hw/i386: split x86.c in multiple parts
Keep the basic X86MachineState definition in x86.c. Move out functions that
are only needed by other files: x86-common.c for the pc and microvm machines,
x86-cpu.c for those used by accelerator code.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Zhao Liu <zhao1.liu@intel.com>
Message-ID: <20240509170044.190795-11-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
diff --git a/hw/i386/meson.build b/hw/i386/meson.build
index d9da676..3437da0 100644
--- a/hw/i386/meson.build
+++ b/hw/i386/meson.build
@@ -4,6 +4,7 @@
'e820_memory_layout.c',
'multiboot.c',
'x86.c',
+ 'x86-cpu.c',
))
i386_ss.add(when: 'CONFIG_APIC', if_true: files('vapic.c'))
@@ -12,7 +13,7 @@
i386_ss.add(when: 'CONFIG_AMD_IOMMU', if_true: files('amd_iommu.c'),
if_false: files('amd_iommu-stub.c'))
i386_ss.add(when: 'CONFIG_I440FX', if_true: files('pc_piix.c'))
-i386_ss.add(when: 'CONFIG_MICROVM', if_true: files('microvm.c', 'acpi-microvm.c', 'microvm-dt.c'))
+i386_ss.add(when: 'CONFIG_MICROVM', if_true: files('x86-common.c', 'microvm.c', 'acpi-microvm.c', 'microvm-dt.c'))
i386_ss.add(when: 'CONFIG_Q35', if_true: files('pc_q35.c'))
i386_ss.add(when: 'CONFIG_VMMOUSE', if_true: files('vmmouse.c'))
i386_ss.add(when: 'CONFIG_VMPORT', if_true: files('vmport.c'))
@@ -22,6 +23,7 @@
i386_ss.add(when: 'CONFIG_ACPI', if_true: files('acpi-common.c'))
i386_ss.add(when: 'CONFIG_PC', if_true: files(
+ 'x86-common.c',
'pc.c',
'pc_sysfw.c',
'acpi-build.c',
diff --git a/hw/i386/x86-common.c b/hw/i386/x86-common.c
new file mode 100644
index 0000000..67b03c9
--- /dev/null
+++ b/hw/i386/x86-common.c
@@ -0,0 +1,1007 @@
+/*
+ * Copyright (c) 2003-2004 Fabrice Bellard
+ * Copyright (c) 2019, 2024 Red Hat, Inc.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+#include "qemu/osdep.h"
+#include "qemu/error-report.h"
+#include "qemu/cutils.h"
+#include "qemu/units.h"
+#include "qemu/datadir.h"
+#include "qapi/error.h"
+#include "sysemu/numa.h"
+#include "sysemu/sysemu.h"
+#include "sysemu/xen.h"
+#include "trace.h"
+
+#include "hw/i386/x86.h"
+#include "target/i386/cpu.h"
+#include "hw/rtc/mc146818rtc.h"
+#include "target/i386/sev.h"
+
+#include "hw/acpi/cpu_hotplug.h"
+#include "hw/irq.h"
+#include "hw/loader.h"
+#include "multiboot.h"
+#include "elf.h"
+#include "standard-headers/asm-x86/bootparam.h"
+#include CONFIG_DEVICES
+#include "kvm/kvm_i386.h"
+
+#ifdef CONFIG_XEN_EMU
+#include "hw/xen/xen.h"
+#include "hw/i386/kvm/xen_evtchn.h"
+#endif
+
+/* Physical Address of PVH entry point read from kernel ELF NOTE */
+static size_t pvh_start_addr;
+
+static void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
+{
+ Object *cpu = object_new(MACHINE(x86ms)->cpu_type);
+
+ if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) {
+ goto out;
+ }
+ qdev_realize(DEVICE(cpu), NULL, errp);
+
+out:
+ object_unref(cpu);
+}
+
+void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
+{
+ int i;
+ const CPUArchIdList *possible_cpus;
+ MachineState *ms = MACHINE(x86ms);
+ MachineClass *mc = MACHINE_GET_CLASS(x86ms);
+
+ x86_cpu_set_default_version(default_cpu_version);
+
+ /*
+ * Calculates the limit to CPU APIC ID values
+ *
+ * Limit for the APIC ID value, so that all
+ * CPU APIC IDs are < x86ms->apic_id_limit.
+ *
+ * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
+ */
+ x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
+ ms->smp.max_cpus - 1) + 1;
+
+ /*
+ * Can we support APIC ID 255 or higher? With KVM, that requires
+ * both in-kernel lapic and X2APIC userspace API.
+ *
+ * kvm_enabled() must go first to ensure that kvm_* references are
+ * not emitted for the linker to consume (kvm_enabled() is
+ * a literal `0` in configurations where kvm_* aren't defined)
+ */
+ if (kvm_enabled() && x86ms->apic_id_limit > 255 &&
+ kvm_irqchip_in_kernel() && !kvm_enable_x2apic()) {
+ error_report("current -smp configuration requires kernel "
+ "irqchip and X2APIC API support.");
+ exit(EXIT_FAILURE);
+ }
+
+ if (kvm_enabled()) {
+ kvm_set_max_apic_id(x86ms->apic_id_limit);
+ }
+
+ if (!kvm_irqchip_in_kernel()) {
+ apic_set_max_apic_id(x86ms->apic_id_limit);
+ }
+
+ possible_cpus = mc->possible_cpu_arch_ids(ms);
+ for (i = 0; i < ms->smp.cpus; i++) {
+ x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
+ }
+}
+
+void x86_rtc_set_cpus_count(ISADevice *s, uint16_t cpus_count)
+{
+ MC146818RtcState *rtc = MC146818_RTC(s);
+
+ if (cpus_count > 0xff) {
+ /*
+ * If the number of CPUs can't be represented in 8 bits, the
+ * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
+ * to make old BIOSes fail more predictably.
+ */
+ mc146818rtc_set_cmos_data(rtc, 0x5f, 0);
+ } else {
+ mc146818rtc_set_cmos_data(rtc, 0x5f, cpus_count - 1);
+ }
+}
+
+static int x86_apic_cmp(const void *a, const void *b)
+{
+ CPUArchId *apic_a = (CPUArchId *)a;
+ CPUArchId *apic_b = (CPUArchId *)b;
+
+ return apic_a->arch_id - apic_b->arch_id;
+}
+
+/*
+ * returns pointer to CPUArchId descriptor that matches CPU's apic_id
+ * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
+ * entry corresponding to CPU's apic_id returns NULL.
+ */
+static CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
+{
+ CPUArchId apic_id, *found_cpu;
+
+ apic_id.arch_id = id;
+ found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
+ ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
+ x86_apic_cmp);
+ if (found_cpu && idx) {
+ *idx = found_cpu - ms->possible_cpus->cpus;
+ }
+ return found_cpu;
+}
+
+void x86_cpu_plug(HotplugHandler *hotplug_dev,
+ DeviceState *dev, Error **errp)
+{
+ CPUArchId *found_cpu;
+ Error *local_err = NULL;
+ X86CPU *cpu = X86_CPU(dev);
+ X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
+
+ if (x86ms->acpi_dev) {
+ hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err);
+ if (local_err) {
+ goto out;
+ }
+ }
+
+ /* increment the number of CPUs */
+ x86ms->boot_cpus++;
+ if (x86ms->rtc) {
+ x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
+ }
+ if (x86ms->fw_cfg) {
+ fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
+ }
+
+ found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
+ found_cpu->cpu = CPU(dev);
+out:
+ error_propagate(errp, local_err);
+}
+
+void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
+ DeviceState *dev, Error **errp)
+{
+ int idx = -1;
+ X86CPU *cpu = X86_CPU(dev);
+ X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
+
+ if (!x86ms->acpi_dev) {
+ error_setg(errp, "CPU hot unplug not supported without ACPI");
+ return;
+ }
+
+ x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
+ assert(idx != -1);
+ if (idx == 0) {
+ error_setg(errp, "Boot CPU is unpluggable");
+ return;
+ }
+
+ hotplug_handler_unplug_request(x86ms->acpi_dev, dev,
+ errp);
+}
+
+void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev,
+ DeviceState *dev, Error **errp)
+{
+ CPUArchId *found_cpu;
+ Error *local_err = NULL;
+ X86CPU *cpu = X86_CPU(dev);
+ X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
+
+ hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err);
+ if (local_err) {
+ goto out;
+ }
+
+ found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
+ found_cpu->cpu = NULL;
+ qdev_unrealize(dev);
+
+ /* decrement the number of CPUs */
+ x86ms->boot_cpus--;
+ /* Update the number of CPUs in CMOS */
+ x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
+ fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
+ out:
+ error_propagate(errp, local_err);
+}
+
+void x86_cpu_pre_plug(HotplugHandler *hotplug_dev,
+ DeviceState *dev, Error **errp)
+{
+ int idx;
+ CPUState *cs;
+ CPUArchId *cpu_slot;
+ X86CPUTopoIDs topo_ids;
+ X86CPU *cpu = X86_CPU(dev);
+ CPUX86State *env = &cpu->env;
+ MachineState *ms = MACHINE(hotplug_dev);
+ X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
+ unsigned int smp_cores = ms->smp.cores;
+ unsigned int smp_threads = ms->smp.threads;
+ X86CPUTopoInfo topo_info;
+
+ if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
+ error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
+ ms->cpu_type);
+ return;
+ }
+
+ if (x86ms->acpi_dev) {
+ Error *local_err = NULL;
+
+ hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev,
+ &local_err);
+ if (local_err) {
+ error_propagate(errp, local_err);
+ return;
+ }
+ }
+
+ init_topo_info(&topo_info, x86ms);
+
+ env->nr_dies = ms->smp.dies;
+
+ /*
+ * If APIC ID is not set,
+ * set it based on socket/die/core/thread properties.
