| /* |
| * ARM VFP floating-point operations |
| * |
| * Copyright (c) 2003 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "exec/helper-proto.h" |
| #include "internals.h" |
| #include "cpu-features.h" |
| #ifdef CONFIG_TCG |
| #include "qemu/log.h" |
| #include "fpu/softfloat.h" |
| #endif |
| |
| /* VFP support. We follow the convention used for VFP instructions: |
| Single precision routines have a "s" suffix, double precision a |
| "d" suffix. */ |
| |
| #ifdef CONFIG_TCG |
| |
| /* Convert host exception flags to vfp form. */ |
| static inline int vfp_exceptbits_from_host(int host_bits) |
| { |
| int target_bits = 0; |
| |
| if (host_bits & float_flag_invalid) { |
| target_bits |= 1; |
| } |
| if (host_bits & float_flag_divbyzero) { |
| target_bits |= 2; |
| } |
| if (host_bits & float_flag_overflow) { |
| target_bits |= 4; |
| } |
| if (host_bits & (float_flag_underflow | float_flag_output_denormal)) { |
| target_bits |= 8; |
| } |
| if (host_bits & float_flag_inexact) { |
| target_bits |= 0x10; |
| } |
| if (host_bits & float_flag_input_denormal) { |
| target_bits |= 0x80; |
| } |
| return target_bits; |
| } |
| |
| /* Convert vfp exception flags to target form. */ |
| static inline int vfp_exceptbits_to_host(int target_bits) |
| { |
| int host_bits = 0; |
| |
| if (target_bits & 1) { |
| host_bits |= float_flag_invalid; |
| } |
| if (target_bits & 2) { |
| host_bits |= float_flag_divbyzero; |
| } |
| if (target_bits & 4) { |
| host_bits |= float_flag_overflow; |
| } |
| if (target_bits & 8) { |
| host_bits |= float_flag_underflow; |
| } |
| if (target_bits & 0x10) { |
| host_bits |= float_flag_inexact; |
| } |
| if (target_bits & 0x80) { |
| host_bits |= float_flag_input_denormal; |
| } |
| return host_bits; |
| } |
| |
| static uint32_t vfp_get_fpsr_from_host(CPUARMState *env) |
| { |
| uint32_t i; |
| |
| i = get_float_exception_flags(&env->vfp.fp_status); |
| i |= get_float_exception_flags(&env->vfp.standard_fp_status); |
| /* FZ16 does not generate an input denormal exception. */ |
| i |= (get_float_exception_flags(&env->vfp.fp_status_f16) |
| & ~float_flag_input_denormal); |
| i |= (get_float_exception_flags(&env->vfp.standard_fp_status_f16) |
| & ~float_flag_input_denormal); |
| return vfp_exceptbits_from_host(i); |
| } |
| |
| static void vfp_set_fpsr_to_host(CPUARMState *env, uint32_t val) |
| { |
| /* |
| * The exception flags are ORed together when we read fpscr so we |
| * only need to preserve the current state in one of our |
| * float_status values. |
| */ |
| int i = vfp_exceptbits_to_host(val); |
| set_float_exception_flags(i, &env->vfp.fp_status); |
| set_float_exception_flags(0, &env->vfp.fp_status_f16); |
| set_float_exception_flags(0, &env->vfp.standard_fp_status); |
| set_float_exception_flags(0, &env->vfp.standard_fp_status_f16); |
| } |
| |
| static void vfp_set_fpcr_to_host(CPUARMState *env, uint32_t val) |
| { |
| uint32_t changed = env->vfp.xregs[ARM_VFP_FPSCR]; |
| |
| changed ^= val; |
| if (changed & (3 << 22)) { |
| int i = (val >> 22) & 3; |
| switch (i) { |
| case FPROUNDING_TIEEVEN: |
| i = float_round_nearest_even; |
| break; |
| case FPROUNDING_POSINF: |
| i = float_round_up; |
| break; |
| case FPROUNDING_NEGINF: |
| i = float_round_down; |
| break; |
| case FPROUNDING_ZERO: |
| i = float_round_to_zero; |
| break; |
| } |
| set_float_rounding_mode(i, &env->vfp.fp_status); |
| set_float_rounding_mode(i, &env->vfp.fp_status_f16); |
| } |
| if (changed & FPCR_FZ16) { |
| bool ftz_enabled = val & FPCR_FZ16; |
| set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16); |
| set_flush_to_zero(ftz_enabled, &env->vfp.standard_fp_status_f16); |
| set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16); |
| set_flush_inputs_to_zero(ftz_enabled, &env->vfp.standard_fp_status_f16); |
| } |
| if (changed & FPCR_FZ) { |
| bool ftz_enabled = val & FPCR_FZ; |
| set_flush_to_zero(ftz_enabled, &env->vfp.fp_status); |
| set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status); |
| } |
| if (changed & FPCR_DN) { |
| bool dnan_enabled = val & FPCR_DN; |
| set_default_nan_mode(dnan_enabled, &env->vfp.fp_status); |
| set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16); |
| } |
| } |
| |
| #else |
| |
| static uint32_t vfp_get_fpsr_from_host(CPUARMState *env) |
| { |
| return 0; |
| } |
| |
| static void vfp_set_fpsr_to_host(CPUARMState *env, uint32_t val) |
| { |
| } |
| |
| static void vfp_set_fpcr_to_host(CPUARMState *env, uint32_t val) |
| { |
| } |
| |
| #endif |
| |
| uint32_t vfp_get_fpcr(CPUARMState *env) |
| { |
| uint32_t fpcr = (env->vfp.xregs[ARM_VFP_FPSCR] & FPCR_MASK) |
| | (env->vfp.vec_len << 16) |
| | (env->vfp.vec_stride << 20); |
| |
| /* |
| * M-profile LTPSIZE is the same bits [18:16] as A-profile Len; whichever |
| * of the two is not applicable to this CPU will always be zero. |
