return initial; |
| } |
| if (debug < 0 || debug > max || errno != 0) { |
| fprintf(stderr, "warning: %s not in [0, %d]", name, max); |
| return initial; |
| } |
| return debug; |
| } |
| |
| /* |
| * Helper to print ethernet mac address |
| */ |
| const char *qemu_ether_ntoa(const MACAddr *mac) |
| { |
| static char ret[18]; |
| |
| snprintf(ret, sizeof(ret), "%02x:%02x:%02x:%02x:%02x:%02x", |
| mac->a[0], mac->a[1], mac->a[2], mac->a[3], mac->a[4], mac->a[5]); |
| |
| return ret; |
| } |