+ */
+ if (cpu->apic_id == UNASSIGNED_APIC_ID) {
+ int max_socket = (ms->smp.max_cpus - 1) /
+ smp_threads / smp_cores / ms->smp.dies;
+
+ /*
+ * die-id was optional in QEMU 4.0 and older, so keep it optional
+ * if there's only one die per socket.
+ */
+ if (cpu->die_id < 0 && ms->smp.dies == 1) {
+ cpu->die_id = 0;
+ }
+
+ if (cpu->socket_id < 0) {
+ error_setg(errp, "CPU socket-id is not set");
+ return;
+ } else if (cpu->socket_id > max_socket) {
+ error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
+ cpu->socket_id, max_socket);
+ return;
+ }
+ if (cpu->die_id < 0) {
+ error_setg(errp, "CPU die-id is not set");
+ return;
+ } else if (cpu->die_id > ms->smp.dies - 1) {
+ error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u",
+ cpu->die_id, ms->smp.dies - 1);
+ return;
+ }
+ if (cpu->core_id < 0) {
+ error_setg(errp, "CPU core-id is not set");
+ return;
+ } else if (cpu->core_id > (smp_cores - 1)) {
+ error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
+ cpu->core_id, smp_cores - 1);
+ return;
+ }
+ if (cpu->thread_id < 0) {
+ error_setg(errp, "CPU thread-id is not set");
+ return;
+ } else if (cpu->thread_id > (smp_threads - 1)) {
+ error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
+ cpu->thread_id, smp_threads - 1);
+ return;
+ }
+
+ topo_ids.pkg_id = cpu->socket_id;
+ topo_ids.die_id = cpu->die_id;
+ topo_ids.core_id = cpu->core_id;
+ topo_ids.smt_id = cpu->thread_id;
+ cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids);
+ }
+
+ cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
+ if (!cpu_slot) {
+ x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
+ error_setg(errp,
+ "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with"
+ " APIC ID %" PRIu32 ", valid index range 0:%d",
+ topo_ids.pkg_id, topo_ids.die_id, topo_ids.core_id, topo_ids.smt_id,
+ cpu->apic_id, ms->possible_cpus->len - 1);
+ return;
+ }
+
+ if (cpu_slot->cpu) {
+ error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
+ idx, cpu->apic_id);
+ return;
+ }
+
+ /* if 'address' properties socket-id/core-id/thread-id are not set, set them
+ * so that machine_query_hotpluggable_cpus would show correct values
+ */
+ /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
+ * once -smp refactoring is complete and there will be CPU private
+ * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
+ x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
+ if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) {
+ error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
+ " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id,
+ topo_ids.pkg_id);
+ return;
+ }
+ cpu->socket_id = topo_ids.pkg_id;
+
+ if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) {
+ error_setg(errp, "property die-id: %u doesn't match set apic-id:"
+ " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id);
+ return;
+ }
+ cpu->die_id = topo_ids.die_id;
+
+ if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) {
+ error_setg(errp, "property core-id: %u doesn't match set apic-id:"
+ " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id,
+ topo_ids.core_id);
+ return;
+ }
+ cpu->core_id = topo_ids.core_id;
+
+ if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) {
+ error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
+ " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id,
+ topo_ids.smt_id);
+ return;
+ }
+ cpu->thread_id = topo_ids.smt_id;
+
+ /*
+ * kvm_enabled() must go first to ensure that kvm_* references are
+ * not emitted for the linker to consume (kvm_enabled() is
+ * a literal `0` in configurations where kvm_* aren't defined)
+ */
+ if (kvm_enabled() && hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) &&
+ !kvm_hv_vpindex_settable()) {
+ error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
+ return;
+ }
+
+ cs = CPU(cpu);
+ cs->cpu_index = idx;
+
+ numa_cpu_pre_plug(cpu_slot, dev, errp);
+}
+
+static long get_file_size(FILE *f)
+{
+ long where, size;
+
+ /* XXX: on Unix systems, using fstat() probably makes more sense */
+
+ where = ftell(f);
+ fseek(f, 0, SEEK_END);
+ size = ftell(f);
+ fseek(f, where, SEEK_SET);
+
+ return size;
+}
+
+void gsi_handler(void *opaque, int n, int level)
+{
+ GSIState *s = opaque;
+
+ trace_x86_gsi_interrupt(n, level);
+ switch (n) {
+ case 0 ... ISA_NUM_IRQS - 1:
+ if (s->i8259_irq[n]) {
+ /* Under KVM, Kernel will forward to both PIC and IOAPIC */
+ qemu_set_irq(s->i8259_irq[n], level);
+ }
+ /* fall through */
+ case ISA_NUM_IRQS ... IOAPIC_NUM_PINS - 1:
+#ifdef CONFIG_XEN_EMU
+ /*
+ * Xen delivers the GSI to the Legacy PIC (not that Legacy PIC
+ * routing actually works properly under Xen). And then to
+ * *either* the PIRQ handling or the I/OAPIC depending on
+ * whether the former wants it.
+ */
+ if (xen_mode == XEN_EMULATE && xen_evtchn_set_gsi(n, level)) {
+ break;
+ }
+#endif
+ qemu_set_irq(s->ioapic_irq[n], level);
+ break;
+ case IO_APIC_SECONDARY_IRQBASE
+ ... IO_APIC_SECONDARY_IRQBASE + IOAPIC_NUM_PINS - 1:
+ qemu_set_irq(s->ioapic2_irq[n - IO_APIC_SECONDARY_IRQBASE], level);
+ break;
+ }
+}
+
+void ioapic_init_gsi(GSIState *gsi_state, Object *parent)
+{
+ DeviceState *dev;
+ SysBusDevice *d;
+ unsigned int i;
+
+ assert(parent);
+ if (kvm_ioapic_in_kernel()) {
+ dev = qdev_new(TYPE_KVM_IOAPIC);
+ } else {
+ dev = qdev_new(TYPE_IOAPIC);
+ }
+ object_property_add_child(parent, "ioapic", OBJECT(dev));
+ d = SYS_BUS_DEVICE(dev);
+ sysbus_realize_and_unref(d, &error_fatal);
+ sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
+
+ for (i = 0; i < IOAPIC_NUM_PINS; i++) {
+ gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
+ }
+}
+
+DeviceState *ioapic_init_secondary(GSIState *gsi_state)
+{
+ DeviceState *dev;
+ SysBusDevice *d;
+ unsigned int i;
+
+ dev = qdev_new(TYPE_IOAPIC);
+ d = SYS_BUS_DEVICE(dev);
+ sysbus_realize_and_unref(d, &error_fatal);
+ sysbus_mmio_map(d, 0, IO_APIC_SECONDARY_ADDRESS);
+
+ for (i = 0; i < IOAPIC_NUM_PINS; i++) {
+ gsi_state->ioapic2_irq[i] = qdev_get_gpio_in(dev, i);
+ }
+ return dev;
+}
+
+/*
+ * The entry point into the kernel for PVH boot is different from
+ * the native entry point. The PVH entry is defined by the x86/HVM
+ * direct boot ABI and is available in an ELFNOTE in the kernel binary.
+ *
+ * This function is passed to load_elf() when it is called from
+ * load_elfboot() which then additionally checks for an ELF Note of
+ * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
+ * parse the PVH entry address from the ELF Note.
+ *
+ * Due to trickery in elf_opts.h, load_elf() is actually available as
+ * load_elf32() or load_elf64() and this routine needs to be able
+ * to deal with being called as 32 or 64 bit.
+ *
+ * The address of the PVH entry point is saved to the 'pvh_start_addr'
+ * global variable. (although the entry point is 32-bit, the kernel
+ * binary can be either 32-bit or 64-bit).
