| # -*- Mode: Python -*- |
| # |
| |
| ## |
| # = Target-specific commands & events |
| ## |
| |
| { 'include': 'misc.json' } |
| |
| ## |
| # @RTC_CHANGE: |
| # |
| # Emitted when the guest changes the RTC time. |
| # |
| # @offset: offset between base RTC clock (as specified by -rtc base), and |
| # new RTC clock value |
| # |
| # Note: This event is rate-limited. |
| # |
| # Since: 0.13.0 |
| # |
| # Example: |
| # |
| # <- { "event": "RTC_CHANGE", |
| # "data": { "offset": 78 }, |
| # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } } |
| # |
| ## |
| { 'event': 'RTC_CHANGE', |
| 'data': { 'offset': 'int' }, |
| 'if': 'defined(TARGET_ALPHA) || defined(TARGET_ARM) || defined(TARGET_HPPA) || defined(TARGET_I386) || defined(TARGET_MIPS) || defined(TARGET_MIPS64) || defined(TARGET_MOXIE) || defined(TARGET_PPC) || defined(TARGET_PPC64) || defined(TARGET_S390X) || defined(TARGET_SH4) || defined(TARGET_SPARC)' } |
| |
| ## |
| # @rtc-reset-reinjection: |
| # |
| # This command will reset the RTC interrupt reinjection backlog. |
| # Can be used if another mechanism to synchronize guest time |
| # is in effect, for example QEMU guest agent's guest-set-time |
| # command. |
| # |
| # Since: 2.1 |
| # |
| # Example: |
| # |
| # -> { "execute": "rtc-reset-reinjection" } |
| # <- { "return": {} } |
| # |
| ## |
| { 'command': 'rtc-reset-reinjection', |
| 'if': 'defined(TARGET_I386)' } |
| |
| |
| ## |
| # @SevState: |
| # |
| # An enumeration of SEV state information used during @query-sev. |
| # |
| # @uninit: The guest is uninitialized. |
| # |
| # @launch-update: The guest is currently being launched; plaintext data and |
| # register state is being imported. |
| # |
| # @launch-secret: The guest is currently being launched; ciphertext data |
| # is being imported. |
| # |
| # @running: The guest is fully launched or migrated in. |
| # |
| # @send-update: The guest is currently being migrated out to another machine. |
| # |
| # @receive-update: The guest is currently being migrated from another machine. |
| # |
| # Since: 2.12 |
| ## |
| { 'enum': 'SevState', |
| 'data': ['uninit', 'launch-update', 'launch-secret', 'running', |
| 'send-update', 'receive-update' ], |
| 'if': 'defined(TARGET_I386)' } |
| |
| ## |
| # @SevInfo: |
| # |
| # Information about Secure Encrypted Virtualization (SEV) support |
| # |
| # @enabled: true if SEV is active |
| # |
| # @api-major: SEV API major version |
| # |
| # @api-minor: SEV API minor version |
| # |
| # @build-id: SEV FW build id |
| # |
| # @policy: SEV policy value |
| # |
| # @state: SEV guest state |
| # |
| # @handle: SEV firmware handle |
| # |
| # Since: 2.12 |
| ## |
| { 'struct': 'SevInfo', |
| 'data': { 'enabled': 'bool', |
| 'api-major': 'uint8', |
| 'api-minor' : 'uint8', |
| 'build-id' : 'uint8', |
| 'policy' : 'uint32', |
| 'state' : 'SevState', |
| 'handle' : 'uint32' |
| }, |
| 'if': 'defined(TARGET_I386)' |
| } |
| |
| ## |
| # @query-sev: |
| # |
| # Returns information about SEV |
| # |
| # Returns: @SevInfo |
| # |
| # Since: 2.12 |
| # |
| # Example: |
| # |
| # -> { "execute": "query-sev" } |
| # <- { "return": { "enabled": true, "api-major" : 0, "api-minor" : 0, |
| # "build-id" : 0, "policy" : 0, "state" : "running", |
| # "handle" : 1 } } |
| # |
| ## |
| { 'command': 'query-sev', 'returns': 'SevInfo', |
| 'if': 'defined(TARGET_I386)' } |
| |
| |
| ## |
| # @SevLaunchMeasureInfo: |
| # |
| # SEV Guest Launch measurement information |
| # |
| # @data: the measurement value encoded in base64 |
| # |
| # Since: 2.12 |
| # |
| ## |
| { 'struct': 'SevLaunchMeasureInfo', 'data': {'data': 'str'}, |
| 'if': 'defined(TARGET_I386)' } |
| |
| ## |
| # @query-sev-launch-measure: |
| # |
| # Query the SEV guest launch information. |
| # |
| # Returns: The @SevLaunchMeasureInfo for the guest |
| # |
| # Since: 2.12 |
| # |
| # Example: |
| # |
| # -> { "execute": "query-sev-launch-measure" } |
| # <- { "return": { "data": "4l8LXeNlSPUDlXPJG5966/8%YZ" } } |
| # |
| ## |
| { 'command': 'query-sev-launch-measure', 'returns': 'SevLaunchMeasureInfo', |
| 'if': 'defined(TARGET_I386)' } |
| |
| |
| ## |
| # @SevCapability: |
| # |
| # The struct describes capability for a Secure Encrypted Virtualization |
| # feature. |
| # |
| # @pdh: Platform Diffie-Hellman key (base64 encoded) |
| # |
| # @cert-chain: PDH certificate chain (base64 encoded) |