| */ |
| fpcr |= env->v7m.ltpsize << 16; |
| |
| return fpcr; |
| } |
| |
| uint32_t vfp_get_fpsr(CPUARMState *env) |
| { |
| uint32_t fpsr = env->vfp.xregs[ARM_VFP_FPSCR] & FPSR_MASK; |
| uint32_t i; |
| |
| fpsr |= vfp_get_fpsr_from_host(env); |
| |
| i = env->vfp.qc[0] | env->vfp.qc[1] | env->vfp.qc[2] | env->vfp.qc[3]; |
| fpsr |= i ? FPCR_QC : 0; |
| return fpsr; |
| } |
| |
| uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) |
| { |
| return (vfp_get_fpcr(env) & FPCR_MASK) | (vfp_get_fpsr(env) & FPSR_MASK); |
| } |
| |
| uint32_t vfp_get_fpscr(CPUARMState *env) |
| { |
| return HELPER(vfp_get_fpscr)(env); |
| } |
| |
| void vfp_set_fpsr(CPUARMState *env, uint32_t val) |
| { |
| ARMCPU *cpu = env_archcpu(env); |
| |
| vfp_set_fpsr_to_host(env, val); |
| |
| if (arm_feature(env, ARM_FEATURE_NEON) || |
| cpu_isar_feature(aa32_mve, cpu)) { |
| /* |
| * The bit we set within vfp.qc[] is arbitrary; the array as a |
| * whole being zero/non-zero is what counts. |
| */ |
| env->vfp.qc[0] = val & FPCR_QC; |
| env->vfp.qc[1] = 0; |
| env->vfp.qc[2] = 0; |
| env->vfp.qc[3] = 0; |
| } |
| |
| /* |
| * The only FPSR bits we keep in vfp.xregs[FPSCR] are NZCV: |
| * the exception flags IOC|DZC|OFC|UFC|IXC|IDC are stored in |
| * fp_status, and QC is in vfp.qc[]. Store the NZCV bits there, |
| * and zero any of the other FPSR bits (but preserve the FPCR |
| * bits). |
| */ |
| val &= FPCR_NZCV_MASK; |
| env->vfp.xregs[ARM_VFP_FPSCR] &= ~FPSR_MASK; |
| env->vfp.xregs[ARM_VFP_FPSCR] |= val; |
| } |
| |
| void vfp_set_fpcr(CPUARMState *env, uint32_t val) |
| { |
| ARMCPU *cpu = env_archcpu(env); |
| |
| /* When ARMv8.2-FP16 is not supported, FZ16 is RES0. */ |
| if (!cpu_isar_feature(any_fp16, cpu)) { |
| val &= ~FPCR_FZ16; |
| } |
| |
| vfp_set_fpcr_to_host(env, val); |
| |
| if (!arm_feature(env, ARM_FEATURE_M)) { |
| /* |
| * Short-vector length and stride; on M-profile these bits |
| * are used for different purposes. |
| * We can't make this conditional be "if MVFR0.FPShVec != 0", |
| * because in v7A no-short-vector-support cores still had to |
| * allow Stride/Len to be written with the only effect that |
| * some insns are required to UNDEF if the guest sets them. |
| */ |
| env->vfp.vec_len = extract32(val, 16, 3); |
| env->vfp.vec_stride = extract32(val, 20, 2); |
| } else if (cpu_isar_feature(aa32_mve, cpu)) { |
| env->v7m.ltpsize = extract32(val, FPCR_LTPSIZE_SHIFT, |
| FPCR_LTPSIZE_LENGTH); |
| } |
| |
| /* |
| * We don't implement trapped exception handling, so the |
| * trap enable bits, IDE|IXE|UFE|OFE|DZE|IOE are all RAZ/WI (not RES0!) |
| * |
| * The FPCR bits we keep in vfp.xregs[FPSCR] are AHP, DN, FZ, RMode |
| * and FZ16. Len, Stride and LTPSIZE we just handled. Store those bits |
| * there, and zero any of the other FPCR bits and the RES0 and RAZ/WI |
| * bits. |
| */ |
| val &= FPCR_AHP | FPCR_DN | FPCR_FZ | FPCR_RMODE_MASK | FPCR_FZ16; |
| env->vfp.xregs[ARM_VFP_FPSCR] &= ~FPCR_MASK; |
| env->vfp.xregs[ARM_VFP_FPSCR] |= val; |
| } |
| |
| void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) |
| { |
| vfp_set_fpcr(env, val & FPCR_MASK); |
| vfp_set_fpsr(env, val & FPSR_MASK); |
| } |
| |
| void vfp_set_fpscr(CPUARMState *env, uint32_t val) |
| { |
| HELPER(vfp_set_fpscr)(env, val); |
| } |
| |
| #ifdef CONFIG_TCG |
| |
| #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) |
| |
| #define VFP_BINOP(name) \ |
| dh_ctype_f16 VFP_HELPER(name, h)(dh_ctype_f16 a, dh_ctype_f16 b, void *fpstp) \ |
| { \ |
| float_status *fpst = fpstp; \ |
| return float16_ ## name(a, b, fpst); \ |
| } \ |
| float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ |
| { \ |
| float_status *fpst = fpstp; \ |
| return float32_ ## name(a, b, fpst); \ |
| } \ |
| float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ |
| { \ |
| float_status *fpst = fpstp; \ |
| return float64_ ## name(a, b, fpst); \ |
| } |
| VFP_BINOP(add) |
| VFP_BINOP(sub) |
| VFP_BINOP(mul) |
| VFP_BINOP(div) |
| VFP_BINOP(min) |
| VFP_BINOP(max) |
| VFP_BINOP(minnum) |
| VFP_BINOP(maxnum) |
| #undef VFP_BINOP |
| |
| dh_ctype_f16 VFP_HELPER(sqrt, h)(dh_ctype_f16 a, CPUARMState *env) |
| { |
| return float16_sqrt(a, &env->vfp.fp_status_f16); |
| } |
| |
| float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) |
| { |
| return float32_sqrt(a, &env->vfp.fp_status); |
| } |
| |
| float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) |
| { |
| return float64_sqrt(a, &env->vfp.fp_status); |
| } |
| |
| static void softfloat_to_vfp_compare(CPUARMState *env, FloatRelation cmp) |
| { |
| uint32_t flags; |
| switch (cmp) { |
| case float_relation_equal: |
| flags = 0x6; |
| break; |
| case float_relation_less: |
| flags = 0x8; |
| break; |
| case float_relation_greater: |
| flags = 0x2; |
| break; |
| case float_relation_unordered: |