+ */
+static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
+{
+ size_t *elf_note_data_addr;
+
+ /* Check if ELF Note header passed in is valid */
+ if (arg1 == NULL) {
+ return 0;
+ }
+
+ if (is64) {
+ struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
+ uint64_t nhdr_size64 = sizeof(struct elf64_note);
+ uint64_t phdr_align = *(uint64_t *)arg2;
+ uint64_t nhdr_namesz = nhdr64->n_namesz;
+
+ elf_note_data_addr =
+ ((void *)nhdr64) + nhdr_size64 +
+ QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
+
+ pvh_start_addr = *elf_note_data_addr;
+ } else {
+ struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
+ uint32_t nhdr_size32 = sizeof(struct elf32_note);
+ uint32_t phdr_align = *(uint32_t *)arg2;
+ uint32_t nhdr_namesz = nhdr32->n_namesz;
+
+ elf_note_data_addr =
+ ((void *)nhdr32) + nhdr_size32 +
+ QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
+
+ pvh_start_addr = *(uint32_t *)elf_note_data_addr;
+ }
+
+ return pvh_start_addr;
+}
+
+static bool load_elfboot(const char *kernel_filename,
+ int kernel_file_size,
+ uint8_t *header,
+ size_t pvh_xen_start_addr,
+ FWCfgState *fw_cfg)
+{
+ uint32_t flags = 0;
+ uint32_t mh_load_addr = 0;
+ uint32_t elf_kernel_size = 0;
+ uint64_t elf_entry;
+ uint64_t elf_low, elf_high;
+ int kernel_size;
+
+ if (ldl_p(header) != 0x464c457f) {
+ return false; /* no elfboot */
+ }
+
+ bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
+ flags = elf_is64 ?
+ ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
+
+ if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
+ error_report("elfboot unsupported flags = %x", flags);
+ exit(1);
+ }
+
+ uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
+ kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
+ NULL, &elf_note_type, &elf_entry,
+ &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE,
+ 0, 0);
+
+ if (kernel_size < 0) {
+ error_report("Error while loading elf kernel");
+ exit(1);
+ }
+ mh_load_addr = elf_low;
+ elf_kernel_size = elf_high - elf_low;
+
+ if (pvh_start_addr == 0) {
+ error_report("Error loading uncompressed kernel without PVH ELF Note");
+ exit(1);
+ }
+ fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
+ fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
+ fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
+
+ return true;
+}
+
+void x86_load_linux(X86MachineState *x86ms,
+ FWCfgState *fw_cfg,
+ int acpi_data_size,
+ bool pvh_enabled)
+{
+ bool linuxboot_dma_enabled = X86_MACHINE_GET_CLASS(x86ms)->fwcfg_dma_enabled;
+ uint16_t protocol;
+ int setup_size, kernel_size, cmdline_size;
+ int dtb_size, setup_data_offset;
+ uint32_t initrd_max;
+ uint8_t header[8192], *setup, *kernel;
+ hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
+ FILE *f;
+ char *vmode;
+ MachineState *machine = MACHINE(x86ms);
+ struct setup_data *setup_data;
+ const char *kernel_filename = machine->kernel_filename;
+ const char *initrd_filename = machine->initrd_filename;
+ const char *dtb_filename = machine->dtb;
+ const char *kernel_cmdline = machine->kernel_cmdline;
+ SevKernelLoaderContext sev_load_ctx = {};
+
+ /* Align to 16 bytes as a paranoia measure */
+ cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
+
+ /* load the kernel header */
+ f = fopen(kernel_filename, "rb");
+ if (!f) {
+ fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
+ kernel_filename, strerror(errno));
+ exit(1);
+ }
+
+ kernel_size = get_file_size(f);
+ if (!kernel_size ||
+ fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
+ MIN(ARRAY_SIZE(header), kernel_size)) {
+ fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
+ kernel_filename, strerror(errno));
+ exit(1);
+ }
+
+ /* kernel protocol version */
+ if (ldl_p(header + 0x202) == 0x53726448) {
+ protocol = lduw_p(header + 0x206);
+ } else {
+ /*
+ * This could be a multiboot kernel. If it is, let's stop treating it
+ * like a Linux kernel.
+ * Note: some multiboot images could be in the ELF format (the same of
+ * PVH), so we try multiboot first since we check the multiboot magic
+ * header before to load it.
+ */
+ if (load_multiboot(x86ms, fw_cfg, f, kernel_filename, initrd_filename,
+ kernel_cmdline, kernel_size, header)) {
+ return;
+ }
+ /*
+ * Check if the file is an uncompressed kernel file (ELF) and load it,
+ * saving the PVH entry point used by the x86/HVM direct boot ABI.
+ * If load_elfboot() is successful, populate the fw_cfg info.
+ */
+ if (pvh_enabled &&
+ load_elfboot(kernel_filename, kernel_size,
+ header, pvh_start_addr, fw_cfg)) {
+ fclose(f);
+
+ fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
+ strlen(kernel_cmdline) + 1);
+ fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
+
+ fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
+ fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
+ header, sizeof(header));
+
+ /* load initrd */
+ if (initrd_filename) {
+ GMappedFile *mapped_file;
+ gsize initrd_size;
+ gchar *initrd_data;
+ GError *gerr = NULL;
+
+ mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
+ if (!mapped_file) {
+ fprintf(stderr, "qemu: error reading initrd %s: %s\n",
+ initrd_filename, gerr->message);
+ exit(1);
+ }
+ x86ms->initrd_mapped_file = mapped_file;
+
+ initrd_data = g_mapped_file_get_contents(mapped_file);
+ initrd_size = g_mapped_file_get_length(mapped_file);
+ initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
+ if (initrd_size >= initrd_max) {
+ fprintf(stderr, "qemu: initrd is too large, cannot support."
+ "(max: %"PRIu32", need %"PRId64")\n",
+ initrd_max, (uint64_t)initrd_size);
+ exit(1);
+ }
+
+ initrd_addr = (initrd_max - initrd_size) & ~4095;
+
+ fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
+ fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
+ fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
+ initrd_size);
+ }
+
+ option_rom[nb_option_roms].bootindex = 0;
+ option_rom[nb_option_roms].name = "pvh.bin";
+ nb_option_roms++;
+
+ return;
+ }
+ protocol = 0;
+ }
+
+ if (protocol < 0x200 || !(header[0x211] & 0x01)) {
+ /* Low kernel */
+ real_addr = 0x90000;
+ cmdline_addr = 0x9a000 - cmdline_size;
+ prot_addr = 0x10000;
+ } else if (protocol < 0x202) {
+ /* High but ancient kernel */
+ real_addr = 0x90000;
+ cmdline_addr = 0x9a000 - cmdline_size;
+ prot_addr = 0x100000;
+ } else {
+ /* High and recent kernel */
+ real_addr = 0x10000;
+ cmdline_addr = 0x20000;
+ prot_addr = 0x100000;
+ }
+
+ /* highest address for loading the initrd */
+ if (protocol >= 0x20c &&
+ lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
+ /*
+ * Linux has supported initrd up to 4 GB for a very long time (2007,
+ * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
+ * though it only sets initrd_max to 2 GB to "work around bootloader
+ * bugs". Luckily, QEMU firmware(which does something like bootloader)
+ * has supported this.
+ *
+ * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
+ * be loaded into any address.
+ *
+ * In addition, initrd_max is uint32_t simply because QEMU doesn't
+ * support the 64-bit boot protocol (specifically the ext_ramdisk_image
+ * field).
+ *
+ * Therefore here just limit initrd_max to UINT32_MAX simply as well.
+ */
+ initrd_max = UINT32_MAX;
+ } else if (protocol >= 0x203) {
+ initrd_max = ldl_p(header + 0x22c);
+ } else {
+ initrd_max = 0x37ffffff;
+ }
+
+ if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
+ initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
+ }
+
+ fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
+ fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
+ fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
+ sev_load_ctx.cmdline_data = (char *)kernel_cmdline;
+ sev_load_ctx.cmdline_size = strlen(kernel_cmdline) + 1;
+
+ if (protocol >= 0x202) {
+ stl_p(header + 0x228, cmdline_addr);
+ } else {
+ stw_p(header + 0x20, 0xA33F);
+ stw_p(header + 0x22, cmdline_addr - real_addr);
+ }
+
+ /* handle vga= parameter */
+ vmode = strstr(kernel_cmdline, "vga=");
+ if (vmode) {
+ unsigned int video_mode;
+ const char *end;
+ int ret;
+ /* skip "vga=" */
+ vmode += 4;
+ if (!strncmp(vmode, "normal", 6)) {
+ video_mode = 0xffff;
+ } else if (!strncmp(vmode, "ext", 3)) {
+ video_mode = 0xfffe;
+ } else if (!strncmp(vmode, "ask", 3)) {
+ video_mode = 0xfffd;
+ } else {
+ ret = qemu_strtoui(vmode, &end, 0, &video_mode);
+ if (ret != 0 || (*end && *end != ' ')) {
+ fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n");
+ exit(1);
+ }
+ }
+ stw_p(header + 0x1fa, video_mode);
+ }
+
+ /* loader type */
+ /*
+ * High nybble = B reserved for QEMU; low nybble is revision number.