| # |
| # @cbitpos: C-bit location in page table entry |
| # |
| # @reduced-phys-bits: Number of physical Address bit reduction when SEV is |
| # enabled |
| # |
| # Since: 2.12 |
| ## |
| { 'struct': 'SevCapability', |
| 'data': { 'pdh': 'str', |
| 'cert-chain': 'str', |
| 'cbitpos': 'int', |
| 'reduced-phys-bits': 'int'}, |
| 'if': 'defined(TARGET_I386)' } |
| |
| ## |
| # @query-sev-capabilities: |
| # |
| # This command is used to get the SEV capabilities, and is supported on AMD |
| # X86 platforms only. |
| # |
| # Returns: SevCapability objects. |
| # |
| # Since: 2.12 |
| # |
| # Example: |
| # |
| # -> { "execute": "query-sev-capabilities" } |
| # <- { "return": { "pdh": "8CCDD8DDD", "cert-chain": "888CCCDDDEE", |
| # "cbitpos": 47, "reduced-phys-bits": 5}} |
| # |
| ## |
| { 'command': 'query-sev-capabilities', 'returns': 'SevCapability', |
| 'if': 'defined(TARGET_I386)' } |
| |
| ## |
| # @dump-skeys: |
| # |
| # Dump guest's storage keys |
| # |
| # @filename: the path to the file to dump to |
| # |
| # This command is only supported on s390 architecture. |
| # |
| # Since: 2.5 |
| # |
| # Example: |
| # |
| # -> { "execute": "dump-skeys", |
| # "arguments": { "filename": "/tmp/skeys" } } |
| # <- { "return": {} } |
| # |
| ## |
| { 'command': 'dump-skeys', |
| 'data': { 'filename': 'str' }, |
| 'if': 'defined(TARGET_S390X)' } |
| |
| ## |
| # @CpuModelBaselineInfo: |
| # |
| # The result of a CPU model baseline. |
| # |
| # @model: the baselined CpuModelInfo. |
| # |
| # Since: 2.8.0 |
| ## |
| { 'struct': 'CpuModelBaselineInfo', |
| 'data': { 'model': 'CpuModelInfo' }, |
| 'if': 'defined(TARGET_S390X)' } |
| |
| ## |
| # @CpuModelCompareInfo: |
| # |
| # The result of a CPU model comparison. |
| # |
| # @result: The result of the compare operation. |
| # @responsible-properties: List of properties that led to the comparison result |
| # not being identical. |
| # |
| # @responsible-properties is a list of QOM property names that led to |
| # both CPUs not being detected as identical. For identical models, this |
| # list is empty. |
| # If a QOM property is read-only, that means there's no known way to make the |
| # CPU models identical. If the special property name "type" is included, the |
| # models are by definition not identical and cannot be made identical. |
| # |
| # Since: 2.8.0 |
| ## |
| { 'struct': 'CpuModelCompareInfo', |
| 'data': { 'result': 'CpuModelCompareResult', |
| 'responsible-properties': ['str'] }, |
| 'if': 'defined(TARGET_S390X)' } |
| |
| ## |
| # @query-cpu-model-comparison: |
| # |
| # Compares two CPU models, returning how they compare in a specific |
| # configuration. The results indicates how both models compare regarding |
| # runnability. This result can be used by tooling to make decisions if a |
| # certain CPU model will run in a certain configuration or if a compatible |
| # CPU model has to be created by baselining. |
| # |
| # Usually, a CPU model is compared against the maximum possible CPU model |
| # of a certain configuration (e.g. the "host" model for KVM). If that CPU |
| # model is identical or a subset, it will run in that configuration. |
| # |
| # The result returned by this command may be affected by: |
| # |
| # * QEMU version: CPU models may look different depending on the QEMU version. |
| # (Except for CPU models reported as "static" in query-cpu-definitions.) |
| # * machine-type: CPU model may look different depending on the machine-type. |
| # (Except for CPU models reported as "static" in query-cpu-definitions.) |
| # * machine options (including accelerator): in some architectures, CPU models |
| # may look different depending on machine and accelerator options. (Except for |
| # CPU models reported as "static" in query-cpu-definitions.) |
| # * "-cpu" arguments and global properties: arguments to the -cpu option and |
| # global properties may affect expansion of CPU models. Using |
| # query-cpu-model-expansion while using these is not advised. |
| # |
| # Some architectures may not support comparing CPU models. s390x supports |
| # comparing CPU models. |
| # |
| # Returns: a CpuModelBaselineInfo. Returns an error if comparing CPU models is |
| # not supported, if a model cannot be used, if a model contains |
| # an unknown cpu definition name, unknown properties or properties |
| # with wrong types. |