| flags = 0x3; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| env->vfp.xregs[ARM_VFP_FPSCR] = |
| deposit32(env->vfp.xregs[ARM_VFP_FPSCR], 28, 4, flags); |
| } |
| |
| /* XXX: check quiet/signaling case */ |
| #define DO_VFP_cmp(P, FLOATTYPE, ARGTYPE, FPST) \ |
| void VFP_HELPER(cmp, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env) \ |
| { \ |
| softfloat_to_vfp_compare(env, \ |
| FLOATTYPE ## _compare_quiet(a, b, &env->vfp.FPST)); \ |
| } \ |
| void VFP_HELPER(cmpe, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env) \ |
| { \ |
| softfloat_to_vfp_compare(env, \ |
| FLOATTYPE ## _compare(a, b, &env->vfp.FPST)); \ |
| } |
| DO_VFP_cmp(h, float16, dh_ctype_f16, fp_status_f16) |
| DO_VFP_cmp(s, float32, float32, fp_status) |
| DO_VFP_cmp(d, float64, float64, fp_status) |
| #undef DO_VFP_cmp |
| |
| /* Integer to float and float to integer conversions */ |
| |
| #define CONV_ITOF(name, ftype, fsz, sign) \ |
| ftype HELPER(name)(uint32_t x, void *fpstp) \ |
| { \ |
| float_status *fpst = fpstp; \ |
| return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ |
| } |
| |
| #define CONV_FTOI(name, ftype, fsz, sign, round) \ |
| sign##int32_t HELPER(name)(ftype x, void *fpstp) \ |
| { \ |
| float_status *fpst = fpstp; \ |
| if (float##fsz##_is_any_nan(x)) { \ |
| float_raise(float_flag_invalid, fpst); \ |
| return 0; \ |
| } \ |
| return float##fsz##_to_##sign##int32##round(x, fpst); \ |
| } |
| |
| #define FLOAT_CONVS(name, p, ftype, fsz, sign) \ |
| CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \ |
| CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \ |
| CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero) |
| |
| FLOAT_CONVS(si, h, uint32_t, 16, ) |
| FLOAT_CONVS(si, s, float32, 32, ) |
| FLOAT_CONVS(si, d, float64, 64, ) |
| FLOAT_CONVS(ui, h, uint32_t, 16, u) |
| FLOAT_CONVS(ui, s, float32, 32, u) |
| FLOAT_CONVS(ui, d, float64, 64, u) |
| |
| #undef CONV_ITOF |
| #undef CONV_FTOI |
| #undef FLOAT_CONVS |
| |
| /* floating point conversion */ |
| float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) |
| { |
| return float32_to_float64(x, &env->vfp.fp_status); |
| } |
| |
| float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) |
| { |
| return float64_to_float32(x, &env->vfp.fp_status); |
| } |
| |
| uint32_t HELPER(bfcvt)(float32 x, void *status) |
| { |
| return float32_to_bfloat16(x, status); |
| } |
| |
| uint32_t HELPER(bfcvt_pair)(uint64_t pair, void *status) |
| { |
| bfloat16 lo = float32_to_bfloat16(extract64(pair, 0, 32), status); |
| bfloat16 hi = float32_to_bfloat16(extract64(pair, 32, 32), status); |
| return deposit32(lo, 16, 16, hi); |
| } |
| |
| /* |
| * VFP3 fixed point conversion. The AArch32 versions of fix-to-float |
| * must always round-to-nearest; the AArch64 ones honour the FPSCR |
| * rounding mode. (For AArch32 Neon the standard-FPSCR is set to |
| * round-to-nearest so either helper will work.) AArch32 float-to-fix |
| * must round-to-zero. |
| */ |
| #define VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \ |
| ftype HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ |
| void *fpstp) \ |
| { return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); } |
| |
| #define VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype) \ |
| ftype HELPER(vfp_##name##to##p##_round_to_nearest)(uint##isz##_t x, \ |
| uint32_t shift, \ |
| void *fpstp) \ |
| { \ |
| ftype ret; \ |
| float_status *fpst = fpstp; \ |
| FloatRoundMode oldmode = fpst->float_rounding_mode; \ |
| fpst->float_rounding_mode = float_round_nearest_even; \ |
| ret = itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); \ |
| fpst->float_rounding_mode = oldmode; \ |
| return ret; \ |
| } |
| |
| #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, ROUND, suff) \ |
| uint##isz##_t HELPER(vfp_to##name##p##suff)(ftype x, uint32_t shift, \ |
| void *fpst) \ |
| { \ |
| if (unlikely(float##fsz##_is_any_nan(x))) { \ |
| float_raise(float_flag_invalid, fpst); \ |
| return 0; \ |
| } \ |
| return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst); \ |
| } |
| |
| #define VFP_CONV_FIX(name, p, fsz, ftype, isz, itype) \ |
| VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \ |
| VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype) \ |
| VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \ |
| float_round_to_zero, _round_to_zero) \ |
| VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \ |
| get_float_rounding_mode(fpst), ) |
| |
| #define VFP_CONV_FIX_A64(name, p, fsz, ftype, isz, itype) \ |
| VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \ |
| VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \ |
| get_float_rounding_mode(fpst), ) |
| |
| VFP_CONV_FIX(sh, d, 64, float64, 64, int16) |
| VFP_CONV_FIX(sl, d, 64, float64, 64, int32) |
| VFP_CONV_FIX_A64(sq, d, 64, float64, 64, int64) |