+ * If this code is substantially changed, you may want to consider
+ * incrementing the revision.
+ */
+ if (protocol >= 0x200) {
+ header[0x210] = 0xB0;
+ }
+ /* heap */
+ if (protocol >= 0x201) {
+ header[0x211] |= 0x80; /* CAN_USE_HEAP */
+ stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
+ }
+
+ /* load initrd */
+ if (initrd_filename) {
+ GMappedFile *mapped_file;
+ gsize initrd_size;
+ gchar *initrd_data;
+ GError *gerr = NULL;
+
+ if (protocol < 0x200) {
+ fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
+ exit(1);
+ }
+
+ mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
+ if (!mapped_file) {
+ fprintf(stderr, "qemu: error reading initrd %s: %s\n",
+ initrd_filename, gerr->message);
+ exit(1);
+ }
+ x86ms->initrd_mapped_file = mapped_file;
+
+ initrd_data = g_mapped_file_get_contents(mapped_file);
+ initrd_size = g_mapped_file_get_length(mapped_file);
+ if (initrd_size >= initrd_max) {
+ fprintf(stderr, "qemu: initrd is too large, cannot support."
+ "(max: %"PRIu32", need %"PRId64")\n",
+ initrd_max, (uint64_t)initrd_size);
+ exit(1);
+ }
+
+ initrd_addr = (initrd_max - initrd_size) & ~4095;
+
+ fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
+ fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
+ fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
+ sev_load_ctx.initrd_data = initrd_data;
+ sev_load_ctx.initrd_size = initrd_size;
+
+ stl_p(header + 0x218, initrd_addr);
+ stl_p(header + 0x21c, initrd_size);
+ }
+
+ /* load kernel and setup */
+ setup_size = header[0x1f1];
+ if (setup_size == 0) {
+ setup_size = 4;
+ }
+ setup_size = (setup_size + 1) * 512;
+ if (setup_size > kernel_size) {
+ fprintf(stderr, "qemu: invalid kernel header\n");
+ exit(1);
+ }
+ kernel_size -= setup_size;
+
+ setup = g_malloc(setup_size);
+ kernel = g_malloc(kernel_size);
+ fseek(f, 0, SEEK_SET);
+ if (fread(setup, 1, setup_size, f) != setup_size) {
+ fprintf(stderr, "fread() failed\n");
+ exit(1);
+ }
+ if (fread(kernel, 1, kernel_size, f) != kernel_size) {
+ fprintf(stderr, "fread() failed\n");
+ exit(1);
+ }
+ fclose(f);
+
+ /* append dtb to kernel */
+ if (dtb_filename) {
+ if (protocol < 0x209) {
+ fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
+ exit(1);
+ }
+
+ dtb_size = get_image_size(dtb_filename);
+ if (dtb_size <= 0) {
+ fprintf(stderr, "qemu: error reading dtb %s: %s\n",
+ dtb_filename, strerror(errno));
+ exit(1);
+ }
+
+ setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
+ kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
+ kernel = g_realloc(kernel, kernel_size);
+
+ stq_p(header + 0x250, prot_addr + setup_data_offset);
+
+ setup_data = (struct setup_data *)(kernel + setup_data_offset);
+ setup_data->next = 0;
+ setup_data->type = cpu_to_le32(SETUP_DTB);
+ setup_data->len = cpu_to_le32(dtb_size);
+
+ load_image_size(dtb_filename, setup_data->data, dtb_size);
+ }
+
+ /*
+ * If we're starting an encrypted VM, it will be OVMF based, which uses the
+ * efi stub for booting and doesn't require any values to be placed in the
+ * kernel header. We therefore don't update the header so the hash of the
+ * kernel on the other side of the fw_cfg interface matches the hash of the
+ * file the user passed in.
+ */
+ if (!sev_enabled()) {
+ memcpy(setup, header, MIN(sizeof(header), setup_size));
+ }
+
+ fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
+ fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
+ fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
+ sev_load_ctx.kernel_data = (char *)kernel;
+ sev_load_ctx.kernel_size = kernel_size;
+
+ fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
+ fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
+ fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
+ sev_load_ctx.setup_data = (char *)setup;
+ sev_load_ctx.setup_size = setup_size;
+
+ if (sev_enabled()) {
+ sev_add_kernel_loader_hashes(&sev_load_ctx, &error_fatal);
+ }
+
+ option_rom[nb_option_roms].bootindex = 0;
+ option_rom[nb_option_roms].name = "linuxboot.bin";
+ if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
+ option_rom[nb_option_roms].name = "linuxboot_dma.bin";
+ }
+ nb_option_roms++;
+}
+
+void x86_isa_bios_init(MemoryRegion *isa_bios, MemoryRegion *isa_memory,
+ MemoryRegion *bios, bool read_only)
+{
+ uint64_t bios_size = memory_region_size(bios);
+ uint64_t isa_bios_size = MIN(bios_size, 128 * KiB);
+
+ memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
+ bios_size - isa_bios_size, isa_bios_size);
+ memory_region_add_subregion_overlap(isa_memory, 1 * MiB - isa_bios_size,
+ isa_bios, 1);
+ memory_region_set_readonly(isa_bios, read_only);
+}
+
+void x86_bios_rom_init(X86MachineState *x86ms, const char *default_firmware,
+ MemoryRegion *rom_memory, bool isapc_ram_fw)
+{
+ const char *bios_name;
+ char *filename;
+ int bios_size;
+ ssize_t ret;
+
+ /* BIOS load */
+ bios_name = MACHINE(x86ms)->firmware ?: default_firmware;
+ filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
+ if (filename) {
+ bios_size = get_image_size(filename);
+ } else {
+ bios_size = -1;
+ }
+ if (bios_size <= 0 ||
+ (bios_size % 65536) != 0) {
+ goto bios_error;
+ }
+ memory_region_init_ram(&x86ms->bios, NULL, "pc.bios", bios_size,
+ &error_fatal);
+ if (sev_enabled()) {
+ /*
+ * The concept of a "reset" simply doesn't exist for
+ * confidential computing guests, we have to destroy and
+ * re-launch them instead. So there is no need to register
+ * the firmware as rom to properly re-initialize on reset.
+ * Just go for a straight file load instead.
