| /* |
| * SCLP Support |
| * |
| * Copyright IBM, Corp. 2012 |
| * |
| * Authors: |
| * Christian Borntraeger <borntraeger@de.ibm.com> |
| * Heinz Graalfs <graalfs@linux.vnet.ibm.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or (at your |
| * option) any later version. See the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qapi/error.h" |
| #include "cpu.h" |
| #include "sysemu/kvm.h" |
| #include "exec/memory.h" |
| #include "sysemu/sysemu.h" |
| #include "exec/address-spaces.h" |
| #include "hw/boards.h" |
| #include "hw/s390x/sclp.h" |
| #include "hw/s390x/event-facility.h" |
| #include "hw/s390x/s390-pci-bus.h" |
| |
| static inline SCLPDevice *get_sclp_device(void) |
| { |
| return SCLP(object_resolve_path_type("", TYPE_SCLP, NULL)); |
| } |
| |
| /* Provide information about the configuration, CPUs and storage */ |
| static void read_SCP_info(SCLPDevice *sclp, SCCB *sccb) |
| { |
| ReadInfo *read_info = (ReadInfo *) sccb; |
| MachineState *machine = MACHINE(qdev_get_machine()); |
| sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); |
| CPUState *cpu; |
| int cpu_count = 0; |
| int i = 0; |
| int rnsize, rnmax; |
| int slots = MIN(machine->ram_slots, s390_get_memslot_count(kvm_state)); |
| |
| CPU_FOREACH(cpu) { |
| cpu_count++; |
| } |
| |
| /* CPU information */ |
| read_info->entries_cpu = cpu_to_be16(cpu_count); |
| read_info->offset_cpu = cpu_to_be16(offsetof(ReadInfo, entries)); |
| read_info->highest_cpu = cpu_to_be16(max_cpus); |
| |
| for (i = 0; i < cpu_count; i++) { |
| read_info->entries[i].address = i; |
| read_info->entries[i].type = 0; |
| } |
| |
| read_info->facilities = cpu_to_be64(SCLP_HAS_CPU_INFO | |
| SCLP_HAS_PCI_RECONFIG); |
| |
| /* Memory Hotplug is only supported for the ccw machine type */ |
| if (mhd) { |
| mhd->standby_subregion_size = MEM_SECTION_SIZE; |
| /* Deduct the memory slot already used for core */ |
| if (slots > 0) { |
| while ((mhd->standby_subregion_size * (slots - 1) |
| < mhd->standby_mem_size)) { |
| mhd->standby_subregion_size = mhd->standby_subregion_size << 1; |
| } |
| } |
| /* |
| * Initialize mapping of guest standby memory sections indicating which |
| * are and are not online. Assume all standby memory begins offline. |
| */ |
| if (mhd->standby_state_map == 0) { |
| if (mhd->standby_mem_size % mhd->standby_subregion_size) { |
| mhd->standby_state_map = g_malloc0((mhd->standby_mem_size / |
| mhd->standby_subregion_size + 1) * |
| (mhd->standby_subregion_size / |
| MEM_SECTION_SIZE)); |
| } else { |
| mhd->standby_state_map = g_malloc0(mhd->standby_mem_size / |
| MEM_SECTION_SIZE); |
| } |
| } |
| mhd->padded_ram_size = ram_size + mhd->pad_size; |
| mhd->rzm = 1 << mhd->increment_size; |
| |
| read_info->facilities |= cpu_to_be64(SCLP_FC_ASSIGN_ATTACH_READ_STOR); |
| } |
| |
| rnsize = 1 << (sclp->increment_size - 20); |
| if (rnsize <= 128) { |
| read_info->rnsize = rnsize; |
| } else { |
| read_info->rnsize = 0; |
| read_info->rnsize2 = cpu_to_be32(rnsize); |
| } |
| |
| rnmax = machine->maxram_size >> sclp->increment_size; |
| if (rnmax < 0x10000) { |
| read_info->rnmax = cpu_to_be16(rnmax); |
| } else { |
| read_info->rnmax = cpu_to_be16(0); |
| read_info->rnmax2 = cpu_to_be64(rnmax); |
| } |
| |
| sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION); |