| VFP_CONV_FIX(uh, d, 64, float64, 64, uint16) |
| VFP_CONV_FIX(ul, d, 64, float64, 64, uint32) |
| VFP_CONV_FIX_A64(uq, d, 64, float64, 64, uint64) |
| VFP_CONV_FIX(sh, s, 32, float32, 32, int16) |
| VFP_CONV_FIX(sl, s, 32, float32, 32, int32) |
| VFP_CONV_FIX_A64(sq, s, 32, float32, 64, int64) |
| VFP_CONV_FIX(uh, s, 32, float32, 32, uint16) |
| VFP_CONV_FIX(ul, s, 32, float32, 32, uint32) |
| VFP_CONV_FIX_A64(uq, s, 32, float32, 64, uint64) |
| VFP_CONV_FIX(sh, h, 16, dh_ctype_f16, 32, int16) |
| VFP_CONV_FIX(sl, h, 16, dh_ctype_f16, 32, int32) |
| VFP_CONV_FIX_A64(sq, h, 16, dh_ctype_f16, 64, int64) |
| VFP_CONV_FIX(uh, h, 16, dh_ctype_f16, 32, uint16) |
| VFP_CONV_FIX(ul, h, 16, dh_ctype_f16, 32, uint32) |
| VFP_CONV_FIX_A64(uq, h, 16, dh_ctype_f16, 64, uint64) |
| |
| #undef VFP_CONV_FIX |
| #undef VFP_CONV_FIX_FLOAT |
| #undef VFP_CONV_FLOAT_FIX_ROUND |
| #undef VFP_CONV_FIX_A64 |
| |
| /* Set the current fp rounding mode and return the old one. |
| * The argument is a softfloat float_round_ value. |
| */ |
| uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp) |
| { |
| float_status *fp_status = fpstp; |
| |
| uint32_t prev_rmode = get_float_rounding_mode(fp_status); |
| set_float_rounding_mode(rmode, fp_status); |
| |
| return prev_rmode; |
| } |
| |
| /* Half precision conversions. */ |
| float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode) |
| { |
| /* Squash FZ16 to 0 for the duration of conversion. In this case, |
| * it would affect flushing input denormals. |
| */ |
| float_status *fpst = fpstp; |
| bool save = get_flush_inputs_to_zero(fpst); |
| set_flush_inputs_to_zero(false, fpst); |
| float32 r = float16_to_float32(a, !ahp_mode, fpst); |
| set_flush_inputs_to_zero(save, fpst); |
| return r; |
| } |
| |
| uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode) |
| { |
| /* Squash FZ16 to 0 for the duration of conversion. In this case, |
| * it would affect flushing output denormals. |
| */ |
| float_status *fpst = fpstp; |
| bool save = get_flush_to_zero(fpst); |
| set_flush_to_zero(false, fpst); |
| float16 r = float32_to_float16(a, !ahp_mode, fpst); |
| set_flush_to_zero(save, fpst); |
| return r; |
| } |
| |
| float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode) |
| { |
| /* Squash FZ16 to 0 for the duration of conversion. In this case, |
| * it would affect flushing input denormals. |
| */ |
| float_status *fpst = fpstp; |
| bool save = get_flush_inputs_to_zero(fpst); |
| set_flush_inputs_to_zero(false, fpst); |
| float64 r = float16_to_float64(a, !ahp_mode, fpst); |
| set_flush_inputs_to_zero(save, fpst); |
| return r; |
| } |
| |
| uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode) |
| { |
| /* Squash FZ16 to 0 for the duration of conversion. In this case, |
| * it would affect flushing output denormals. |
| */ |
| float_status *fpst = fpstp; |
| bool save = get_flush_to_zero(fpst); |
| set_flush_to_zero(false, fpst); |
| float16 r = float64_to_float16(a, !ahp_mode, fpst); |
| set_flush_to_zero(save, fpst); |
| return r; |
| } |
| |
| /* NEON helpers. */ |
| |
| /* Constants 256 and 512 are used in some helpers; we avoid relying on |
| * int->float conversions at run-time. */ |
| #define float64_256 make_float64(0x4070000000000000LL) |
| #define float64_512 make_float64(0x4080000000000000LL) |
| #define float16_maxnorm make_float16(0x7bff) |
| #define float32_maxnorm make_float32(0x7f7fffff) |
| #define float64_maxnorm make_float64(0x7fefffffffffffffLL) |
| |
| /* Reciprocal functions |
| * |
| * The algorithm that must be used to calculate the estimate |
| * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate |
| */ |
| |
| /* See RecipEstimate() |
| * |
| * input is a 9 bit fixed point number |
| * input range 256 .. 511 for a number from 0.5 <= x < 1.0. |
| * result range 256 .. 511 for a number from 1.0 to 511/256. |
| */ |
| |
| static int recip_estimate(int input) |
| { |
| int a, b, r; |
| assert(256 <= input && input < 512); |
| a = (input * 2) + 1; |
| b = (1 << 19) / a; |
| r = (b + 1) >> 1; |
| assert(256 <= r && r < 512); |
| return r; |
| } |
| |
| /* |
| * Common wrapper to call recip_estimate |
| * |
| * The parameters are exponent and 64 bit fraction (without implicit |
| * bit) where the binary point is nominally at bit 52. Returns a |
| * float64 which can then be rounded to the appropriate size by the |
| * callee. |
| */ |
| |
| static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac) |
| { |
| uint32_t scaled, estimate; |
| uint64_t result_frac; |
| int result_exp; |
| |
| /* Handle sub-normals */ |
| if (*exp == 0) { |
| if (extract64(frac, 51, 1) == 0) { |
| *exp = -1; |
| frac <<= 2; |
| } else { |
| frac <<= 1; |
| } |
| } |
| |
| /* scaled = UInt('1':fraction<51:44>) */ |
| scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8)); |
| estimate = recip_estimate(scaled); |