+ */
+ void *ptr = memory_region_get_ram_ptr(&x86ms->bios);
+ load_image_size(filename, ptr, bios_size);
+ x86_firmware_configure(ptr, bios_size);
+ } else {
+ memory_region_set_readonly(&x86ms->bios, !isapc_ram_fw);
+ ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
+ if (ret != 0) {
+ goto bios_error;
+ }
+ }
+ g_free(filename);
+
+ /* map the last 128KB of the BIOS in ISA space */
+ x86_isa_bios_init(&x86ms->isa_bios, rom_memory, &x86ms->bios,
+ !isapc_ram_fw);
+
+ /* map all the bios at the top of memory */
+ memory_region_add_subregion(rom_memory,
+ (uint32_t)(-bios_size),
+ &x86ms->bios);
+ return;
+
+bios_error:
+ fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
+ exit(1);
+}
diff --git a/hw/i386/x86-cpu.c b/hw/i386/x86-cpu.c
new file mode 100644
index 0000000..ab29205
--- /dev/null
+++ b/hw/i386/x86-cpu.c
@@ -0,0 +1,97 @@
+/*
+ * Copyright (c) 2003-2004 Fabrice Bellard
+ * Copyright (c) 2019, 2024 Red Hat, Inc.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+#include "qemu/osdep.h"
+#include "sysemu/whpx.h"
+#include "sysemu/cpu-timers.h"
+#include "trace.h"
+
+#include "hw/i386/x86.h"
+#include "target/i386/cpu.h"
+#include "hw/intc/i8259.h"
+#include "hw/irq.h"
+#include "sysemu/kvm.h"
+
+/* TSC handling */
+uint64_t cpu_get_tsc(CPUX86State *env)
+{
+ return cpus_get_elapsed_ticks();
+}
+
+/* IRQ handling */
+static void pic_irq_request(void *opaque, int irq, int level)
+{
+ CPUState *cs = first_cpu;
+ X86CPU *cpu = X86_CPU(cs);
+
+ trace_x86_pic_interrupt(irq, level);
+ if (cpu_is_apic_enabled(cpu->apic_state) && !kvm_irqchip_in_kernel() &&
+ !whpx_apic_in_platform()) {
+ CPU_FOREACH(cs) {
+ cpu = X86_CPU(cs);
+ if (apic_accept_pic_intr(cpu->apic_state)) {
+ apic_deliver_pic_intr(cpu->apic_state, level);
+ }
+ }
+ } else {
+ if (level) {
+ cpu_interrupt(cs, CPU_INTERRUPT_HARD);
+ } else {
+ cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
+ }
+ }
+}
+
+qemu_irq x86_allocate_cpu_irq(void)
+{
+ return qemu_allocate_irq(pic_irq_request, NULL, 0);
+}
+
+int cpu_get_pic_interrupt(CPUX86State *env)
+{
+ X86CPU *cpu = env_archcpu(env);
+ int intno;
+
+ if (!kvm_irqchip_in_kernel() && !whpx_apic_in_platform()) {
+ intno = apic_get_interrupt(cpu->apic_state);
+ if (intno >= 0) {
+ return intno;
+ }
+ /* read the irq from the PIC */
+ if (!apic_accept_pic_intr(cpu->apic_state)) {
+ return -1;
+ }
+ }
+
+ intno = pic_read_irq(isa_pic);
+ return intno;
+}
+
+DeviceState *cpu_get_current_apic(void)
+{
+ if (current_cpu) {
+ X86CPU *cpu = X86_CPU(current_cpu);
+ return cpu->apic_state;
+ } else {
+ return NULL;
+ }
+}
diff --git a/hw/i386/x86.c b/hw/i386/x86.c
index fcef652..0b5cc59 100644
--- a/hw/i386/x86.c
+++ b/hw/i386/x86.c
@@ -22,52 +22,25 @@
*/
#include "qemu/osdep.h"
#include "qemu/error-report.h"
-#include "qemu/option.h"
-#include "qemu/cutils.h"
#include "qemu/units.h"
-#include "qemu/datadir.h"
#include "qapi/error.h"
#include "qapi/qapi-visit-common.h"
-#include "qapi/clone-visitor.h"
#include "qapi/qapi-visit-machine.h"
#include "qapi/visitor.h"
#include "sysemu/qtest.h"
-#include "sysemu/whpx.h"
#include "sysemu/numa.h"
-#include "sysemu/replay.h"
-#include "sysemu/sysemu.h"
-#include "sysemu/cpu-timers.h"
-#include "sysemu/xen.h"
#include "trace.h"
+#include "hw/acpi/aml-build.h"
#include "hw/i386/x86.h"
-#include "target/i386/cpu.h"
#include "hw/i386/topology.h"
-#include "hw/i386/fw_cfg.h"
-#include "hw/intc/i8259.h"
-#include "hw/rtc/mc146818rtc.h"
-#include "target/i386/sev.h"
-#include "hw/acpi/cpu_hotplug.h"
-#include "hw/irq.h"
#include "hw/nmi.h"
-#include "hw/loader.h"
-#include "multiboot.h"
-#include "elf.h"
-#include "standard-headers/asm-x86/bootparam.h"
-#include CONFIG_DEVICES
#include "kvm/kvm_i386.h"
-#ifdef CONFIG_XEN_EMU
-#include "hw/xen/xen.h"
-#include "hw/i386/kvm/xen_evtchn.h"
-#endif
-/* Physical Address of PVH entry point read from kernel ELF NOTE */
-static size_t pvh_start_addr;
-
-static void init_topo_info(X86CPUTopoInfo *topo_info,
- const X86MachineState *x86ms)
+void init_topo_info(X86CPUTopoInfo *topo_info,
+ const X86MachineState *x86ms)
{
MachineState *ms = MACHINE(x86ms);
@@ -94,355 +67,6 @@
return x86_apicid_from_cpu_idx(&topo_info, cpu_index);
}
-
-void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
-{
- Object *cpu = object_new(MACHINE(x86ms)->cpu_type);
-
- if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) {
- goto out;
- }
- qdev_realize(DEVICE(cpu), NULL, errp);
-
-out:
- object_unref(cpu);
-}
-
-void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
-{
- int i;
- const CPUArchIdList *possible_cpus;
- MachineState *ms = MACHINE(x86ms);
- MachineClass *mc = MACHINE_GET_CLASS(x86ms);
-
- x86_cpu_set_default_version(default_cpu_version);
-
- /*
- * Calculates the limit to CPU APIC ID values
- *
- * Limit for the APIC ID value, so that all
- * CPU APIC IDs are < x86ms->apic_id_limit.
- *
- * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
- */
- x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
- ms->smp.max_cpus - 1) + 1;
-
- /*
- * Can we support APIC ID 255 or higher? With KVM, that requires
- * both in-kernel lapic and X2APIC userspace API.
- *
- * kvm_enabled() must go first to ensure that kvm_* references are
- * not emitted for the linker to consume (kvm_enabled() is
- * a literal `0` in configurations where kvm_* aren't defined)
- */
- if (kvm_enabled() && x86ms->apic_id_limit > 255 &&
- kvm_irqchip_in_kernel() && !kvm_enable_x2apic()) {
- error_report("current -smp configuration requires kernel "
- "irqchip and X2APIC API support.");
- exit(EXIT_FAILURE);
- }
-
- if (kvm_enabled()) {
- kvm_set_max_apic_id(x86ms->apic_id_limit);
- }
-
- if (!kvm_irqchip_in_kernel()) {
- apic_set_max_apic_id(x86ms->apic_id_limit);
- }
-
- possible_cpus = mc->possible_cpu_arch_ids(ms);
- for (i = 0; i < ms->smp.cpus; i++) {
- x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
- }
-}
-
-void x86_rtc_set_cpus_count(ISADevice *s, uint16_t cpus_count)
-{
- MC146818RtcState *rtc = MC146818_RTC(s);
-
- if (cpus_count > 0xff) {
- /*
- * If the number of CPUs can't be represented in 8 bits, the
- * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
- * to make old BIOSes fail more predictably.
- */
- mc146818rtc_set_cmos_data(rtc, 0x5f, 0);
- } else {
- mc146818rtc_set_cmos_data(rtc, 0x5f, cpus_count - 1);
- }
-}
-
-static int x86_apic_cmp(const void *a, const void *b)
-{
- CPUArchId *apic_a = (CPUArchId *)a;
- CPUArchId *apic_b = (CPUArchId *)b;
-
- return apic_a->arch_id - apic_b->arch_id;
-}
-
-/*
- * returns pointer to CPUArchId descriptor that matches CPU's apic_id
- * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
- * entry corresponding to CPU's apic_id returns NULL.
- */
-CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
-{
- CPUArchId apic_id, *found_cpu;
-
- apic_id.arch_id = id;
- found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
- ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
- x86_apic_cmp);
- if (found_cpu && idx) {
- *idx = found_cpu - ms->possible_cpus->cpus;
- }
- return found_cpu;
-}
-
-void x86_cpu_plug(HotplugHandler *hotplug_dev,
- DeviceState *dev, Error **errp)
-{
- CPUArchId *found_cpu;
- Error *local_err = NULL;
- X86CPU *cpu = X86_CPU(dev);
- X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
-
- if (x86ms->acpi_dev) {
- hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err);
- if (local_err) {
- goto out;
- }
- }
-
- /* increment the number of CPUs */
- x86ms->boot_cpus++;
- if (x86ms->rtc) {
- x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
- }
- if (x86ms->fw_cfg) {
- fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
- }
-
- found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
- found_cpu->cpu = CPU(dev);
-out:
- error_propagate(errp, local_err);
-}
-
-void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
- DeviceState *dev, Error **errp)
-{
- int idx = -1;
- X86CPU *cpu = X86_CPU(dev);
- X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
-
- if (!x86ms->acpi_dev) {
- error_setg(errp, "CPU hot unplug not supported without ACPI");
- return;
- }
-
- x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
- assert(idx != -1);
- if (idx == 0) {
- error_setg(errp, "Boot CPU is unpluggable");
- return;
- }
-
- hotplug_handler_unplug_request(x86ms->acpi_dev, dev,
- errp);
-}
-
-void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev,
- DeviceState *dev, Error **errp)
-{
- CPUArchId *found_cpu;
- Error *local_err = NULL;
- X86CPU *cpu = X86_CPU(dev);
- X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
-
- hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err);
- if (local_err) {
- goto out;
- }
-
- found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
- found_cpu->cpu = NULL;
- qdev_unrealize(dev);
-
- /* decrement the number of CPUs */
- x86ms->boot_cpus--;
- /* Update the number of CPUs in CMOS */
- x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
- fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
- out:
- error_propagate(errp, local_err);
-}
-
-void x86_cpu_pre_plug(HotplugHandler *hotplug_dev,
- DeviceState *dev, Error **errp)
-{
- int idx;
- CPUState *cs;
- CPUArchId *cpu_slot;
- X86CPUTopoIDs topo_ids;
- X86CPU *cpu = X86_CPU(dev);
- CPUX86State *env = &cpu->env;
- MachineState *ms = MACHINE(hotplug_dev);
- X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
- unsigned int smp_cores = ms->smp.cores;
- unsigned int smp_threads = ms->smp.threads;
- X86CPUTopoInfo topo_info;
-
- if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
- error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
- ms->cpu_type);
- return;
- }
-
- if (x86ms->acpi_dev) {
- Error *local_err = NULL;
-
- hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev,
- &local_err);
- if (local_err) {
- error_propagate(errp, local_err);
- return;
- }
- }
-
- init_topo_info(&topo_info, x86ms);
-
- env->nr_dies = ms->smp.dies;
-
- /*
- * If APIC ID is not set,
- * set it based on socket/die/core/thread properties.