| } |
| |
| static void read_storage_element0_info(SCLPDevice *sclp, SCCB *sccb) |
| { |
| int i, assigned; |
| int subincrement_id = SCLP_STARTING_SUBINCREMENT_ID; |
| ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb; |
| sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); |
| |
| if (!mhd) { |
| sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); |
| return; |
| } |
| |
| if ((ram_size >> mhd->increment_size) >= 0x10000) { |
| sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION); |
| return; |
| } |
| |
| /* Return information regarding core memory */ |
| storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0); |
| assigned = ram_size >> mhd->increment_size; |
| storage_info->assigned = cpu_to_be16(assigned); |
| |
| for (i = 0; i < assigned; i++) { |
| storage_info->entries[i] = cpu_to_be32(subincrement_id); |
| subincrement_id += SCLP_INCREMENT_UNIT; |
| } |
| sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION); |
| } |
| |
| static void read_storage_element1_info(SCLPDevice *sclp, SCCB *sccb) |
| { |
| ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb; |
| sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); |
| |
| if (!mhd) { |
| sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); |
| return; |
| } |
| |
| if ((mhd->standby_mem_size >> mhd->increment_size) >= 0x10000) { |
| sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION); |
| return; |
| } |
| |
| /* Return information regarding standby memory */ |
| storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0); |
| storage_info->assigned = cpu_to_be16(mhd->standby_mem_size >> |
| mhd->increment_size); |
| storage_info->standby = cpu_to_be16(mhd->standby_mem_size >> |
| mhd->increment_size); |
| sccb->h.response_code = cpu_to_be16(SCLP_RC_STANDBY_READ_COMPLETION); |
| } |
| |
| static void attach_storage_element(SCLPDevice *sclp, SCCB *sccb, |
| uint16_t element) |
| { |
| int i, assigned, subincrement_id; |
| AttachStorageElement *attach_info = (AttachStorageElement *) sccb; |
| sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); |
| |
| if (!mhd) { |
| sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); |
| return; |
| } |
| |
| if (element != 1) { |
| sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); |
| return; |
| } |
| |
| assigned = mhd->standby_mem_size >> mhd->increment_size; |
| attach_info->assigned = cpu_to_be16(assigned); |
| subincrement_id = ((ram_size >> mhd->increment_size) << 16) |
| + SCLP_STARTING_SUBINCREMENT_ID; |
| for (i = 0; i < assigned; i++) { |
| attach_info->entries[i] = cpu_to_be32(subincrement_id); |
| subincrement_id += SCLP_INCREMENT_UNIT; |
| } |
| sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION); |
| } |
| |
| static void assign_storage(SCLPDevice *sclp, SCCB *sccb) |
| { |
| MemoryRegion *mr = NULL; |
| uint64_t this_subregion_size; |
| AssignStorage *assign_info = (AssignStorage *) sccb; |
| sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); |
| ram_addr_t assign_addr; |
| MemoryRegion *sysmem = get_system_memory(); |
| |
| if (!mhd) { |
| sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); |
| return; |
| } |
| assign_addr = (assign_info->rn - 1) * mhd->rzm; |
| |
| if ((assign_addr % MEM_SECTION_SIZE == 0) && |