| |
| result_exp = exp_off - *exp; |
| result_frac = deposit64(0, 44, 8, estimate); |
| if (result_exp == 0) { |
| result_frac = deposit64(result_frac >> 1, 51, 1, 1); |
| } else if (result_exp == -1) { |
| result_frac = deposit64(result_frac >> 2, 50, 2, 1); |
| result_exp = 0; |
| } |
| |
| *exp = result_exp; |
| |
| return result_frac; |
| } |
| |
| static bool round_to_inf(float_status *fpst, bool sign_bit) |
| { |
| switch (fpst->float_rounding_mode) { |
| case float_round_nearest_even: /* Round to Nearest */ |
| return true; |
| case float_round_up: /* Round to +Inf */ |
| return !sign_bit; |
| case float_round_down: /* Round to -Inf */ |
| return sign_bit; |
| case float_round_to_zero: /* Round to Zero */ |
| return false; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| float16 f16 = float16_squash_input_denormal(input, fpst); |
| uint32_t f16_val = float16_val(f16); |
| uint32_t f16_sign = float16_is_neg(f16); |
| int f16_exp = extract32(f16_val, 10, 5); |
| uint32_t f16_frac = extract32(f16_val, 0, 10); |
| uint64_t f64_frac; |
| |
| if (float16_is_any_nan(f16)) { |
| float16 nan = f16; |
| if (float16_is_signaling_nan(f16, fpst)) { |
| float_raise(float_flag_invalid, fpst); |
| if (!fpst->default_nan_mode) { |
| nan = float16_silence_nan(f16, fpst); |
| } |
| } |
| if (fpst->default_nan_mode) { |
| nan = float16_default_nan(fpst); |
| } |
| return nan; |
| } else if (float16_is_infinity(f16)) { |
| return float16_set_sign(float16_zero, float16_is_neg(f16)); |
| } else if (float16_is_zero(f16)) { |
| float_raise(float_flag_divbyzero, fpst); |
| return float16_set_sign(float16_infinity, float16_is_neg(f16)); |
| } else if (float16_abs(f16) < (1 << 8)) { |
| /* Abs(value) < 2.0^-16 */ |
| float_raise(float_flag_overflow | float_flag_inexact, fpst); |
| if (round_to_inf(fpst, f16_sign)) { |
| return float16_set_sign(float16_infinity, f16_sign); |
| } else { |
| return float16_set_sign(float16_maxnorm, f16_sign); |
| } |
| } else if (f16_exp >= 29 && fpst->flush_to_zero) { |
| float_raise(float_flag_underflow, fpst); |
| return float16_set_sign(float16_zero, float16_is_neg(f16)); |
| } |
| |
| f64_frac = call_recip_estimate(&f16_exp, 29, |
| ((uint64_t) f16_frac) << (52 - 10)); |
| |
| /* result = sign : result_exp<4:0> : fraction<51:42> */ |
| f16_val = deposit32(0, 15, 1, f16_sign); |
| f16_val = deposit32(f16_val, 10, 5, f16_exp); |
| f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10)); |
| return make_float16(f16_val); |
| } |
| |
| float32 HELPER(recpe_f32)(float32 input, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| float32 f32 = float32_squash_input_denormal(input, fpst); |
| uint32_t f32_val = float32_val(f32); |
| bool f32_sign = float32_is_neg(f32); |
| int f32_exp = extract32(f32_val, 23, 8); |
| uint32_t f32_frac = extract32(f32_val, 0, 23); |
| uint64_t f64_frac; |
| |
| if (float32_is_any_nan(f32)) { |
| float32 nan = f32; |
| if (float32_is_signaling_nan(f32, fpst)) { |
| float_raise(float_flag_invalid, fpst); |
| if (!fpst->default_nan_mode) { |
| nan = float32_silence_nan(f32, fpst); |
| } |
| } |
| if (fpst->default_nan_mode) { |
| nan = float32_default_nan(fpst); |
| } |
| return nan; |
| } else if (float32_is_infinity(f32)) { |
| return float32_set_sign(float32_zero, float32_is_neg(f32)); |
| } else if (float32_is_zero(f32)) { |
| float_raise(float_flag_divbyzero, fpst); |
| return float32_set_sign(float32_infinity, float32_is_neg(f32)); |
| } else if (float32_abs(f32) < (1ULL << 21)) { |
| /* Abs(value) < 2.0^-128 */ |
| float_raise(float_flag_overflow | float_flag_inexact, fpst); |
| if (round_to_inf(fpst, f32_sign)) { |
| return float32_set_sign(float32_infinity, f32_sign); |
| } else { |
| return float32_set_sign(float32_maxnorm, f32_sign); |
| } |
| } else if (f32_exp >= 253 && fpst->flush_to_zero) { |
| float_raise(float_flag_underflow, fpst); |
| return float32_set_sign(float32_zero, float32_is_neg(f32)); |
| } |
| |
| f64_frac = call_recip_estimate(&f32_exp, 253, |
| ((uint64_t) f32_frac) << (52 - 23)); |
| |
| /* result = sign : result_exp<7:0> : fraction<51:29> */ |
| f32_val = deposit32(0, 31, 1, f32_sign); |
| f32_val = deposit32(f32_val, 23, 8, f32_exp); |
| f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23)); |
| return make_float32(f32_val); |
| } |
| |
| float64 HELPER(recpe_f64)(float64 input, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| float64 f64 = float64_squash_input_denormal(input, fpst); |
| uint64_t f64_val = float64_val(f64); |
| bool f64_sign = float64_is_neg(f64); |
| int f64_exp = extract64(f64_val, 52, 11); |
| uint64_t f64_frac = extract64(f64_val, 0, 52); |
| |
| /* Deal with any special cases */ |
| if (float64_is_any_nan(f64)) { |
| float64 nan = f64; |
| if (float64_is_signaling_nan(f64, fpst)) { |
| float_raise(float_flag_invalid, fpst); |
| if (!fpst->default_nan_mode) { |
| nan = float64_silence_nan(f64, fpst); |
| } |
| } |
| if (fpst->default_nan_mode) { |
| nan = float64_default_nan(fpst); |
| } |
| return nan; |
| } else if (float64_is_infinity(f64)) { |
| return float64_set_sign(float64_zero, float64_is_neg(f64)); |
| } else if (float64_is_zero(f64)) { |
| float_raise(float_flag_divbyzero, fpst); |
| return float64_set_sign(float64_infinity, float64_is_neg(f64)); |
| } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { |
| /* Abs(value) < 2.0^-1024 */ |
| float_raise(float_flag_overflow | float_flag_inexact, fpst); |
| if (round_to_inf(fpst, f64_sign)) { |
| return float64_set_sign(float64_infinity, f64_sign); |
| } else { |
| return float64_set_sign(float64_maxnorm, f64_sign); |
| } |
| } else if (f64_exp >= 2045 && fpst->flush_to_zero) { |
| float_raise(float_flag_underflow, fpst); |
| return float64_set_sign(float64_zero, float64_is_neg(f64)); |
| } |
| |
| f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac); |
| |
| /* result = sign : result_exp<10:0> : fraction<51:0>; */ |
| f64_val = deposit64(0, 63, 1, f64_sign); |
| f64_val = deposit64(f64_val, 52, 11, f64_exp); |
| f64_val = deposit64(f64_val, 0, 52, f64_frac); |
| return make_float64(f64_val); |
| } |
| |
| /* The algorithm that must be used to calculate the estimate |
| * is specified by the ARM ARM. |
| */ |
| |
| static int do_recip_sqrt_estimate(int a) |
| { |
| int b, estimate; |
| |
| assert(128 <= a && a < 512); |
| if (a < 256) { |
| a = a * 2 + 1; |
| } else { |
| a = (a >> 1) << 1; |
| a = (a + 1) * 2; |
| } |
| b = 512; |
| while (a * (b + 1) * (b + 1) < (1 << 28)) { |
| b += 1; |
| } |
| estimate = (b + 1) / 2; |
| assert(256 <= estimate && estimate < 512); |
| |
| return estimate; |
| } |
| |
| |
| static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac) |
| { |
| int estimate; |
| uint32_t scaled; |
| |
| if (*exp == 0) { |
| while (extract64(frac, 51, 1) == 0) { |
| frac = frac << 1; |
| *exp -= 1; |
| } |
| frac = extract64(frac, 0, 51) << 1; |
| } |
| |
| if (*exp & 1) { |
| /* scaled = UInt('01':fraction<51:45>) */ |
| scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7)); |
| } else { |
| /* scaled = UInt('1':fraction<51:44>) */ |
| scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8)); |
| } |
| estimate = do_recip_sqrt_estimate(scaled); |
| |
| *exp = (exp_off - *exp) / 2; |
| return extract64(estimate, 0, 8) << 44; |
| } |
| |
| uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp) |
| { |
| float_status *s = fpstp; |
| float16 f16 = float16_squash_input_denormal(input, s); |
| uint16_t val = float16_val(f16); |
| bool f16_sign = float16_is_neg(f16); |
| int f16_exp = extract32(val, 10, 5); |
| uint16_t f16_frac = extract32(val, 0, 10); |
| uint64_t f64_frac; |
| |
| if (float16_is_any_nan(f16)) { |
| float16 nan = f16; |
| if (float16_is_signaling_nan(f16, s)) { |
| float_raise(float_flag_invalid, s); |
| if (!s->default_nan_mode) { |
| nan = float16_silence_nan(f16, fpstp); |
| } |
| } |
| if (s->default_nan_mode) { |
| nan = float16_default_nan(s); |
| } |
| return nan; |
| } else if (float16_is_zero(f16)) { |
| float_raise(float_flag_divbyzero, s); |
| return float16_set_sign(float16_infinity, f16_sign); |
| } else if (f16_sign) { |
| float_raise(float_flag_invalid, s); |
| return float16_default_nan(s); |
| } else if (float16_is_infinity(f16)) { |
| return float16_zero; |
| } |
| |
| /* Scale and normalize to a double-precision value between 0.25 and 1.0, |
| * preserving the parity of the exponent. */ |
| |
| f64_frac = ((uint64_t) f16_frac) << (52 - 10); |
| |
| f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac); |
| |
| /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */ |
| val = deposit32(0, 15, 1, f16_sign); |
| val = deposit32(val, 10, 5, f16_exp); |
| val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8)); |
| return make_float16(val); |
| } |
| |
| float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) |
| { |
| float_status *s = fpstp; |
| float32 f32 = float32_squash_input_denormal(input, s); |
| uint32_t val = float32_val(f32); |
| uint32_t f32_sign = float32_is_neg(f32); |
| int f32_exp = extract32(val, 23, 8); |
| uint32_t f32_frac = extract32(val, 0, 23); |
| uint64_t f64_frac; |
| |
| if (float32_is_any_nan(f32)) { |
| float32 nan = f32; |
| if (float32_is_signaling_nan(f32, s)) { |
| float_raise(float_flag_invalid, s); |
| if (!s->default_nan_mode) { |
| nan = float32_silence_nan(f32, fpstp); |
| } |
| } |
| if (s->default_nan_mode) { |
| nan = float32_default_nan(s); |
| } |
| return nan; |
| } else if (float32_is_zero(f32)) { |
| float_raise(float_flag_divbyzero, s); |
| return float32_set_sign(float32_infinity, float32_is_neg(f32)); |
| } else if (float32_is_neg(f32)) { |
| float_raise(float_flag_invalid, s); |
| return float32_default_nan(s); |
| } else if (float32_is_infinity(f32)) { |
| return float32_zero; |
| } |
| |
| /* Scale and normalize to a double-precision value between 0.25 and 1.0, |
| * preserving the parity of the exponent. */ |
| |
| f64_frac = ((uint64_t) f32_frac) << 29; |
| |
| f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac); |
| |
| /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */ |
| val = deposit32(0, 31, 1, f32_sign); |
| val = deposit32(val, 23, 8, f32_exp); |
| val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8)); |
| return make_float32(val); |
| } |
| |
| float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) |
| { |
| float_status *s = fpstp; |
| float64 f64 = float64_squash_input_denormal(input, s); |
| uint64_t val = float64_val(f64); |
| bool f64_sign = float64_is_neg(f64); |
| int f64_exp = extract64(val, 52, 11); |
| uint64_t f64_frac = extract64(val, 0, 52); |
| |
| if (float64_is_any_nan(f64)) { |
| float64 nan = f64; |
| if (float64_is_signaling_nan(f64, s)) { |
| float_raise(float_flag_invalid, s); |
| if (!s->default_nan_mode) { |
| nan = float64_silence_nan(f64, fpstp); |
| } |
| } |
| if (s->default_nan_mode) { |
| nan = float64_default_nan(s); |
| } |
| return nan; |
| } else if (float64_is_zero(f64)) { |
| float_raise(float_flag_divbyzero, s); |
| return float64_set_sign(float64_infinity, float64_is_neg(f64)); |
| } else if (float64_is_neg(f64)) { |
| float_raise(float_flag_invalid, s); |
| return float64_default_nan(s); |
| } else if (float64_is_infinity(f64)) { |
| return float64_zero; |
| } |
| |
| f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac); |
| |
| /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */ |
| val = deposit64(0, 61, 1, f64_sign); |
| val = deposit64(val, 52, 11, f64_exp); |
| val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8)); |
| return make_float64(val); |
| } |
| |
| uint32_t HELPER(recpe_u32)(uint32_t a) |
| { |
| int input, estimate; |
| |
| if ((a & 0x80000000) == 0) { |
| return 0xffffffff; |
| } |
| |
| input = extract32(a, 23, 9); |
| estimate = recip_estimate(input); |
| |
| return deposit32(0, (32 - 9), 9, estimate); |
| } |
| |
| uint32_t HELPER(rsqrte_u32)(uint32_t a) |
| { |
| int estimate; |
| |
| if ((a & 0xc0000000) == 0) { |
| return 0xffffffff; |
| } |
| |
| estimate = do_recip_sqrt_estimate(extract32(a, 23, 9)); |
| |
| return deposit32(0, 23, 9, estimate); |
| } |
| |
| /* VFPv4 fused multiply-accumulate */ |
| dh_ctype_f16 VFP_HELPER(muladd, h)(dh_ctype_f16 a, dh_ctype_f16 b, |
| dh_ctype_f16 c, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| return float16_muladd(a, b, c, 0, fpst); |
| } |
| |
| float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| return float32_muladd(a, b, c, 0, fpst); |
| } |
| |
| float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| return float64_muladd(a, b, c, 0, fpst); |
| } |
| |
| /* ARMv8 round to integral */ |
| dh_ctype_f16 HELPER(rinth_exact)(dh_ctype_f16 x, void *fp_status) |
| { |
| return float16_round_to_int(x, fp_status); |
| } |
| |
| float32 HELPER(rints_exact)(float32 x, void *fp_status) |
| { |
| return float32_round_to_int(x, fp_status); |
| } |
| |
| float64 HELPER(rintd_exact)(float64 x, void *fp_status) |
| { |
| return float64_round_to_int(x, fp_status); |
| } |
| |
| dh_ctype_f16 HELPER(rinth)(dh_ctype_f16 x, void *fp_status) |
| { |
| int old_flags = get_float_exception_flags(fp_status), new_flags; |
| float16 ret; |
| |
| ret = float16_round_to_int(x, fp_status); |
| |
| /* Suppress any inexact exceptions the conversion produced */ |
| if (!(old_flags & float_flag_inexact)) { |
| new_flags = get_float_exception_flags(fp_status); |
| set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); |
| } |
| |
| return ret; |
| } |
| |
| float32 HELPER(rints)(float32 x, void *fp_status) |
| { |
| int old_flags = get_float_exception_flags(fp_status), new_flags; |
| float32 ret; |
| |
| ret = float32_round_to_int(x, fp_status); |
| |
| /* Suppress any inexact exceptions the conversion produced */ |
| if (!(old_flags & float_flag_inexact)) { |
| new_flags = get_float_exception_flags(fp_status); |
| set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); |
| } |
| |
| return ret; |
| } |
| |
| float64 HELPER(rintd)(float64 x, void *fp_status) |
| { |
| int old_flags = get_float_exception_flags(fp_status), new_flags; |
| float64 ret; |
| |
| ret = float64_round_to_int(x, fp_status); |
| |
| new_flags = get_float_exception_flags(fp_status); |
| |
| /* Suppress any inexact exceptions the conversion produced */ |
| if (!(old_flags & float_flag_inexact)) { |
| new_flags = get_float_exception_flags(fp_status); |
| set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); |
| } |
| |
| return ret; |
| } |
| |
| /* Convert ARM rounding mode to softfloat */ |
| const FloatRoundMode arm_rmode_to_sf_map[] = { |
| [FPROUNDING_TIEEVEN] = float_round_nearest_even, |
| [FPROUNDING_POSINF] = float_round_up, |
| [FPROUNDING_NEGINF] = float_round_down, |
| [FPROUNDING_ZERO] = float_round_to_zero, |
| [FPROUNDING_TIEAWAY] = float_round_ties_away, |
| [FPROUNDING_ODD] = float_round_to_odd, |
| }; |
| |
| /* |
| * Implement float64 to int32_t conversion without saturation; |
| * the result is supplied modulo 2^32. |
| */ |
| uint64_t HELPER(fjcvtzs)(float64 value, void *vstatus) |
| { |
| float_status *status = vstatus; |
| uint32_t frac, e_old, e_new; |
| bool inexact; |
| |
| e_old = get_float_exception_flags(status); |
| set_float_exception_flags(0, status); |
| frac = float64_to_int32_modulo(value, float_round_to_zero, status); |
| e_new = get_float_exception_flags(status); |
| set_float_exception_flags(e_old | e_new, status); |
| |
| /* Normal inexact, denormal with flush-to-zero, or overflow or NaN */ |
| inexact = e_new & (float_flag_inexact | |
| float_flag_input_denormal | |
| float_flag_invalid); |
| |
| /* While not inexact for IEEE FP, -0.0 is inexact for JavaScript. */ |
| inexact |= value == float64_chs(float64_zero); |
| |
| /* Pack the result and the env->ZF representation of Z together. */ |
| return deposit64(frac, 32, 32, inexact); |
| } |
| |
| uint32_t HELPER(vjcvt)(float64 value, CPUARMState *env) |
| { |
| uint64_t pair = HELPER(fjcvtzs)(value, &env->vfp.fp_status); |
| uint32_t result = pair; |
| uint32_t z = (pair >> 32) == 0; |
| |
| /* Store Z, clear NCV, in FPSCR.NZCV. */ |
| env->vfp.xregs[ARM_VFP_FPSCR] |
| = (env->vfp.xregs[ARM_VFP_FPSCR] & ~CPSR_NZCV) | (z * CPSR_Z); |
| |
| return result; |
| } |
| |
| /* Round a float32 to an integer that fits in int32_t or int64_t. */ |
| static float32 frint_s(float32 f, float_status *fpst, int intsize) |
| { |
| int old_flags = get_float_exception_flags(fpst); |
| uint32_t exp = extract32(f, 23, 8); |
| |
| if (unlikely(exp == 0xff)) { |
| /* NaN or Inf. */ |
| goto overflow; |
| } |
| |
| /* Round and re-extract the exponent. */ |
| f = float32_round_to_int(f, fpst); |
| exp = extract32(f, 23, 8); |
| |
| /* Validate the range of the result. */ |
| if (exp < 126 + intsize) { |
| /* abs(F) <= INT{N}_MAX */ |
| return f; |
| } |
| if (exp == 126 + intsize) { |
| uint32_t sign = extract32(f, 31, 1); |
| uint32_t frac = extract32(f, 0, 23); |
| if (sign && frac == 0) { |
| /* F == INT{N}_MIN */ |
| return f; |
| } |
| } |
| |
| overflow: |
| /* |
| * Raise Invalid and return INT{N}_MIN as a float. Revert any |
| * inexact exception float32_round_to_int may have raised. |
| */ |
| set_float_exception_flags(old_flags | float_flag_invalid, fpst); |
| return (0x100u + 126u + intsize) << 23; |
| } |
| |
| float32 HELPER(frint32_s)(float32 f, void *fpst) |
| { |
| return frint_s(f, fpst, 32); |
| } |
| |
| float32 HELPER(frint64_s)(float32 f, void *fpst) |
| { |
| return frint_s(f, fpst, 64); |
| } |
| |
| /* Round a float64 to an integer that fits in int32_t or int64_t. */ |
| static float64 frint_d(float64 f, float_status *fpst, int intsize) |
| { |
| int old_flags = get_float_exception_flags(fpst); |
| uint32_t exp = extract64(f, 52, 11); |
| |
| if (unlikely(exp == 0x7ff)) { |
| /* NaN or Inf. */ |
| goto overflow; |
| } |
| |
| /* Round and re-extract the exponent. */ |
| f = float64_round_to_int(f, fpst); |
| exp = extract64(f, 52, 11); |
| |
| /* Validate the range of the result. */ |
| if (exp < 1022 + intsize) { |
| /* abs(F) <= INT{N}_MAX */ |
| return f; |
| } |
| if (exp == 1022 + intsize) { |
| uint64_t sign = extract64(f, 63, 1); |
| uint64_t frac = extract64(f, 0, 52); |
| if (sign && frac == 0) { |
| /* F == INT{N}_MIN */ |
| return f; |
| } |
| } |
| |
| overflow: |
| /* |
| * Raise Invalid and return INT{N}_MIN as a float. Revert any |
| * inexact exception float64_round_to_int may have raised. |
| */ |
| set_float_exception_flags(old_flags | float_flag_invalid, fpst); |
| return (uint64_t)(0x800 + 1022 + intsize) << 52; |
| } |
| |
| float64 HELPER(frint32_d)(float64 f, void *fpst) |
| { |
| return frint_d(f, fpst, 32); |
| } |
| |
| float64 HELPER(frint64_d)(float64 f, void *fpst) |
| { |
| return frint_d(f, fpst, 64); |
| } |
| |
| void HELPER(check_hcr_el2_trap)(CPUARMState *env, uint32_t rt, uint32_t reg) |
| { |
| uint32_t syndrome; |
| |
| switch (reg) { |
| case ARM_VFP_MVFR0: |
| case ARM_VFP_MVFR1: |
| case ARM_VFP_MVFR2: |
| if (!(arm_hcr_el2_eff(env) & HCR_TID3)) { |
| return; |
| } |
| break; |
| case ARM_VFP_FPSID: |
| if (!(arm_hcr_el2_eff(env) & HCR_TID0)) { |
| return; |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| syndrome = ((EC_FPIDTRAP << ARM_EL_EC_SHIFT) |
| | ARM_EL_IL |
| | (1 << 24) | (0xe << 20) | (7 << 14) |
| | (reg << 10) | (rt << 5) | 1); |
| |
| raise_exception(env, EXCP_HYP_TRAP, syndrome, 2); |
| } |
| |
| #endif |