- */
- if (cpu->apic_id == UNASSIGNED_APIC_ID) {
- int max_socket = (ms->smp.max_cpus - 1) /
- smp_threads / smp_cores / ms->smp.dies;
-
- /*
- * die-id was optional in QEMU 4.0 and older, so keep it optional
- * if there's only one die per socket.
- */
- if (cpu->die_id < 0 && ms->smp.dies == 1) {
- cpu->die_id = 0;
- }
-
- if (cpu->socket_id < 0) {
- error_setg(errp, "CPU socket-id is not set");
- return;
- } else if (cpu->socket_id > max_socket) {
- error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
- cpu->socket_id, max_socket);
- return;
- }
- if (cpu->die_id < 0) {
- error_setg(errp, "CPU die-id is not set");
- return;
- } else if (cpu->die_id > ms->smp.dies - 1) {
- error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u",
- cpu->die_id, ms->smp.dies - 1);
- return;
- }
- if (cpu->core_id < 0) {
- error_setg(errp, "CPU core-id is not set");
- return;
- } else if (cpu->core_id > (smp_cores - 1)) {
- error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
- cpu->core_id, smp_cores - 1);
- return;
- }
- if (cpu->thread_id < 0) {
- error_setg(errp, "CPU thread-id is not set");
- return;
- } else if (cpu->thread_id > (smp_threads - 1)) {
- error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
- cpu->thread_id, smp_threads - 1);
- return;
- }
-
- topo_ids.pkg_id = cpu->socket_id;
- topo_ids.die_id = cpu->die_id;
- topo_ids.core_id = cpu->core_id;
- topo_ids.smt_id = cpu->thread_id;
- cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids);
- }
-
- cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
- if (!cpu_slot) {
- x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
- error_setg(errp,
- "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with"
- " APIC ID %" PRIu32 ", valid index range 0:%d",
- topo_ids.pkg_id, topo_ids.die_id, topo_ids.core_id, topo_ids.smt_id,
- cpu->apic_id, ms->possible_cpus->len - 1);
- return;
- }
-
- if (cpu_slot->cpu) {
- error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
- idx, cpu->apic_id);
- return;
- }
-
- /* if 'address' properties socket-id/core-id/thread-id are not set, set them
- * so that machine_query_hotpluggable_cpus would show correct values
- */
- /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
- * once -smp refactoring is complete and there will be CPU private
- * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
- x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
- if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) {
- error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
- " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id,
- topo_ids.pkg_id);
- return;
- }
- cpu->socket_id = topo_ids.pkg_id;
-
- if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) {
- error_setg(errp, "property die-id: %u doesn't match set apic-id:"
- " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id);
- return;
- }
- cpu->die_id = topo_ids.die_id;
-
- if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) {
- error_setg(errp, "property core-id: %u doesn't match set apic-id:"
- " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id,
- topo_ids.core_id);
- return;
- }
- cpu->core_id = topo_ids.core_id;
-
- if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) {
- error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
- " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id,
- topo_ids.smt_id);
- return;
- }
- cpu->thread_id = topo_ids.smt_id;
-
- /*
- * kvm_enabled() must go first to ensure that kvm_* references are
- * not emitted for the linker to consume (kvm_enabled() is
- * a literal `0` in configurations where kvm_* aren't defined)
- */
- if (kvm_enabled() && hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) &&
- !kvm_hv_vpindex_settable()) {
- error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
- return;
- }
-
- cs = CPU(cpu);
- cs->cpu_index = idx;
-
- numa_cpu_pre_plug(cpu_slot, dev, errp);
-}
-
static CpuInstanceProperties
x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
{
@@ -528,676 +152,6 @@
}
}
-static long get_file_size(FILE *f)
-{
- long where, size;
-
- /* XXX: on Unix systems, using fstat() probably makes more sense */
-
- where = ftell(f);
- fseek(f, 0, SEEK_END);
- size = ftell(f);
- fseek(f, where, SEEK_SET);
-
- return size;
-}
-
-/* TSC handling */
-uint64_t cpu_get_tsc(CPUX86State *env)
-{
- return cpus_get_elapsed_ticks();
-}
-
-/* IRQ handling */
-static void pic_irq_request(void *opaque, int irq, int level)
-{
- CPUState *cs = first_cpu;
- X86CPU *cpu = X86_CPU(cs);
-
- trace_x86_pic_interrupt(irq, level);
- if (cpu_is_apic_enabled(cpu->apic_state) && !kvm_irqchip_in_kernel() &&
- !whpx_apic_in_platform()) {
- CPU_FOREACH(cs) {
- cpu = X86_CPU(cs);
- if (apic_accept_pic_intr(cpu->apic_state)) {
- apic_deliver_pic_intr(cpu->apic_state, level);
- }
- }
- } else {
- if (level) {
- cpu_interrupt(cs, CPU_INTERRUPT_HARD);
- } else {
- cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
- }
- }
-}
-
-qemu_irq x86_allocate_cpu_irq(void)
-{
- return qemu_allocate_irq(pic_irq_request, NULL, 0);
-}
-
-int cpu_get_pic_interrupt(CPUX86State *env)
-{
- X86CPU *cpu = env_archcpu(env);
- int intno;
-
- if (!kvm_irqchip_in_kernel() && !whpx_apic_in_platform()) {
- intno = apic_get_interrupt(cpu->apic_state);
- if (intno >= 0) {
- return intno;
- }
- /* read the irq from the PIC */
- if (!apic_accept_pic_intr(cpu->apic_state)) {
- return -1;
- }
- }
-
- intno = pic_read_irq(isa_pic);
- return intno;
-}
-
-DeviceState *cpu_get_current_apic(void)
-{
- if (current_cpu) {
- X86CPU *cpu = X86_CPU(current_cpu);
- return cpu->apic_state;
- } else {
- return NULL;
- }
-}
-
-void gsi_handler(void *opaque, int n, int level)
-{
- GSIState *s = opaque;
-
- trace_x86_gsi_interrupt(n, level);
- switch (n) {
- case 0 ... ISA_NUM_IRQS - 1:
- if (s->i8259_irq[n]) {
- /* Under KVM, Kernel will forward to both PIC and IOAPIC */
- qemu_set_irq(s->i8259_irq[n], level);
- }
- /* fall through */
- case ISA_NUM_IRQS ... IOAPIC_NUM_PINS - 1:
-#ifdef CONFIG_XEN_EMU
- /*
- * Xen delivers the GSI to the Legacy PIC (not that Legacy PIC
- * routing actually works properly under Xen). And then to
- * *either* the PIRQ handling or the I/OAPIC depending on
- * whether the former wants it.
- */
- if (xen_mode == XEN_EMULATE && xen_evtchn_set_gsi(n, level)) {
- break;
- }
-#endif
- qemu_set_irq(s->ioapic_irq[n], level);
- break;
- case IO_APIC_SECONDARY_IRQBASE
- ... IO_APIC_SECONDARY_IRQBASE + IOAPIC_NUM_PINS - 1:
- qemu_set_irq(s->ioapic2_irq[n - IO_APIC_SECONDARY_IRQBASE], level);
- break;
- }
-}
-
-void ioapic_init_gsi(GSIState *gsi_state, Object *parent)
-{
- DeviceState *dev;
- SysBusDevice *d;
- unsigned int i;
-
- assert(parent);
- if (kvm_ioapic_in_kernel()) {
- dev = qdev_new(TYPE_KVM_IOAPIC);
- } else {
- dev = qdev_new(TYPE_IOAPIC);
- }
- object_property_add_child(parent, "ioapic", OBJECT(dev));
- d = SYS_BUS_DEVICE(dev);
- sysbus_realize_and_unref(d, &error_fatal);
- sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
-
- for (i = 0; i < IOAPIC_NUM_PINS; i++) {
- gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
- }
-}
-
-DeviceState *ioapic_init_secondary(GSIState *gsi_state)
-{
- DeviceState *dev;
- SysBusDevice *d;
- unsigned int i;
-
- dev = qdev_new(TYPE_IOAPIC);
- d = SYS_BUS_DEVICE(dev);
- sysbus_realize_and_unref(d, &error_fatal);
- sysbus_mmio_map(d, 0, IO_APIC_SECONDARY_ADDRESS);
-
- for (i = 0; i < IOAPIC_NUM_PINS; i++) {
- gsi_state->ioapic2_irq[i] = qdev_get_gpio_in(dev, i);
- }
- return dev;
-}
-
-/*
- * The entry point into the kernel for PVH boot is different from
- * the native entry point. The PVH entry is defined by the x86/HVM
- * direct boot ABI and is available in an ELFNOTE in the kernel binary.