| # |
| # Note: this command isn't specific to s390x, but is only implemented |
| # on this architecture currently. |
| # |
| # Since: 2.8.0 |
| ## |
| { 'command': 'query-cpu-model-comparison', |
| 'data': { 'modela': 'CpuModelInfo', 'modelb': 'CpuModelInfo' }, |
| 'returns': 'CpuModelCompareInfo', |
| 'if': 'defined(TARGET_S390X)' } |
| |
| ## |
| # @query-cpu-model-baseline: |
| # |
| # Baseline two CPU models, creating a compatible third model. The created |
| # model will always be a static, migration-safe CPU model (see "static" |
| # CPU model expansion for details). |
| # |
| # This interface can be used by tooling to create a compatible CPU model out |
| # two CPU models. The created CPU model will be identical to or a subset of |
| # both CPU models when comparing them. Therefore, the created CPU model is |
| # guaranteed to run where the given CPU models run. |
| # |
| # The result returned by this command may be affected by: |
| # |
| # * QEMU version: CPU models may look different depending on the QEMU version. |
| # (Except for CPU models reported as "static" in query-cpu-definitions.) |
| # * machine-type: CPU model may look different depending on the machine-type. |
| # (Except for CPU models reported as "static" in query-cpu-definitions.) |
| # * machine options (including accelerator): in some architectures, CPU models |
| # may look different depending on machine and accelerator options. (Except for |
| # CPU models reported as "static" in query-cpu-definitions.) |
| # * "-cpu" arguments and global properties: arguments to the -cpu option and |
| # global properties may affect expansion of CPU models. Using |
| # query-cpu-model-expansion while using these is not advised. |
| # |
| # Some architectures may not support baselining CPU models. s390x supports |
| # baselining CPU models. |
| # |
| # Returns: a CpuModelBaselineInfo. Returns an error if baselining CPU models is |
| # not supported, if a model cannot be used, if a model contains |
| # an unknown cpu definition name, unknown properties or properties |
| # with wrong types. |
| # |
| # Note: this command isn't specific to s390x, but is only implemented |
| # on this architecture currently. |
| # |
| # Since: 2.8.0 |
| ## |
| { 'command': 'query-cpu-model-baseline', |
| 'data': { 'modela': 'CpuModelInfo', |
| 'modelb': 'CpuModelInfo' }, |
| 'returns': 'CpuModelBaselineInfo', |
| 'if': 'defined(TARGET_S390X)' } |
| |
| ## |
| # @GICCapability: |
| # |
| # The struct describes capability for a specific GIC (Generic |
| # Interrupt Controller) version. These bits are not only decided by |
| # QEMU/KVM software version, but also decided by the hardware that |
| # the program is running upon. |
| # |
| # @version: version of GIC to be described. Currently, only 2 and 3 |
| # are supported. |
| # |
| # @emulated: whether current QEMU/hardware supports emulated GIC |
| # device in user space. |
| # |
| # @kernel: whether current QEMU/hardware supports hardware |
| # accelerated GIC device in kernel. |
| # |
| # Since: 2.6 |
| ## |
| { 'struct': 'GICCapability', |
| 'data': { 'version': 'int', |
| 'emulated': 'bool', |
| 'kernel': 'bool' }, |
| 'if': 'defined(TARGET_ARM)' } |
| |
| ## |
| # @query-gic-capabilities: |
| # |
| # This command is ARM-only. It will return a list of GICCapability |
| # objects that describe its capability bits. |
| # |
| # Returns: a list of GICCapability objects. |
| # |
| # Since: 2.6 |
| # |
| # Example: |
| # |
| # -> { "execute": "query-gic-capabilities" } |
| # <- { "return": [{ "version": 2, "emulated": true, "kernel": false }, |
| # { "version": 3, "emulated": false, "kernel": true } ] } |
| # |
| ## |
| { 'command': 'query-gic-capabilities', 'returns': ['GICCapability'], |
| 'if': 'defined(TARGET_ARM)' } |
| |
| ## |
| # @CpuModelExpansionInfo: |
| # |
| # The result of a cpu model expansion. |
| # |
| # @model: the expanded CpuModelInfo. |
| # |
| # Since: 2.8.0 |
| ## |
| { 'struct': 'CpuModelExpansionInfo', |
| 'data': { 'model': 'CpuModelInfo' }, |
| 'if': 'defined(TARGET_S390X) || defined(TARGET_I386)' } |
| |
| ## |
| # @query-cpu-model-expansion: |
| # |
| # Expands a given CPU model (or a combination of CPU model + additional options) |
| # to different granularities, allowing tooling to get an understanding what a |
| # specific CPU model looks like in QEMU under a certain configuration. |