| (assign_addr >= mhd->padded_ram_size)) { |
| /* Re-use existing memory region if found */ |
| mr = memory_region_find(sysmem, assign_addr, 1).mr; |
| memory_region_unref(mr); |
| if (!mr) { |
| |
| MemoryRegion *standby_ram = g_new(MemoryRegion, 1); |
| |
| /* offset to align to standby_subregion_size for allocation */ |
| ram_addr_t offset = assign_addr - |
| (assign_addr - mhd->padded_ram_size) |
| % mhd->standby_subregion_size; |
| |
| /* strlen("standby.ram") + 4 (Max of KVM_MEMORY_SLOTS) + NULL */ |
| char id[16]; |
| snprintf(id, 16, "standby.ram%d", |
| (int)((offset - mhd->padded_ram_size) / |
| mhd->standby_subregion_size) + 1); |
| |
| /* Allocate a subregion of the calculated standby_subregion_size */ |
| if (offset + mhd->standby_subregion_size > |
| mhd->padded_ram_size + mhd->standby_mem_size) { |
| this_subregion_size = mhd->padded_ram_size + |
| mhd->standby_mem_size - offset; |
| } else { |
| this_subregion_size = mhd->standby_subregion_size; |
| } |
| |
| memory_region_init_ram(standby_ram, NULL, id, this_subregion_size, |
| &error_fatal); |
| /* This is a hack to make memory hotunplug work again. Once we have |
| * subdevices, we have to unparent them when unassigning memory, |
| * instead of doing it via the ref count of the MemoryRegion. */ |
| object_ref(OBJECT(standby_ram)); |
| object_unparent(OBJECT(standby_ram)); |
| vmstate_register_ram_global(standby_ram); |
| memory_region_add_subregion(sysmem, offset, standby_ram); |
| } |
| /* The specified subregion is no longer in standby */ |
| mhd->standby_state_map[(assign_addr - mhd->padded_ram_size) |
| / MEM_SECTION_SIZE] = 1; |
| } |
| sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION); |
| } |
| |
| static void unassign_storage(SCLPDevice *sclp, SCCB *sccb) |
| { |
| MemoryRegion *mr = NULL; |
| AssignStorage *assign_info = (AssignStorage *) sccb; |
| sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); |
| ram_addr_t unassign_addr; |
| MemoryRegion *sysmem = get_system_memory(); |
| |
| if (!mhd) { |
| sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); |
| return; |
| } |
| unassign_addr = (assign_info->rn - 1) * mhd->rzm; |
| |
| /* if the addr is a multiple of 256 MB */ |
| if ((unassign_addr % MEM_SECTION_SIZE == 0) && |
| (unassign_addr >= mhd->padded_ram_size)) { |
| mhd->standby_state_map[(unassign_addr - |
| mhd->padded_ram_size) / MEM_SECTION_SIZE] = 0; |
| |
| /* find the specified memory region and destroy it */ |
| mr = memory_region_find(sysmem, unassign_addr, 1).mr; |
| memory_region_unref(mr); |
| if (mr) { |
| int i; |
| int is_removable = 1; |
| ram_addr_t map_offset = (unassign_addr - mhd->padded_ram_size - |
| (unassign_addr - mhd->padded_ram_size) |
| % mhd->standby_subregion_size); |
| /* Mark all affected subregions as 'standby' once again */ |
| for (i = 0; |
| i < (mhd->standby_subregion_size / MEM_SECTION_SIZE); |
| i++) { |
| |
| if (mhd->standby_state_map[i + map_offset / MEM_SECTION_SIZE]) { |
| is_removable = 0; |
| break; |
| } |
| } |
| if (is_removable) { |
| memory_region_del_subregion(sysmem, mr); |
| object_unref(OBJECT(mr)); |
| } |
| } |
| } |
| sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION); |
| } |
| |
| /* Provide information about the CPU */ |
| static void sclp_read_cpu_info(SCLPDevice *sclp, SCCB *sccb) |
| { |
| ReadCpuInfo *cpu_info = (ReadCpuInfo *) sccb; |
| CPUState *cpu; |
| int cpu_count = 0; |
| int i = 0; |
| |
| CPU_FOREACH(cpu) { |
| cpu_count++; |
| } |
| |
| cpu_info->nr_configured = cpu_to_be16(cpu_count); |
| cpu_info->offset_configured = cpu_to_be16(offsetof(ReadCpuInfo, entries)); |
| cpu_info->nr_standby = cpu_to_be16(0); |
| |
| /* The standby offset is 16-byte for each CPU */ |
| cpu_info->offset_standby = cpu_to_be16(cpu_info->offset_configured |
| + cpu_info->nr_configured*sizeof(CPUEntry)); |
| |
| for (i = 0; i < cpu_count; i++) { |
| cpu_info->entries[i].address = i; |
| cpu_info->entries[i].type = 0; |
| } |
| |
| sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION); |
| } |
| |
| static void sclp_execute(SCLPDevice *sclp, SCCB *sccb, uint32_t code) |
| { |
| SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp); |
| SCLPEventFacility *ef = sclp->event_facility; |
| SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef); |
| |
| switch (code & SCLP_CMD_CODE_MASK) { |
| case SCLP_CMDW_READ_SCP_INFO: |
| case SCLP_CMDW_READ_SCP_INFO_FORCED: |
| sclp_c->read_SCP_info(sclp, sccb); |
| break; |
| case SCLP_CMDW_READ_CPU_INFO: |
| sclp_c->read_cpu_info(sclp, sccb); |
| break; |
| case SCLP_READ_STORAGE_ELEMENT_INFO: |
| if (code & 0xff00) { |
| sclp_c->read_storage_element1_info(sclp, sccb); |
| } else { |
| sclp_c->read_storage_element0_info(sclp, sccb); |
| } |
| break; |
| case SCLP_ATTACH_STORAGE_ELEMENT: |
| sclp_c->attach_storage_element(sclp, sccb, (code & 0xff00) >> 8); |
| break; |
| case SCLP_ASSIGN_STORAGE: |
| sclp_c->assign_storage(sclp, sccb); |
| break; |
| case SCLP_UNASSIGN_STORAGE: |
| sclp_c->unassign_storage(sclp, sccb); |
| break; |
| case SCLP_CMDW_CONFIGURE_PCI: |
| s390_pci_sclp_configure(1, sccb); |
| break; |
| case SCLP_CMDW_DECONFIGURE_PCI: |
| s390_pci_sclp_configure(0, sccb); |
| break; |
| default: |
| efc->command_handler(ef, sccb, code); |
| break; |
| } |
| } |
| |
| int sclp_service_call(CPUS390XState *env, uint64_t sccb, uint32_t code) |
| { |
| SCLPDevice *sclp = get_sclp_device(); |
| SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp); |
| int r = 0; |
| SCCB work_sccb; |
| |
| hwaddr sccb_len = sizeof(SCCB); |
| |
| /* first some basic checks on program checks */ |
| if (env->psw.mask & PSW_MASK_PSTATE) { |
| r = -PGM_PRIVILEGED; |
| goto out; |
| } |
| if (cpu_physical_memory_is_io(sccb)) { |
| r = -PGM_ADDRESSING; |
| goto out; |
| } |
| if ((sccb & ~0x1fffUL) == 0 || (sccb & ~0x1fffUL) == env->psa |
| || (sccb & ~0x7ffffff8UL) != 0) { |
| r = -PGM_SPECIFICATION; |
| goto out; |
| } |
| |
| /* |
| * we want to work on a private copy of the sccb, to prevent guests |
| * from playing dirty tricks by modifying the memory content after |
| * the host has checked the values |
| */ |
| cpu_physical_memory_read(sccb, &work_sccb, sccb_len); |
| |
| /* Valid sccb sizes */ |
| if (be16_to_cpu(work_sccb.h.length) < sizeof(SCCBHeader) || |
| be16_to_cpu(work_sccb.h.length) > SCCB_SIZE) { |
| r = -PGM_SPECIFICATION; |
| goto out; |
| } |
| |
| sclp_c->execute(sclp, (SCCB *)&work_sccb, code); |
| |
| cpu_physical_memory_write(sccb, &work_sccb, |
| be16_to_cpu(work_sccb.h.length)); |
| |
| sclp_c->service_interrupt(sclp, sccb); |
| |
| out: |
| return r; |
| } |
| |
| static void service_interrupt(SCLPDevice *sclp, uint32_t sccb) |
| { |
| SCLPEventFacility *ef = sclp->event_facility; |
| SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef); |
| |
| uint32_t param = sccb & ~3; |
| |
| /* Indicate whether an event is still pending */ |
| param |= efc->event_pending(ef) ? 1 : 0; |
| |
| if (!param) { |
| /* No need to send an interrupt, there's nothing to be notified about */ |
| return; |
| } |
| s390_sclp_extint(param); |
| } |
| |
| void sclp_service_interrupt(uint32_t sccb) |
| { |
| SCLPDevice *sclp = get_sclp_device(); |
| SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp); |
| |
| sclp_c->service_interrupt(sclp, sccb); |
| } |
| |
| /* qemu object creation and initialization functions */ |
| |
| void s390_sclp_init(void) |
| { |
| Object *new = object_new(TYPE_SCLP); |
| |
| object_property_add_child(qdev_get_machine(), TYPE_SCLP, new, |
| NULL); |
| object_unref(OBJECT(new)); |
| qdev_init_nofail(DEVICE(new)); |
| } |
| |
| static void sclp_realize(DeviceState *dev, Error **errp) |
| { |
| MachineState *machine = MACHINE(qdev_get_machine()); |
| SCLPDevice *sclp = SCLP(dev); |
| Error *err = NULL; |
| uint64_t hw_limit; |
| int ret; |
| |
| object_property_set_bool(OBJECT(sclp->event_facility), true, "realized", |
| &err); |
| if (err) { |
| goto out; |
| } |
| /* |
| * qdev_device_add searches the sysbus for TYPE_SCLP_EVENTS_BUS. As long |
| * as we can't find a fitting bus via the qom tree, we have to add the |
| * event facility to the sysbus, so e.g. a sclp console can be created. |
| */ |
| qdev_set_parent_bus(DEVICE(sclp->event_facility), sysbus_get_default()); |
| |
| ret = s390_set_memory_limit(machine->maxram_size, &hw_limit); |
| if (ret == -E2BIG) { |
| error_setg(&err, "qemu: host supports a maximum of %" PRIu64 " GB", |
| hw_limit >> 30); |
| } else if (ret) { |
| error_setg(&err, "qemu: setting the guest size failed"); |
| } |
| |
| out: |
| error_propagate(errp, err); |
| } |
| |
| static void sclp_memory_init(SCLPDevice *sclp) |
| { |
| MachineState *machine = MACHINE(qdev_get_machine()); |
| ram_addr_t initial_mem = machine->ram_size; |
| ram_addr_t max_mem = machine->maxram_size; |
| ram_addr_t standby_mem = max_mem - initial_mem; |
| ram_addr_t pad_mem = 0; |
| int increment_size = 20; |
| |
| /* The storage increment size is a multiple of 1M and is a power of 2. |
| * The number of storage increments must be MAX_STORAGE_INCREMENTS or fewer. |
| * The variable 'increment_size' is an exponent of 2 that can be |
| * used to calculate the size (in bytes) of an increment. */ |
| while ((initial_mem >> increment_size) > MAX_STORAGE_INCREMENTS) { |
| increment_size++; |
| } |
| if (machine->ram_slots) { |
| while ((standby_mem >> increment_size) > MAX_STORAGE_INCREMENTS) { |
| increment_size++; |
| } |
| } |
| sclp->increment_size = increment_size; |
| |
| /* The core and standby memory areas need to be aligned with |
| * the increment size. In effect, this can cause the |
| * user-specified memory size to be rounded down to align |
| * with the nearest increment boundary. */ |
| initial_mem = initial_mem >> increment_size << increment_size; |
| standby_mem = standby_mem >> increment_size << increment_size; |
| |
| /* If the size of ram is not on a MEM_SECTION_SIZE boundary, |
| calculate the pad size necessary to force this boundary. */ |
| if (machine->ram_slots && standby_mem) { |
| sclpMemoryHotplugDev *mhd = init_sclp_memory_hotplug_dev(); |
| |
| if (initial_mem % MEM_SECTION_SIZE) { |
| pad_mem = MEM_SECTION_SIZE - initial_mem % MEM_SECTION_SIZE; |
| } |
| mhd->increment_size = increment_size; |
| mhd->pad_size = pad_mem; |
| mhd->standby_mem_size = standby_mem; |
| } |
| machine->ram_size = initial_mem; |
| machine->maxram_size = initial_mem + pad_mem + standby_mem; |
| /* let's propagate the changed ram size into the global variable. */ |
| ram_size = initial_mem; |
| } |
| |
| static void sclp_init(Object *obj) |
| { |
| SCLPDevice *sclp = SCLP(obj); |
| Object *new; |
| |
| new = object_new(TYPE_SCLP_EVENT_FACILITY); |
| object_property_add_child(obj, TYPE_SCLP_EVENT_FACILITY, new, NULL); |
| object_unref(new); |
| sclp->event_facility = EVENT_FACILITY(new); |
| |
| sclp_memory_init(sclp); |
| } |
| |
| static void sclp_class_init(ObjectClass *oc, void *data) |
| { |
| SCLPDeviceClass *sc = SCLP_CLASS(oc); |
| DeviceClass *dc = DEVICE_CLASS(oc); |
| |
| dc->desc = "SCLP (Service-Call Logical Processor)"; |
| dc->realize = sclp_realize; |
| dc->hotpluggable = false; |
| set_bit(DEVICE_CATEGORY_MISC, dc->categories); |
| |
| sc->read_SCP_info = read_SCP_info; |
| sc->read_storage_element0_info = read_storage_element0_info; |
| sc->read_storage_element1_info = read_storage_element1_info; |
| sc->attach_storage_element = attach_storage_element; |
| sc->assign_storage = assign_storage; |
| sc->unassign_storage = unassign_storage; |
| sc->read_cpu_info = sclp_read_cpu_info; |
| sc->execute = sclp_execute; |
| sc->service_interrupt = service_interrupt; |
| } |
| |
| static TypeInfo sclp_info = { |
| .name = TYPE_SCLP, |
| .parent = TYPE_DEVICE, |
| .instance_init = sclp_init, |
| .instance_size = sizeof(SCLPDevice), |
| .class_init = sclp_class_init, |
| .class_size = sizeof(SCLPDeviceClass), |
| }; |
| |
| sclpMemoryHotplugDev *init_sclp_memory_hotplug_dev(void) |
| { |
| DeviceState *dev; |
| dev = qdev_create(NULL, TYPE_SCLP_MEMORY_HOTPLUG_DEV); |
| object_property_add_child(qdev_get_machine(), |
| TYPE_SCLP_MEMORY_HOTPLUG_DEV, |
| OBJECT(dev), NULL); |
| qdev_init_nofail(dev); |
| return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path( |
| TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL)); |
| } |
| |
| sclpMemoryHotplugDev *get_sclp_memory_hotplug_dev(void) |
| { |
| return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path( |
| TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL)); |
| } |
| |
| static void sclp_memory_hotplug_dev_class_init(ObjectClass *klass, |
| void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| |
| set_bit(DEVICE_CATEGORY_MISC, dc->categories); |
| } |
| |
| static TypeInfo sclp_memory_hotplug_dev_info = { |
| .name = TYPE_SCLP_MEMORY_HOTPLUG_DEV, |
| .parent = TYPE_SYS_BUS_DEVICE, |
| .instance_size = sizeof(sclpMemoryHotplugDev), |
| .class_init = sclp_memory_hotplug_dev_class_init, |
| }; |
| |
| static void register_types(void) |
| { |
| type_register_static(&sclp_memory_hotplug_dev_info); |
| type_register_static(&sclp_info); |
| } |
| type_init(register_types); |