- *
- * This function is passed to load_elf() when it is called from
- * load_elfboot() which then additionally checks for an ELF Note of
- * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
- * parse the PVH entry address from the ELF Note.
- *
- * Due to trickery in elf_opts.h, load_elf() is actually available as
- * load_elf32() or load_elf64() and this routine needs to be able
- * to deal with being called as 32 or 64 bit.
- *
- * The address of the PVH entry point is saved to the 'pvh_start_addr'
- * global variable. (although the entry point is 32-bit, the kernel
- * binary can be either 32-bit or 64-bit).
- */
-static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
-{
- size_t *elf_note_data_addr;
-
- /* Check if ELF Note header passed in is valid */
- if (arg1 == NULL) {
- return 0;
- }
-
- if (is64) {
- struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
- uint64_t nhdr_size64 = sizeof(struct elf64_note);
- uint64_t phdr_align = *(uint64_t *)arg2;
- uint64_t nhdr_namesz = nhdr64->n_namesz;
-
- elf_note_data_addr =
- ((void *)nhdr64) + nhdr_size64 +
- QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
-
- pvh_start_addr = *elf_note_data_addr;
- } else {
- struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
- uint32_t nhdr_size32 = sizeof(struct elf32_note);
- uint32_t phdr_align = *(uint32_t *)arg2;
- uint32_t nhdr_namesz = nhdr32->n_namesz;
-
- elf_note_data_addr =
- ((void *)nhdr32) + nhdr_size32 +
- QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
-
- pvh_start_addr = *(uint32_t *)elf_note_data_addr;
- }
-
- return pvh_start_addr;
-}
-
-static bool load_elfboot(const char *kernel_filename,
- int kernel_file_size,
- uint8_t *header,
- size_t pvh_xen_start_addr,
- FWCfgState *fw_cfg)
-{
- uint32_t flags = 0;
- uint32_t mh_load_addr = 0;
- uint32_t elf_kernel_size = 0;
- uint64_t elf_entry;
- uint64_t elf_low, elf_high;
- int kernel_size;
-
- if (ldl_p(header) != 0x464c457f) {
- return false; /* no elfboot */
- }
-
- bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
- flags = elf_is64 ?
- ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
-
- if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
- error_report("elfboot unsupported flags = %x", flags);
- exit(1);
- }
-
- uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
- kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
- NULL, &elf_note_type, &elf_entry,
- &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE,
- 0, 0);
-
- if (kernel_size < 0) {
- error_report("Error while loading elf kernel");
- exit(1);
- }
- mh_load_addr = elf_low;
- elf_kernel_size = elf_high - elf_low;
-
- if (pvh_start_addr == 0) {
- error_report("Error loading uncompressed kernel without PVH ELF Note");
- exit(1);
- }
- fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
- fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
- fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
-
- return true;
-}
-
-void x86_load_linux(X86MachineState *x86ms,
- FWCfgState *fw_cfg,
- int acpi_data_size,
- bool pvh_enabled)
-{
- bool linuxboot_dma_enabled = X86_MACHINE_GET_CLASS(x86ms)->fwcfg_dma_enabled;
- uint16_t protocol;
- int setup_size, kernel_size, cmdline_size;
- int dtb_size, setup_data_offset;
- uint32_t initrd_max;
- uint8_t header[8192], *setup, *kernel;
- hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
- FILE *f;
- char *vmode;
- MachineState *machine = MACHINE(x86ms);
- struct setup_data *setup_data;
- const char *kernel_filename = machine->kernel_filename;
- const char *initrd_filename = machine->initrd_filename;
- const char *dtb_filename = machine->dtb;
- const char *kernel_cmdline = machine->kernel_cmdline;
- SevKernelLoaderContext sev_load_ctx = {};
-
- /* Align to 16 bytes as a paranoia measure */
- cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
-
- /* load the kernel header */
- f = fopen(kernel_filename, "rb");
- if (!f) {
- fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
- kernel_filename, strerror(errno));
- exit(1);
- }
-
- kernel_size = get_file_size(f);
- if (!kernel_size ||
- fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
- MIN(ARRAY_SIZE(header), kernel_size)) {
- fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
- kernel_filename, strerror(errno));
- exit(1);
- }
-
- /* kernel protocol version */
- if (ldl_p(header + 0x202) == 0x53726448) {
- protocol = lduw_p(header + 0x206);
- } else {
- /*
- * This could be a multiboot kernel. If it is, let's stop treating it
- * like a Linux kernel.
- * Note: some multiboot images could be in the ELF format (the same of
- * PVH), so we try multiboot first since we check the multiboot magic
- * header before to load it.
- */
- if (load_multiboot(x86ms, fw_cfg, f, kernel_filename, initrd_filename,
- kernel_cmdline, kernel_size, header)) {
- return;
- }
- /*
- * Check if the file is an uncompressed kernel file (ELF) and load it,
- * saving the PVH entry point used by the x86/HVM direct boot ABI.
- * If load_elfboot() is successful, populate the fw_cfg info.
- */
- if (pvh_enabled &&
- load_elfboot(kernel_filename, kernel_size,
- header, pvh_start_addr, fw_cfg)) {
- fclose(f);
-
- fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
- strlen(kernel_cmdline) + 1);
- fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
-
- fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
- fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
- header, sizeof(header));
-
- /* load initrd */
- if (initrd_filename) {
- GMappedFile *mapped_file;
- gsize initrd_size;
- gchar *initrd_data;
- GError *gerr = NULL;
-
- mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
- if (!mapped_file) {
- fprintf(stderr, "qemu: error reading initrd %s: %s\n",
- initrd_filename, gerr->message);
- exit(1);
- }
- x86ms->initrd_mapped_file = mapped_file;
-
- initrd_data = g_mapped_file_get_contents(mapped_file);
- initrd_size = g_mapped_file_get_length(mapped_file);
- initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
- if (initrd_size >= initrd_max) {
- fprintf(stderr, "qemu: initrd is too large, cannot support."
- "(max: %"PRIu32", need %"PRId64")\n",
- initrd_max, (uint64_t)initrd_size);
- exit(1);
- }
-
- initrd_addr = (initrd_max - initrd_size) & ~4095;
-
- fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
- fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
- fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
- initrd_size);
- }
-
- option_rom[nb_option_roms].bootindex = 0;
- option_rom[nb_option_roms].name = "pvh.bin";
- nb_option_roms++;
-
- return;
- }
- protocol = 0;
- }
-
- if (protocol < 0x200 || !(header[0x211] & 0x01)) {
- /* Low kernel */
- real_addr = 0x90000;
- cmdline_addr = 0x9a000 - cmdline_size;
- prot_addr = 0x10000;
- } else if (protocol < 0x202) {
- /* High but ancient kernel */
- real_addr = 0x90000;
- cmdline_addr = 0x9a000 - cmdline_size;
- prot_addr = 0x100000;
- } else {
- /* High and recent kernel */
- real_addr = 0x10000;
- cmdline_addr = 0x20000;
- prot_addr = 0x100000;
- }
-
- /* highest address for loading the initrd */
- if (protocol >= 0x20c &&
- lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
- /*
- * Linux has supported initrd up to 4 GB for a very long time (2007,
- * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
- * though it only sets initrd_max to 2 GB to "work around bootloader
- * bugs". Luckily, QEMU firmware(which does something like bootloader)
- * has supported this.
- *
- * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
- * be loaded into any address.
- *
- * In addition, initrd_max is uint32_t simply because QEMU doesn't
- * support the 64-bit boot protocol (specifically the ext_ramdisk_image
- * field).
- *
- * Therefore here just limit initrd_max to UINT32_MAX simply as well.