| # |
| # This interface can be used to query the "host" CPU model. |
| # |
| # The data returned by this command may be affected by: |
| # |
| # * QEMU version: CPU models may look different depending on the QEMU version. |
| # (Except for CPU models reported as "static" in query-cpu-definitions.) |
| # * machine-type: CPU model may look different depending on the machine-type. |
| # (Except for CPU models reported as "static" in query-cpu-definitions.) |
| # * machine options (including accelerator): in some architectures, CPU models |
| # may look different depending on machine and accelerator options. (Except for |
| # CPU models reported as "static" in query-cpu-definitions.) |
| # * "-cpu" arguments and global properties: arguments to the -cpu option and |
| # global properties may affect expansion of CPU models. Using |
| # query-cpu-model-expansion while using these is not advised. |
| # |
| # Some architectures may not support all expansion types. s390x supports |
| # "full" and "static". |
| # |
| # Returns: a CpuModelExpansionInfo. Returns an error if expanding CPU models is |
| # not supported, if the model cannot be expanded, if the model contains |
| # an unknown CPU definition name, unknown properties or properties |
| # with a wrong type. Also returns an error if an expansion type is |
| # not supported. |
| # |
| # Since: 2.8.0 |
| ## |
| { 'command': 'query-cpu-model-expansion', |
| 'data': { 'type': 'CpuModelExpansionType', |
| 'model': 'CpuModelInfo' }, |
| 'returns': 'CpuModelExpansionInfo', |
| 'if': 'defined(TARGET_S390X) || defined(TARGET_I386)' } |
| |
| ## |
| # @CpuDefinitionInfo: |
| # |
| # Virtual CPU definition. |
| # |
| # @name: the name of the CPU definition |
| # |
| # @migration-safe: whether a CPU definition can be safely used for |
| # migration in combination with a QEMU compatibility machine |
| # when migrating between different QEMU versions and between |
| # hosts with different sets of (hardware or software) |
| # capabilities. If not provided, information is not available |
| # and callers should not assume the CPU definition to be |
| # migration-safe. (since 2.8) |
| # |
| # @static: whether a CPU definition is static and will not change depending on |
| # QEMU version, machine type, machine options and accelerator options. |
| # A static model is always migration-safe. (since 2.8) |
| # |
| # @unavailable-features: List of properties that prevent |
| # the CPU model from running in the current |
| # host. (since 2.8) |
| # @typename: Type name that can be used as argument to @device-list-properties, |
| # to introspect properties configurable using -cpu or -global. |
| # (since 2.9) |
| # |
| # @unavailable-features is a list of QOM property names that |
| # represent CPU model attributes that prevent the CPU from running. |
| # If the QOM property is read-only, that means there's no known |
| # way to make the CPU model run in the current host. Implementations |
| # that choose not to provide specific information return the |
| # property name "type". |
| # If the property is read-write, it means that it MAY be possible |
| # to run the CPU model in the current host if that property is |
| # changed. Management software can use it as hints to suggest or |
| # choose an alternative for the user, or just to generate meaningful |
| # error messages explaining why the CPU model can't be used. |
| # If @unavailable-features is an empty list, the CPU model is |
| # runnable using the current host and machine-type. |
| # If @unavailable-features is not present, runnability |
| # information for the CPU is not available. |
| # |
| # Since: 1.2.0 |
| ## |
| { 'struct': 'CpuDefinitionInfo', |
| 'data': { 'name': 'str', |
| '*migration-safe': 'bool', |
| 'static': 'bool', |
| '*unavailable-features': [ 'str' ], |
| 'typename': 'str' }, |
| 'if': 'defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_I386) || defined(TARGET_S390X) || defined(TARGET_MIPS)' } |
| |
| ## |
| # @query-cpu-definitions: |
| # |
| # Return a list of supported virtual CPU definitions |
| # |
| # Returns: a list of CpuDefInfo |
| # |
| # Since: 1.2.0 |
| ## |
| { 'command': 'query-cpu-definitions', 'returns': ['CpuDefinitionInfo'], |
| 'if': 'defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_I386) || defined(TARGET_S390X) || defined(TARGET_MIPS)' } |