- */
- initrd_max = UINT32_MAX;
- } else if (protocol >= 0x203) {
- initrd_max = ldl_p(header + 0x22c);
- } else {
- initrd_max = 0x37ffffff;
- }
-
- if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
- initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
- }
-
- fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
- fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
- fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
- sev_load_ctx.cmdline_data = (char *)kernel_cmdline;
- sev_load_ctx.cmdline_size = strlen(kernel_cmdline) + 1;
-
- if (protocol >= 0x202) {
- stl_p(header + 0x228, cmdline_addr);
- } else {
- stw_p(header + 0x20, 0xA33F);
- stw_p(header + 0x22, cmdline_addr - real_addr);
- }
-
- /* handle vga= parameter */
- vmode = strstr(kernel_cmdline, "vga=");
- if (vmode) {
- unsigned int video_mode;
- const char *end;
- int ret;
- /* skip "vga=" */
- vmode += 4;
- if (!strncmp(vmode, "normal", 6)) {
- video_mode = 0xffff;
- } else if (!strncmp(vmode, "ext", 3)) {
- video_mode = 0xfffe;
- } else if (!strncmp(vmode, "ask", 3)) {
- video_mode = 0xfffd;
- } else {
- ret = qemu_strtoui(vmode, &end, 0, &video_mode);
- if (ret != 0 || (*end && *end != ' ')) {
- fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n");
- exit(1);
- }
- }
- stw_p(header + 0x1fa, video_mode);
- }
-
- /* loader type */
- /*
- * High nybble = B reserved for QEMU; low nybble is revision number.
- * If this code is substantially changed, you may want to consider
- * incrementing the revision.
- */
- if (protocol >= 0x200) {
- header[0x210] = 0xB0;
- }
- /* heap */
- if (protocol >= 0x201) {
- header[0x211] |= 0x80; /* CAN_USE_HEAP */
- stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
- }
-
- /* load initrd */
- if (initrd_filename) {
- GMappedFile *mapped_file;
- gsize initrd_size;
- gchar *initrd_data;
- GError *gerr = NULL;
-
- if (protocol < 0x200) {
- fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
- exit(1);
- }
-
- mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
- if (!mapped_file) {
- fprintf(stderr, "qemu: error reading initrd %s: %s\n",
- initrd_filename, gerr->message);
- exit(1);
- }
- x86ms->initrd_mapped_file = mapped_file;
-
- initrd_data = g_mapped_file_get_contents(mapped_file);
- initrd_size = g_mapped_file_get_length(mapped_file);
- if (initrd_size >= initrd_max) {
- fprintf(stderr, "qemu: initrd is too large, cannot support."
- "(max: %"PRIu32", need %"PRId64")\n",
- initrd_max, (uint64_t)initrd_size);
- exit(1);
- }
-
- initrd_addr = (initrd_max - initrd_size) & ~4095;
-
- fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
- fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
- fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
- sev_load_ctx.initrd_data = initrd_data;
- sev_load_ctx.initrd_size = initrd_size;
-
- stl_p(header + 0x218, initrd_addr);
- stl_p(header + 0x21c, initrd_size);
- }
-
- /* load kernel and setup */
- setup_size = header[0x1f1];
- if (setup_size == 0) {
- setup_size = 4;
- }
- setup_size = (setup_size + 1) * 512;
- if (setup_size > kernel_size) {
- fprintf(stderr, "qemu: invalid kernel header\n");
- exit(1);
- }
- kernel_size -= setup_size;
-
- setup = g_malloc(setup_size);
- kernel = g_malloc(kernel_size);
- fseek(f, 0, SEEK_SET);
- if (fread(setup, 1, setup_size, f) != setup_size) {
- fprintf(stderr, "fread() failed\n");
- exit(1);
- }
- if (fread(kernel, 1, kernel_size, f) != kernel_size) {
- fprintf(stderr, "fread() failed\n");
- exit(1);
- }
- fclose(f);
-
- /* append dtb to kernel */
- if (dtb_filename) {
- if (protocol < 0x209) {
- fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
- exit(1);
- }
-
- dtb_size = get_image_size(dtb_filename);
- if (dtb_size <= 0) {
- fprintf(stderr, "qemu: error reading dtb %s: %s\n",
- dtb_filename, strerror(errno));
- exit(1);
- }
-
- setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
- kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
- kernel = g_realloc(kernel, kernel_size);
-
- stq_p(header + 0x250, prot_addr + setup_data_offset);
-
- setup_data = (struct setup_data *)(kernel + setup_data_offset);
- setup_data->next = 0;
- setup_data->type = cpu_to_le32(SETUP_DTB);
- setup_data->len = cpu_to_le32(dtb_size);
-
- load_image_size(dtb_filename, setup_data->data, dtb_size);
- }
-
- /*
- * If we're starting an encrypted VM, it will be OVMF based, which uses the
- * efi stub for booting and doesn't require any values to be placed in the
- * kernel header. We therefore don't update the header so the hash of the
- * kernel on the other side of the fw_cfg interface matches the hash of the
- * file the user passed in.
- */
- if (!sev_enabled()) {
- memcpy(setup, header, MIN(sizeof(header), setup_size));
- }
-
- fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
- fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
- fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
- sev_load_ctx.kernel_data = (char *)kernel;
- sev_load_ctx.kernel_size = kernel_size;
-
- fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
- fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
- fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
- sev_load_ctx.setup_data = (char *)setup;
- sev_load_ctx.setup_size = setup_size;
-
- if (sev_enabled()) {
- sev_add_kernel_loader_hashes(&sev_load_ctx, &error_fatal);
- }
-
- option_rom[nb_option_roms].bootindex = 0;
- option_rom[nb_option_roms].name = "linuxboot.bin";
- if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
- option_rom[nb_option_roms].name = "linuxboot_dma.bin";
- }
- nb_option_roms++;
-}
-
-void x86_isa_bios_init(MemoryRegion *isa_bios, MemoryRegion *isa_memory,
- MemoryRegion *bios, bool read_only)
-{
- uint64_t bios_size = memory_region_size(bios);
- uint64_t isa_bios_size = MIN(bios_size, 128 * KiB);
-
- memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
- bios_size - isa_bios_size, isa_bios_size);
- memory_region_add_subregion_overlap(isa_memory, 1 * MiB - isa_bios_size,
- isa_bios, 1);
- memory_region_set_readonly(isa_bios, read_only);
-}
-
-void x86_bios_rom_init(X86MachineState *x86ms, const char *default_firmware,
- MemoryRegion *rom_memory, bool isapc_ram_fw)
-{
- const char *bios_name;
- char *filename;
- int bios_size;
- ssize_t ret;
-
- /* BIOS load */
- bios_name = MACHINE(x86ms)->firmware ?: default_firmware;
- filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
- if (filename) {
- bios_size = get_image_size(filename);
- } else {
- bios_size = -1;
- }
- if (bios_size <= 0 ||
- (bios_size % 65536) != 0) {
- goto bios_error;
- }
- memory_region_init_ram(&x86ms->bios, NULL, "pc.bios", bios_size,
- &error_fatal);
- if (sev_enabled()) {
- /*
- * The concept of a "reset" simply doesn't exist for
- * confidential computing guests, we have to destroy and
- * re-launch them instead. So there is no need to register
- * the firmware as rom to properly re-initialize on reset.
- * Just go for a straight file load instead.
- */
- void *ptr = memory_region_get_ram_ptr(&x86ms->bios);
- load_image_size(filename, ptr, bios_size);
- x86_firmware_configure(ptr, bios_size);
- } else {
- memory_region_set_readonly(&x86ms->bios, !isapc_ram_fw);
- ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
- if (ret != 0) {
- goto bios_error;
- }
- }
- g_free(filename);
-
- /* map the last 128KB of the BIOS in ISA space */
- x86_isa_bios_init(&x86ms->isa_bios, rom_memory, &x86ms->bios,
- !isapc_ram_fw);
-
- /* map all the bios at the top of memory */
- memory_region_add_subregion(rom_memory,
- (uint32_t)(-bios_size),
- &x86ms->bios);
- return;
-
-bios_error:
- fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
- exit(1);
-}
-
bool x86_machine_is_smm_enabled(const X86MachineState *x86ms)
{
bool smm_available = false;
diff --git a/include/hw/i386/x86.h b/include/hw/i386/x86.h
index c2062db..b006f16 100644
--- a/include/hw/i386/x86.h
+++ b/include/hw/i386/x86.h
@@ -21,6 +21,7 @@
#include "exec/memory.h"
#include "hw/boards.h"
+#include "hw/i386/topology.h"
#include "hw/intc/ioapic.h"
#include "hw/isa/isa.h"
#include "qom/object.h"
@@ -109,12 +110,11 @@
#define TYPE_X86_MACHINE MACHINE_TYPE_NAME("x86")
OBJECT_DECLARE_TYPE(X86MachineState, X86MachineClass, X86_MACHINE)
-uint32_t x86_cpu_apic_id_from_index(X86MachineState *pcms,
+void init_topo_info(X86CPUTopoInfo *topo_info, const X86MachineState *x86ms);
+uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms,
unsigned int cpu_index);
-void x86_cpu_new(X86MachineState *pcms, int64_t apic_id, Error **errp);
void x86_cpus_init(X86MachineState *pcms, int default_cpu_version);
-CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx);
void x86_rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count);
void x86_cpu_pre_plug(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp);