| /* |
| * Tiny Code Generator for QEMU |
| * |
| * Copyright (c) 2008 Fabrice Bellard |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include "../tcg-ldst.c.inc" |
| #include "../tcg-pool.c.inc" |
| |
| #ifdef CONFIG_DEBUG_TCG |
| static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = { |
| #if TCG_TARGET_REG_BITS == 64 |
| "%rax", "%rcx", "%rdx", "%rbx", "%rsp", "%rbp", "%rsi", "%rdi", |
| #else |
| "%eax", "%ecx", "%edx", "%ebx", "%esp", "%ebp", "%esi", "%edi", |
| #endif |
| "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", |
| "%xmm0", "%xmm1", "%xmm2", "%xmm3", "%xmm4", "%xmm5", "%xmm6", "%xmm7", |
| #if TCG_TARGET_REG_BITS == 64 |
| "%xmm8", "%xmm9", "%xmm10", "%xmm11", |
| "%xmm12", "%xmm13", "%xmm14", "%xmm15", |
| #endif |
| }; |
| #endif |
| |
| static const int tcg_target_reg_alloc_order[] = { |
| #if TCG_TARGET_REG_BITS == 64 |
| TCG_REG_RBP, |
| TCG_REG_RBX, |
| TCG_REG_R12, |
| TCG_REG_R13, |
| TCG_REG_R14, |
| TCG_REG_R15, |
| TCG_REG_R10, |
| TCG_REG_R11, |
| TCG_REG_R9, |
| TCG_REG_R8, |
| TCG_REG_RCX, |
| TCG_REG_RDX, |
| TCG_REG_RSI, |
| TCG_REG_RDI, |
| TCG_REG_RAX, |
| #else |
| TCG_REG_EBX, |
| TCG_REG_ESI, |
| TCG_REG_EDI, |
| TCG_REG_EBP, |
| TCG_REG_ECX, |
| TCG_REG_EDX, |
| TCG_REG_EAX, |
| #endif |
| TCG_REG_XMM0, |
| TCG_REG_XMM1, |
| TCG_REG_XMM2, |
| TCG_REG_XMM3, |
| TCG_REG_XMM4, |
| TCG_REG_XMM5, |
| #ifndef _WIN64 |
| /* The Win64 ABI has xmm6-xmm15 as caller-saves, and we do not save |
| any of them. Therefore only allow xmm0-xmm5 to be allocated. */ |
| TCG_REG_XMM6, |
| TCG_REG_XMM7, |
| #if TCG_TARGET_REG_BITS == 64 |
| TCG_REG_XMM8, |
| TCG_REG_XMM9, |
| TCG_REG_XMM10, |
| TCG_REG_XMM11, |
| TCG_REG_XMM12, |
| TCG_REG_XMM13, |
| TCG_REG_XMM14, |
| TCG_REG_XMM15, |
| #endif |
| #endif |
| }; |
| |
| #define TCG_TMP_VEC TCG_REG_XMM5 |
| |
| static const int tcg_target_call_iarg_regs[] = { |
| #if TCG_TARGET_REG_BITS == 64 |
| #if defined(_WIN64) |
| TCG_REG_RCX, |
| TCG_REG_RDX, |
| #else |
| TCG_REG_RDI, |
| TCG_REG_RSI, |
| TCG_REG_RDX, |
| TCG_REG_RCX, |
| #endif |
| TCG_REG_R8, |
| TCG_REG_R9, |
| #else |
| /* 32 bit mode uses stack based calling convention (GCC default). */ |
| #endif |
| }; |
| |
| static TCGReg tcg_target_call_oarg_reg(TCGCallReturnKind kind, int slot) |
| { |
| switch (kind) { |
| case TCG_CALL_RET_NORMAL: |
| tcg_debug_assert(slot >= 0 && slot <= 1); |
| return slot ? TCG_REG_EDX : TCG_REG_EAX; |
| #ifdef _WIN64 |
| case TCG_CALL_RET_BY_VEC: |
| tcg_debug_assert(slot == 0); |
| return TCG_REG_XMM0; |
| #endif |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| /* Constants we accept. */ |
| #define TCG_CT_CONST_S32 0x100 |
| #define TCG_CT_CONST_U32 0x200 |
| #define TCG_CT_CONST_I32 0x400 |
| #define TCG_CT_CONST_WSZ 0x800 |
| |
| /* Registers used with L constraint, which are the first argument |
| registers on x86_64, and two random call clobbered registers on |
| i386. */ |
| #if TCG_TARGET_REG_BITS == 64 |
| # define TCG_REG_L0 tcg_target_call_iarg_regs[0] |
| # define TCG_REG_L1 tcg_target_call_iarg_regs[1] |
| #else |
| # define TCG_REG_L0 TCG_REG_EAX |
| # define TCG_REG_L1 TCG_REG_EDX |
| #endif |
| |
| #define ALL_BYTEH_REGS 0x0000000fu |
| #if TCG_TARGET_REG_BITS == 64 |
| # define ALL_GENERAL_REGS 0x0000ffffu |
| # define ALL_VECTOR_REGS 0xffff0000u |
| # define ALL_BYTEL_REGS ALL_GENERAL_REGS |
| #else |
| # define ALL_GENERAL_REGS 0x000000ffu |
| # define ALL_VECTOR_REGS 0x00ff0000u |
| # define ALL_BYTEL_REGS ALL_BYTEH_REGS |
| #endif |
| #ifdef CONFIG_SOFTMMU |
| # define SOFTMMU_RESERVE_REGS ((1 << TCG_REG_L0) | (1 << TCG_REG_L1)) |
| #else |
| # define SOFTMMU_RESERVE_REGS 0 |
| #endif |
| |
| /* For 64-bit, we always know that CMOV is available. */ |
| #if TCG_TARGET_REG_BITS == 64 |
| # define have_cmov true |
| #else |
| # define have_cmov (cpuinfo & CPUINFO_CMOV) |
| #endif |
| #define have_bmi2 (cpuinfo & CPUINFO_BMI2) |
| #define have_lzcnt (cpuinfo & CPUINFO_LZCNT) |
| |
| static const tcg_insn_unit *tb_ret_addr; |
| |
| static bool patch_reloc(tcg_insn_unit *code_ptr, int type, |
| intptr_t value, intptr_t addend) |
| { |
| value += addend; |
| switch(type) { |
| case R_386_PC32: |
| value -= (uintptr_t)tcg_splitwx_to_rx(code_ptr); |
| if (value != (int32_t)value) { |
| return false; |
| } |
| /* FALLTHRU */ |
| case R_386_32: |
| tcg_patch32(code_ptr, value); |
| break; |
| case R_386_PC8: |
| value -= (uintptr_t)tcg_splitwx_to_rx(code_ptr); |
| if (value != (int8_t)value) { |
| return false; |
| } |
| tcg_patch8(code_ptr, value); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| return true; |
| } |
| |
| /* test if a constant matches the constraint */ |
| static bool tcg_target_const_match(int64_t val, TCGType type, int ct) |
| { |
| if (ct & TCG_CT_CONST) { |
| return 1; |
| } |
| if (type == TCG_TYPE_I32) { |
| if (ct & (TCG_CT_CONST_S32 | TCG_CT_CONST_U32 | TCG_CT_CONST_I32)) { |
| return 1; |
| } |
| } else { |
| if ((ct & TCG_CT_CONST_S32) && val == (int32_t)val) { |
| return 1; |
| } |
| if ((ct & TCG_CT_CONST_U32) && val == (uint32_t)val) { |
| return 1; |
| } |
| if ((ct & TCG_CT_CONST_I32) && ~val == (int32_t)~val) { |
| return 1; |
| } |
| } |
| if ((ct & TCG_CT_CONST_WSZ) && val == (type == TCG_TYPE_I32 ? 32 : 64)) { |
| return 1; |
| } |
| return 0; |
| } |
| |
| # define LOWREGMASK(x) ((x) & 7) |
| |
| #define P_EXT 0x100 /* 0x0f opcode prefix */ |
| #define P_EXT38 0x200 /* 0x0f 0x38 opcode prefix */ |
| #define P_DATA16 0x400 /* 0x66 opcode prefix */ |
| #define P_VEXW 0x1000 /* Set VEX.W = 1 */ |
| #if TCG_TARGET_REG_BITS == 64 |
| # define P_REXW P_VEXW /* Set REX.W = 1; match VEXW */ |
| # define P_REXB_R 0x2000 /* REG field as byte register */ |
| # define P_REXB_RM 0x4000 /* R/M field as byte register */ |
| # define P_GS 0x8000 /* gs segment override */ |
| #else |
| # define P_REXW 0 |
| # define P_REXB_R 0 |
| # define P_REXB_RM 0 |
| # define P_GS 0 |
| #endif |
| #define P_EXT3A 0x10000 /* 0x0f 0x3a opcode prefix */ |
| #define P_SIMDF3 0x20000 /* 0xf3 opcode prefix */ |
| #define P_SIMDF2 0x40000 /* 0xf2 opcode prefix */ |
| #define P_VEXL 0x80000 /* Set VEX.L = 1 */ |
| #define P_EVEX 0x100000 /* Requires EVEX encoding */ |
| |
| #define OPC_ARITH_EvIz (0x81) |
| #define OPC_ARITH_EvIb (0x83) |
| #define OPC_ARITH_GvEv (0x03) /* ... plus (ARITH_FOO << 3) */ |
| #define OPC_ANDN (0xf2 | P_EXT38) |
| #define OPC_ADD_GvEv (OPC_ARITH_GvEv | (ARITH_ADD << 3)) |
| #define OPC_AND_GvEv (OPC_ARITH_GvEv | (ARITH_AND << 3)) |
| #define OPC_BLENDPS (0x0c | P_EXT3A | P_DATA16) |
| #define OPC_BSF (0xbc | P_EXT) |
| #define OPC_BSR (0xbd | P_EXT) |
| #define OPC_BSWAP (0xc8 | P_EXT) |
| #define OPC_CALL_Jz (0xe8) |
| #define OPC_CMOVCC (0x40 | P_EXT) /* ... plus condition code */ |
| #define OPC_CMP_GvEv (OPC_ARITH_GvEv | (ARITH_CMP << 3)) |
| #define OPC_DEC_r32 (0x48) |
| #define OPC_IMUL_GvEv (0xaf | P_EXT) |
| #define OPC_IMUL_GvEvIb (0x6b) |
| #define OPC_IMUL_GvEvIz (0x69) |
| #define OPC_INC_r32 (0x40) |
| #define OPC_JCC_long (0x80 | P_EXT) /* ... plus condition code */ |
| #define OPC_JCC_short (0x70) /* ... plus condition code */ |
| #define OPC_JMP_long (0xe9) |
| #define OPC_JMP_short (0xeb) |
| #define OPC_LEA (0x8d) |
| #define OPC_LZCNT (0xbd | P_EXT | P_SIMDF3) |
| #define OPC_MOVB_EvGv (0x88) /* stores, more or less */ |
| #define OPC_MOVL_EvGv (0x89) /* stores, more or less */ |
| #define OPC_MOVL_GvEv (0x8b) /* loads, more or less */ |
| #define OPC_MOVB_EvIz (0xc6) |
| #define OPC_MOVL_EvIz (0xc7) |
| #define OPC_MOVL_Iv (0xb8) |
| #define OPC_MOVBE_GyMy (0xf0 | P_EXT38) |
| #define OPC_MOVBE_MyGy (0xf1 | P_EXT38) |
| #define OPC_MOVD_VyEy (0x6e | P_EXT | P_DATA16) |
| #define OPC_MOVD_EyVy (0x7e | P_EXT | P_DATA16) |
| #define OPC_MOVDDUP (0x12 | P_EXT | P_SIMDF2) |
| #define OPC_MOVDQA_VxWx (0x6f | P_EXT | P_DATA16) |
| #define OPC_MOVDQA_WxVx (0x7f | P_EXT | P_DATA16) |
| #define OPC_MOVDQU_VxWx (0x6f | P_EXT | P_SIMDF3) |
| #define OPC_MOVDQU_WxVx (0x7f | P_EXT | P_SIMDF3) |
| #define OPC_MOVQ_VqWq (0x7e | P_EXT | P_SIMDF3) |
| #define OPC_MOVQ_WqVq (0xd6 | P_EXT | P_DATA16) |
| #define OPC_MOVSBL (0xbe | P_EXT) |
| #define OPC_MOVSWL (0xbf | P_EXT) |
| #define OPC_MOVSLQ (0x63 | P_REXW) |
| #define OPC_MOVZBL (0xb6 | P_EXT) |
| #define OPC_MOVZWL (0xb7 | P_EXT) |
| #define OPC_PABSB (0x1c | P_EXT38 | P_DATA16) |
| #define OPC_PABSW (0x1d | P_EXT38 | P_DATA16) |
| #define OPC_PABSD (0x1e | P_EXT38 | P_DATA16) |
| #define OPC_VPABSQ (0x1f | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) |
| #define OPC_PACKSSDW (0x6b | P_EXT | P_DATA16) |
| #define OPC_PACKSSWB (0x63 | P_EXT | P_DATA16) |
| #define OPC_PACKUSDW (0x2b | P_EXT38 | P_DATA16) |
| #define OPC_PACKUSWB (0x67 | P_EXT | P_DATA16) |
| #define OPC_PADDB (0xfc | P_EXT | P_DATA16) |
| #define OPC_PADDW (0xfd | P_EXT | P_DATA16) |
| #define OPC_PADDD (0xfe | P_EXT | P_DATA16) |
| #define OPC_PADDQ (0xd4 | P_EXT | P_DATA16) |
| #define OPC_PADDSB (0xec | P_EXT | P_DATA16) |
| #define OPC_PADDSW (0xed | P_EXT | P_DATA16) |
| #define OPC_PADDUB (0xdc | P_EXT | P_DATA16) |
| #define OPC_PADDUW (0xdd | P_EXT | P_DATA16) |
| #define OPC_PAND (0xdb | P_EXT | P_DATA16) |
| #define OPC_PANDN (0xdf | P_EXT | P_DATA16) |
| #define OPC_PBLENDW (0x0e | P_EXT3A | P_DATA16) |
| #define OPC_PCMPEQB (0x74 | P_EXT | P_DATA16) |
| #define OPC_PCMPEQW (0x75 | P_EXT | P_DATA16) |
| #define OPC_PCMPEQD (0x76 | P_EXT | P_DATA16) |
| #define OPC_PCMPEQQ (0x29 | P_EXT38 | P_DATA16) |
| #define OPC_PCMPGTB (0x64 | P_EXT | P_DATA16) |
| #define OPC_PCMPGTW (0x65 | P_EXT | P_DATA16) |
| #define OPC_PCMPGTD (0x66 | P_EXT | P_DATA16) |
| #define OPC_PCMPGTQ (0x37 | P_EXT38 | P_DATA16) |
| #define OPC_PEXTRD (0x16 | P_EXT3A | P_DATA16) |
| #define OPC_PINSRD (0x22 | P_EXT3A | P_DATA16) |
| #define OPC_PMAXSB (0x3c | P_EXT38 | P_DATA16) |
| #define OPC_PMAXSW (0xee | P_EXT | P_DATA16) |
| #define OPC_PMAXSD (0x3d | P_EXT38 | P_DATA16) |
| #define OPC_VPMAXSQ (0x3d | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) |
| #define OPC_PMAXUB (0xde | P_EXT | P_DATA16) |
| #define OPC_PMAXUW (0x3e | P_EXT38 | P_DATA16) |
| #define OPC_PMAXUD (0x3f | P_EXT38 | P_DATA16) |
| #define OPC_VPMAXUQ (0x3f | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) |
| #define OPC_PMINSB (0x38 | P_EXT38 | P_DATA16) |
| #define OPC_PMINSW (0xea | P_EXT | P_DATA16) |
| #define OPC_PMINSD (0x39 | P_EXT38 | P_DATA16) |
| #define OPC_VPMINSQ (0x39 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) |
| #define OPC_PMINUB (0xda | P_EXT | P_DATA16) |
| #define OPC_PMINUW (0x3a | P_EXT38 | P_DATA16) |
| #define OPC_PMINUD (0x3b | P_EXT38 | P_DATA16) |
| #define OPC_VPMINUQ (0x3b | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) |
| #define OPC_PMOVSXBW (0x20 | P_EXT38 | P_DATA16) |
| #define OPC_PMOVSXWD (0x23 | P_EXT38 | P_DATA16) |
| #define OPC_PMOVSXDQ (0x25 | P_EXT38 | P_DATA16) |
| #define OPC_PMOVZXBW (0x30 | P_EXT38 | P_DATA16) |
| #define OPC_PMOVZXWD (0x33 | P_EXT38 | P_DATA16) |
| #define OPC_PMOVZXDQ (0x35 | P_EXT38 | P_DATA16) |
| #define OPC_PMULLW (0xd5 | P_EXT | P_DATA16) |
| #define OPC_PMULLD (0x40 | P_EXT38 | P_DATA16) |
| #define OPC_VPMULLQ (0x40 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) |
| #define OPC_POR (0xeb | P_EXT | P_DATA16) |
| #define OPC_PSHUFB (0x00 | P_EXT38 | P_DATA16) |
| #define OPC_PSHUFD (0x70 | P_EXT | P_DATA16) |
| #define OPC_PSHUFLW (0x70 | P_EXT | P_SIMDF2) |
| #define OPC_PSHUFHW (0x70 | P_EXT | P_SIMDF3) |
| #define OPC_PSHIFTW_Ib (0x71 | P_EXT | P_DATA16) /* /2 /6 /4 */ |
| #define OPC_PSHIFTD_Ib (0x72 | P_EXT | P_DATA16) /* /1 /2 /6 /4 */ |
| #define OPC_PSHIFTQ_Ib (0x73 | P_EXT | P_DATA16) /* /2 /6 /4 */ |
| #define OPC_PSLLW (0xf1 | P_EXT | P_DATA16) |
| #define OPC_PSLLD (0xf2 | P_EXT | P_DATA16) |
| #define OPC_PSLLQ (0xf3 | P_EXT | P_DATA16) |
| #define OPC_PSRAW (0xe1 | P_EXT | P_DATA16) |
| #define OPC_PSRAD (0xe2 | P_EXT | P_DATA16) |
| #define OPC_VPSRAQ (0xe2 | P_EXT | P_DATA16 | P_VEXW | P_EVEX) |
| #define OPC_PSRLW (0xd1 | P_EXT | P_DATA16) |
| #define OPC_PSRLD (0xd2 | P_EXT | P_DATA16) |
| #define OPC_PSRLQ (0xd3 | P_EXT | P_DATA16) |
| #define OPC_PSUBB (0xf8 | P_EXT | P_DATA16) |
| #define OPC_PSUBW (0xf9 | P_EXT | P_DATA16) |
| #define OPC_PSUBD (0xfa | P_EXT | P_DATA16) |
| #define OPC_PSUBQ (0xfb | P_EXT | P_DATA16) |
| #define OPC_PSUBSB (0xe8 | P_EXT | P_DATA16) |
| #define OPC_PSUBSW (0xe9 | P_EXT | P_DATA16) |
| #define OPC_PSUBUB (0xd8 | P_EXT | P_DATA16) |
| #define OPC_PSUBUW (0xd9 | P_EXT | P_DATA16) |
| #define OPC_PUNPCKLBW (0x60 | P_EXT | P_DATA16) |
| #define OPC_PUNPCKLWD (0x61 | P_EXT | P_DATA16) |
| #define OPC_PUNPCKLDQ (0x62 | P_EXT | P_DATA16) |
| #define OPC_PUNPCKLQDQ (0x6c | P_EXT | P_DATA16) |
| #define OPC_PUNPCKHBW (0x68 | P_EXT | P_DATA16) |
| #define OPC_PUNPCKHWD (0x69 | P_EXT | P_DATA16) |
| #define OPC_PUNPCKHDQ (0x6a | P_EXT | P_DATA16) |
| #define OPC_PUNPCKHQDQ (0x6d | P_EXT | P_DATA16) |
| #define OPC_PXOR (0xef | P_EXT | P_DATA16) |
| #define OPC_POP_r32 (0x58) |
| #define OPC_POPCNT (0xb8 | P_EXT | P_SIMDF3) |
| #define OPC_PUSH_r32 (0x50) |
| #define OPC_PUSH_Iv (0x68) |
| #define OPC_PUSH_Ib (0x6a) |
| #define OPC_RET (0xc3) |
| #define OPC_SETCC (0x90 | P_EXT | P_REXB_RM) /* ... plus cc */ |
| #define OPC_SHIFT_1 (0xd1) |
| #define OPC_SHIFT_Ib (0xc1) |
| #define OPC_SHIFT_cl (0xd3) |
| #define OPC_SARX (0xf7 | P_EXT38 | P_SIMDF3) |
| #define OPC_SHUFPS (0xc6 | P_EXT) |
| #define OPC_SHLX (0xf7 | P_EXT38 | P_DATA16) |
| #define OPC_SHRX (0xf7 | P_EXT38 | P_SIMDF2) |
| #define OPC_SHRD_Ib (0xac | P_EXT) |
| #define OPC_TESTL (0x85) |
| #define OPC_TZCNT (0xbc | P_EXT | P_SIMDF3) |
| #define OPC_UD2 (0x0b | P_EXT) |
| #define OPC_VPBLENDD (0x02 | P_EXT3A | P_DATA16) |
| #define OPC_VPBLENDVB (0x4c | P_EXT3A | P_DATA16) |
| #define OPC_VPINSRB (0x20 | P_EXT3A | P_DATA16) |
| #define OPC_VPINSRW (0xc4 | P_EXT | P_DATA16) |
| #define OPC_VBROADCASTSS (0x18 | P_EXT38 | P_DATA16) |
| #define OPC_VBROADCASTSD (0x19 | P_EXT38 | P_DATA16) |
| #define OPC_VPBROADCASTB (0x78 | P_EXT38 | P_DATA16) |
| #define OPC_VPBROADCASTW (0x79 | P_EXT38 | P_DATA16) |
| #define OPC_VPBROADCASTD (0x58 | P_EXT38 | P_DATA16) |
| #define OPC_VPBROADCASTQ (0x59 | P_EXT38 | P_DATA16) |
| #define OPC_VPERMQ (0x00 | P_EXT3A | P_DATA16 | P_VEXW) |
| #define OPC_VPERM2I128 (0x46 | P_EXT3A | P_DATA16 | P_VEXL) |
| #define OPC_VPROLVD (0x15 | P_EXT38 | P_DATA16 | P_EVEX) |
| #define OPC_VPROLVQ (0x15 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) |
| #define OPC_VPRORVD (0x14 | P_EXT38 | P_DATA16 | P_EVEX) |
| #define OPC_VPRORVQ (0x14 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) |
| #define OPC_VPSHLDW (0x70 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX) |
| #define OPC_VPSHLDD (0x71 | P_EXT3A | P_DATA16 | P_EVEX) |
| #define OPC_VPSHLDQ (0x71 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX) |
| #define OPC_VPSHLDVW (0x70 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) |
| #define OPC_VPSHLDVD (0x71 | P_EXT38 | P_DATA16 | P_EVEX) |
| #define OPC_VPSHLDVQ (0x71 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) |
| #define OPC_VPSHRDVW (0x72 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) |
| #define OPC_VPSHRDVD (0x73 | P_EXT38 | P_DATA16 | P_EVEX) |
| #define OPC_VPSHRDVQ (0x73 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) |
| #define OPC_VPSLLVW (0x12 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) |
| #define OPC_VPSLLVD (0x47 | P_EXT38 | P_DATA16) |
| #define OPC_VPSLLVQ (0x47 | P_EXT38 | P_DATA16 | P_VEXW) |
| #define OPC_VPSRAVW (0x11 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) |
| #define OPC_VPSRAVD (0x46 | P_EXT38 | P_DATA16) |
| #define OPC_VPSRAVQ (0x46 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) |
| #define OPC_VPSRLVW (0x10 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) |
| #define OPC_VPSRLVD (0x45 | P_EXT38 | P_DATA16) |
| #define OPC_VPSRLVQ (0x45 | P_EXT38 | P_DATA16 | P_VEXW) |
| #define OPC_VPTERNLOGQ (0x25 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX) |
| #define OPC_VZEROUPPER (0x77 | P_EXT) |
| #define OPC_XCHG_ax_r32 (0x90) |
| #define OPC_XCHG_EvGv (0x87) |
| |
| #define OPC_GRP3_Eb (0xf6) |
| #define OPC_GRP3_Ev (0xf7) |
| #define OPC_GRP5 (0xff) |
| #define OPC_GRP14 (0x73 | P_EXT | P_DATA16) |
| |
| /* Group 1 opcode extensions for 0x80-0x83. |
| These are also used as modifiers for OPC_ARITH. */ |
| #define ARITH_ADD 0 |
| #define ARITH_OR 1 |
| #define ARITH_ADC 2 |
| #define ARITH_SBB 3 |
| #define ARITH_AND 4 |
| #define ARITH_SUB 5 |
| #define ARITH_XOR 6 |
| #define ARITH_CMP 7 |
| |
| /* Group 2 opcode extensions for 0xc0, 0xc1, 0xd0-0xd3. */ |
| #define SHIFT_ROL 0 |
| #define SHIFT_ROR 1 |
| #define SHIFT_SHL 4 |
| #define SHIFT_SHR 5 |
| #define SHIFT_SAR 7 |
| |
| /* Group 3 opcode extensions for 0xf6, 0xf7. To be used with OPC_GRP3. */ |
| #define EXT3_TESTi 0 |
| #define EXT3_NOT 2 |
| #define EXT3_NEG 3 |
| #define EXT3_MUL 4 |
| #define EXT3_IMUL 5 |
| #define EXT3_DIV 6 |
| #define EXT3_IDIV 7 |
| |
| /* Group 5 opcode extensions for 0xff. To be used with OPC_GRP5. */ |
| #define EXT5_INC_Ev 0 |
| #define EXT5_DEC_Ev 1 |
| #define EXT5_CALLN_Ev 2 |
| #define EXT5_JMPN_Ev 4 |
| |
| /* Condition codes to be added to OPC_JCC_{long,short}. */ |
| #define JCC_JMP (-1) |
| #define JCC_JO 0x0 |
| #define JCC_JNO 0x1 |
| #define JCC_JB 0x2 |
| #define JCC_JAE 0x3 |
| #define JCC_JE 0x4 |
| #define JCC_JNE 0x5 |
| #define JCC_JBE 0x6 |
| #define JCC_JA 0x7 |
| #define JCC_JS 0x8 |
| #define JCC_JNS 0x9 |
| #define JCC_JP 0xa |
| #define JCC_JNP 0xb |
| #define JCC_JL 0xc |
| #define JCC_JGE 0xd |
| #define JCC_JLE 0xe |
| #define JCC_JG 0xf |
| |
| static const uint8_t tcg_cond_to_jcc[] = { |
| [TCG_COND_EQ] = JCC_JE, |
| [TCG_COND_NE] = JCC_JNE, |
| [TCG_COND_LT] = JCC_JL, |
| [TCG_COND_GE] = JCC_JGE, |
| [TCG_COND_LE] = JCC_JLE, |
| [TCG_COND_GT] = JCC_JG, |
| [TCG_COND_LTU] = JCC_JB, |
| [TCG_COND_GEU] = JCC_JAE, |
| [TCG_COND_LEU] = JCC_JBE, |
| [TCG_COND_GTU] = JCC_JA, |
| }; |
| |
| #if TCG_TARGET_REG_BITS == 64 |
| static void tcg_out_opc(TCGContext *s, int opc, int r, int rm, int x) |
| { |
| int rex; |
| |
| if (opc & P_GS) { |
| tcg_out8(s, 0x65); |
| } |
| if (opc & P_DATA16) { |
| /* We should never be asking for both 16 and 64-bit operation. */ |
| tcg_debug_assert((opc & P_REXW) == 0); |
| tcg_out8(s, 0x66); |
| } |
| if (opc & P_SIMDF3) { |
| tcg_out8(s, 0xf3); |
| } else if (opc & P_SIMDF2) { |
| tcg_out8(s, 0xf2); |
| } |
| |
| rex = 0; |
| rex |= (opc & P_REXW) ? 0x8 : 0x0; /* REX.W */ |
| rex |= (r & 8) >> 1; /* REX.R */ |
| rex |= (x & 8) >> 2; /* REX.X */ |
| rex |= (rm & 8) >> 3; /* REX.B */ |
| |
| /* P_REXB_{R,RM} indicates that the given register is the low byte. |
| For %[abcd]l we need no REX prefix, but for %{si,di,bp,sp}l we do, |
| as otherwise the encoding indicates %[abcd]h. Note that the values |
| that are ORed in merely indicate that the REX byte must be present; |
| those bits get discarded in output. */ |
| rex |= opc & (r >= 4 ? P_REXB_R : 0); |
| rex |= opc & (rm >= 4 ? P_REXB_RM : 0); |
| |
| if (rex) { |
| tcg_out8(s, (uint8_t)(rex | 0x40)); |
| } |
| |
| if (opc & (P_EXT | P_EXT38 | P_EXT3A)) { |
| tcg_out8(s, 0x0f); |
| if (opc & P_EXT38) { |
| tcg_out8(s, 0x38); |
| } else if (opc & P_EXT3A) { |
| tcg_out8(s, 0x3a); |
| } |
| } |
| |
| tcg_out8(s, opc); |
| } |
| #else |
| static void tcg_out_opc(TCGContext *s, int opc) |
| { |
| if (opc & P_DATA16) { |
| tcg_out8(s, 0x66); |
| } |
| if (opc & P_SIMDF3) { |
| tcg_out8(s, 0xf3); |
| } else if (opc & P_SIMDF2) { |
| tcg_out8(s, 0xf2); |
| } |
| if (opc & (P_EXT | P_EXT38 | P_EXT3A)) { |
| tcg_out8(s, 0x0f); |
| if (opc & P_EXT38) { |
| tcg_out8(s, 0x38); |
| } else if (opc & P_EXT3A) { |
| tcg_out8(s, 0x3a); |
| } |
| } |
| tcg_out8(s, opc); |
| } |
| /* Discard the register arguments to tcg_out_opc early, so as not to penalize |
| the 32-bit compilation paths. This method works with all versions of gcc, |
| whereas relying on optimization may not be able to exclude them. */ |
| #define tcg_out_opc(s, opc, r, rm, x) (tcg_out_opc)(s, opc) |
| #endif |
| |
| static void tcg_out_modrm(TCGContext *s, int opc, int r, int rm) |
| { |
| tcg_out_opc(s, opc, r, rm, 0); |
| tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm)); |
| } |
| |
| static void tcg_out_vex_opc(TCGContext *s, int opc, int r, int v, |
| int rm, int index) |
| { |
| int tmp; |
| |
| /* Use the two byte form if possible, which cannot encode |
| VEX.W, VEX.B, VEX.X, or an m-mmmm field other than P_EXT. */ |
| if ((opc & (P_EXT | P_EXT38 | P_EXT3A | P_VEXW)) == P_EXT |
| && ((rm | index) & 8) == 0) { |
| /* Two byte VEX prefix. */ |
| tcg_out8(s, 0xc5); |
| |
| tmp = (r & 8 ? 0 : 0x80); /* VEX.R */ |
| } else { |
| /* Three byte VEX prefix. */ |
| tcg_out8(s, 0xc4); |
| |
| /* VEX.m-mmmm */ |
| if (opc & P_EXT3A) { |
| tmp = 3; |
| } else if (opc & P_EXT38) { |
| tmp = 2; |
| } else if (opc & P_EXT) { |
| tmp = 1; |
| } else { |
| g_assert_not_reached(); |
| } |
| tmp |= (r & 8 ? 0 : 0x80); /* VEX.R */ |
| tmp |= (index & 8 ? 0 : 0x40); /* VEX.X */ |
| tmp |= (rm & 8 ? 0 : 0x20); /* VEX.B */ |
| tcg_out8(s, tmp); |
| |
| tmp = (opc & P_VEXW ? 0x80 : 0); /* VEX.W */ |
| } |
| |
| tmp |= (opc & P_VEXL ? 0x04 : 0); /* VEX.L */ |
| /* VEX.pp */ |
| if (opc & P_DATA16) { |
| tmp |= 1; /* 0x66 */ |
| } else if (opc & P_SIMDF3) { |
| tmp |= 2; /* 0xf3 */ |
| } else if (opc & P_SIMDF2) { |
| tmp |= 3; /* 0xf2 */ |
| } |
| tmp |= (~v & 15) << 3; /* VEX.vvvv */ |
| tcg_out8(s, tmp); |
| tcg_out8(s, opc); |
| } |
| |
| static void tcg_out_evex_opc(TCGContext *s, int opc, int r, int v, |
| int rm, int index) |
| { |
| /* The entire 4-byte evex prefix; with R' and V' set. */ |
| uint32_t p = 0x08041062; |
| int mm, pp; |
| |
| tcg_debug_assert(have_avx512vl); |
| |
| /* EVEX.mm */ |
| if (opc & P_EXT3A) { |
| mm = 3; |
| } else if (opc & P_EXT38) { |
| mm = 2; |
| } else if (opc & P_EXT) { |
| mm = 1; |
| } else { |
| g_assert_not_reached(); |
| } |
| |
| /* EVEX.pp */ |
| if (opc & P_DATA16) { |
| pp = 1; /* 0x66 */ |
| } else if (opc & P_SIMDF3) { |
| pp = 2; /* 0xf3 */ |
| } else if (opc & P_SIMDF2) { |
| pp = 3; /* 0xf2 */ |
| } else { |
| pp = 0; |
| } |
| |
| p = deposit32(p, 8, 2, mm); |
| p = deposit32(p, 13, 1, (rm & 8) == 0); /* EVEX.RXB.B */ |
| p = deposit32(p, 14, 1, (index & 8) == 0); /* EVEX.RXB.X */ |
| p = deposit32(p, 15, 1, (r & 8) == 0); /* EVEX.RXB.R */ |
| p = deposit32(p, 16, 2, pp); |
| p = deposit32(p, 19, 4, ~v); |
| p = deposit32(p, 23, 1, (opc & P_VEXW) != 0); |
| p = deposit32(p, 29, 2, (opc & P_VEXL) != 0); |
| |
| tcg_out32(s, p); |
| tcg_out8(s, opc); |
| } |
| |
| static void tcg_out_vex_modrm(TCGContext *s, int opc, int r, int v, int rm) |
| { |
| if (opc & P_EVEX) { |
| tcg_out_evex_opc(s, opc, r, v, rm, 0); |
| } else { |
| tcg_out_vex_opc(s, opc, r, v, rm, 0); |
| } |
| tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm)); |
| } |
| |
| /* Output an opcode with a full "rm + (index<<shift) + offset" address mode. |
| We handle either RM and INDEX missing with a negative value. In 64-bit |
| mode for absolute addresses, ~RM is the size of the immediate operand |
| that will follow the instruction. */ |
| |
| static void tcg_out_sib_offset(TCGContext *s, int r, int rm, int index, |
| int shift, intptr_t offset) |
| { |
| int mod, len; |
| |
| if (index < 0 && rm < 0) { |
| if (TCG_TARGET_REG_BITS == 64) { |
| /* Try for a rip-relative addressing mode. This has replaced |
| the 32-bit-mode absolute addressing encoding. */ |
| intptr_t pc = (intptr_t)s->code_ptr + 5 + ~rm; |
| intptr_t disp = offset - pc; |
| if (disp == (int32_t)disp) { |
| tcg_out8(s, (LOWREGMASK(r) << 3) | 5); |
| tcg_out32(s, disp); |
| return; |
| } |
| |
| /* Try for an absolute address encoding. This requires the |
| use of the MODRM+SIB encoding and is therefore larger than |
| rip-relative addressing. */ |
| if (offset == (int32_t)offset) { |
| tcg_out8(s, (LOWREGMASK(r) << 3) | 4); |
| tcg_out8(s, (4 << 3) | 5); |
| tcg_out32(s, offset); |
| return; |
| } |
| |
| /* ??? The memory isn't directly addressable. */ |
| g_assert_not_reached(); |
| } else { |
| /* Absolute address. */ |
| tcg_out8(s, (r << 3) | 5); |
| tcg_out32(s, offset); |
| return; |
| } |
| } |
| |
| /* Find the length of the immediate addend. Note that the encoding |
| that would be used for (%ebp) indicates absolute addressing. */ |
| if (rm < 0) { |
| mod = 0, len = 4, rm = 5; |
| } else if (offset == 0 && LOWREGMASK(rm) != TCG_REG_EBP) { |
| mod = 0, len = 0; |
| } else if (offset == (int8_t)offset) { |
| mod = 0x40, len = 1; |
| } else { |
| mod = 0x80, len = 4; |
| } |
| |
| /* Use a single byte MODRM format if possible. Note that the encoding |
| that would be used for %esp is the escape to the two byte form. */ |
| if (index < 0 && LOWREGMASK(rm) != TCG_REG_ESP) { |
| /* Single byte MODRM format. */ |
| tcg_out8(s, mod | (LOWREGMASK(r) << 3) | LOWREGMASK(rm)); |
| } else { |
| /* Two byte MODRM+SIB format. */ |
| |
| /* Note that the encoding that would place %esp into the index |
| field indicates no index register. In 64-bit mode, the REX.X |
| bit counts, so %r12 can be used as the index. */ |
| if (index < 0) { |
| index = 4; |
| } else { |
| tcg_debug_assert(index != TCG_REG_ESP); |
| } |
| |
| tcg_out8(s, mod | (LOWREGMASK(r) << 3) | 4); |
| tcg_out8(s, (shift << 6) | (LOWREGMASK(index) << 3) | LOWREGMASK(rm)); |
| } |
| |
| if (len == 1) { |
| tcg_out8(s, offset); |
| } else if (len == 4) { |
| tcg_out32(s, offset); |
| } |
| } |
| |
| static void tcg_out_modrm_sib_offset(TCGContext *s, int opc, int r, int rm, |
| int index, int shift, intptr_t offset) |
| { |
| tcg_out_opc(s, opc, r, rm < 0 ? 0 : rm, index < 0 ? 0 : index); |
| tcg_out_sib_offset(s, r, rm, index, shift, offset); |
| } |
| |
| static void tcg_out_vex_modrm_sib_offset(TCGContext *s, int opc, int r, int v, |
| int rm, int index, int shift, |
| intptr_t offset) |
| { |
| tcg_out_vex_opc(s, opc, r, v, rm < 0 ? 0 : rm, index < 0 ? 0 : index); |
| tcg_out_sib_offset(s, r, rm, index, shift, offset); |
| } |
| |
| /* A simplification of the above with no index or shift. */ |
| static inline void tcg_out_modrm_offset(TCGContext *s, int opc, int r, |
| int rm, intptr_t offset) |
| { |
| tcg_out_modrm_sib_offset(s, opc, r, rm, -1, 0, offset); |
| } |
| |
| static inline void tcg_out_vex_modrm_offset(TCGContext *s, int opc, int r, |
| int v, int rm, intptr_t offset) |
| { |
| tcg_out_vex_modrm_sib_offset(s, opc, r, v, rm, -1, 0, offset); |
| } |
| |
| /* Output an opcode with an expected reference to the constant pool. */ |
| static inline void tcg_out_modrm_pool(TCGContext *s, int opc, int r) |
| { |
| tcg_out_opc(s, opc, r, 0, 0); |
| /* Absolute for 32-bit, pc-relative for 64-bit. */ |
| tcg_out8(s, LOWREGMASK(r) << 3 | 5); |
| tcg_out32(s, 0); |
| } |
| |
| /* Output an opcode with an expected reference to the constant pool. */ |
| static inline void tcg_out_vex_modrm_pool(TCGContext *s, int opc, int r) |
| { |
| tcg_out_vex_opc(s, opc, r, 0, 0, 0); |
| /* Absolute for 32-bit, pc-relative for 64-bit. */ |
| tcg_out8(s, LOWREGMASK(r) << 3 | 5); |
| tcg_out32(s, 0); |
| } |
| |
| /* Generate dest op= src. Uses the same ARITH_* codes as tgen_arithi. */ |
| static inline void tgen_arithr(TCGContext *s, int subop, int dest, int src) |
| { |
| /* Propagate an opcode prefix, such as P_REXW. */ |
| int ext = subop & ~0x7; |
| subop &= 0x7; |
| |
| tcg_out_modrm(s, OPC_ARITH_GvEv + (subop << 3) + ext, dest, src); |
| } |
| |
| static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg) |
| { |
| int rexw = 0; |
| |
| if (arg == ret) { |
| return true; |
| } |
| switch (type) { |
| case TCG_TYPE_I64: |
| rexw = P_REXW; |
| /* fallthru */ |
| case TCG_TYPE_I32: |
| if (ret < 16) { |
| if (arg < 16) { |
| tcg_out_modrm(s, OPC_MOVL_GvEv + rexw, ret, arg); |
| } else { |
| tcg_out_vex_modrm(s, OPC_MOVD_EyVy + rexw, arg, 0, ret); |
| } |
| } else { |
| if (arg < 16) { |
| tcg_out_vex_modrm(s, OPC_MOVD_VyEy + rexw, ret, 0, arg); |
| } else { |
| tcg_out_vex_modrm(s, OPC_MOVQ_VqWq, ret, 0, arg); |
| } |
| } |
| break; |
| |
| case TCG_TYPE_V64: |
| tcg_debug_assert(ret >= 16 && arg >= 16); |
| tcg_out_vex_modrm(s, OPC_MOVQ_VqWq, ret, 0, arg); |
| break; |
| case TCG_TYPE_V128: |
| tcg_debug_assert(ret >= 16 && arg >= 16); |
| tcg_out_vex_modrm(s, OPC_MOVDQA_VxWx, ret, 0, arg); |
| break; |
| case TCG_TYPE_V256: |
| tcg_debug_assert(ret >= 16 && arg >= 16); |
| tcg_out_vex_modrm(s, OPC_MOVDQA_VxWx | P_VEXL, ret, 0, arg); |
| break; |
| |
| default: |
| g_assert_not_reached(); |
| } |
| return true; |
| } |
| |
| static const int avx2_dup_insn[4] = { |
| OPC_VPBROADCASTB, OPC_VPBROADCASTW, |
| OPC_VPBROADCASTD, OPC_VPBROADCASTQ, |
| }; |
| |
| static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece, |
| TCGReg r, TCGReg a) |
| { |
| if (have_avx2) { |
| int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0); |
| tcg_out_vex_modrm(s, avx2_dup_insn[vece] + vex_l, r, 0, a); |
| } else { |
| switch (vece) { |
| case MO_8: |
| /* ??? With zero in a register, use PSHUFB. */ |
| tcg_out_vex_modrm(s, OPC_PUNPCKLBW, r, a, a); |
| a = r; |
| /* FALLTHRU */ |
| case MO_16: |
| tcg_out_vex_modrm(s, OPC_PUNPCKLWD, r, a, a); |
| a = r; |
| /* FALLTHRU */ |
| case MO_32: |
| tcg_out_vex_modrm(s, OPC_PSHUFD, r, 0, a); |
| /* imm8 operand: all output lanes selected from input lane 0. */ |
| tcg_out8(s, 0); |
| break; |
| case MO_64: |
| tcg_out_vex_modrm(s, OPC_PUNPCKLQDQ, r, a, a); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| return true; |
| } |
| |
| static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece, |
| TCGReg r, TCGReg base, intptr_t offset) |
| { |
| if (have_avx2) { |
| int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0); |
| tcg_out_vex_modrm_offset(s, avx2_dup_insn[vece] + vex_l, |
| r, 0, base, offset); |
| } else { |
| switch (vece) { |
| case MO_64: |
| tcg_out_vex_modrm_offset(s, OPC_MOVDDUP, r, 0, base, offset); |
| break; |
| case MO_32: |
| tcg_out_vex_modrm_offset(s, OPC_VBROADCASTSS, r, 0, base, offset); |
| break; |
| case MO_16: |
| tcg_out_vex_modrm_offset(s, OPC_VPINSRW, r, r, base, offset); |
| tcg_out8(s, 0); /* imm8 */ |
| tcg_out_dup_vec(s, type, vece, r, r); |
| break; |
| case MO_8: |
| tcg_out_vex_modrm_offset(s, OPC_VPINSRB, r, r, base, offset); |
| tcg_out8(s, 0); /* imm8 */ |
| tcg_out_dup_vec(s, type, vece, r, r); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| return true; |
| } |
| |
| static void tcg_out_dupi_vec(TCGContext *s, TCGType type, unsigned vece, |
| TCGReg ret, int64_t arg) |
| { |
| int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0); |
| |
| if (arg == 0) { |
| tcg_out_vex_modrm(s, OPC_PXOR, ret, ret, ret); |
| return; |
| } |
| if (arg == -1) { |
| tcg_out_vex_modrm(s, OPC_PCMPEQB + vex_l, ret, ret, ret); |
| return; |
| } |
| |
| if (TCG_TARGET_REG_BITS == 32 && vece < MO_64) { |
| if (have_avx2) { |
| tcg_out_vex_modrm_pool(s, OPC_VPBROADCASTD + vex_l, ret); |
| } else { |
| tcg_out_vex_modrm_pool(s, OPC_VBROADCASTSS, ret); |
| } |
| new_pool_label(s, arg, R_386_32, s->code_ptr - 4, 0); |
| } else { |
| if (type == TCG_TYPE_V64) { |
| tcg_out_vex_modrm_pool(s, OPC_MOVQ_VqWq, ret); |
| } else if (have_avx2) { |
| tcg_out_vex_modrm_pool(s, OPC_VPBROADCASTQ + vex_l, ret); |
| } else { |
| tcg_out_vex_modrm_pool(s, OPC_MOVDDUP, ret); |
| } |
| if (TCG_TARGET_REG_BITS == 64) { |
| new_pool_label(s, arg, R_386_PC32, s->code_ptr - 4, -4); |
| } else { |
| new_pool_l2(s, R_386_32, s->code_ptr - 4, 0, arg, arg >> 32); |
| } |
| } |
| } |
| |
| static void tcg_out_movi_vec(TCGContext *s, TCGType type, |
| TCGReg ret, tcg_target_long arg) |
| { |
| if (arg == 0) { |
| tcg_out_vex_modrm(s, OPC_PXOR, ret, ret, ret); |
| return; |
| } |
| if (arg == -1) { |
| tcg_out_vex_modrm(s, OPC_PCMPEQB, ret, ret, ret); |
| return; |
| } |
| |
| int rexw = (type == TCG_TYPE_I32 ? 0 : P_REXW); |
| tcg_out_vex_modrm_pool(s, OPC_MOVD_VyEy + rexw, ret); |
| if (TCG_TARGET_REG_BITS == 64) { |
| new_pool_label(s, arg, R_386_PC32, s->code_ptr - 4, -4); |
| } else { |
| new_pool_label(s, arg, R_386_32, s->code_ptr - 4, 0); |
| } |
| } |
| |
| static void tcg_out_movi_int(TCGContext *s, TCGType type, |
| TCGReg ret, tcg_target_long arg) |
| { |
| tcg_target_long diff; |
| |
| if (arg == 0) { |
| tgen_arithr(s, ARITH_XOR, ret, ret); |
| return; |
| } |
| if (arg == (uint32_t)arg || type == TCG_TYPE_I32) { |
| tcg_out_opc(s, OPC_MOVL_Iv + LOWREGMASK(ret), 0, ret, 0); |
| tcg_out32(s, arg); |
| return; |
| } |
| if (arg == (int32_t)arg) { |
| tcg_out_modrm(s, OPC_MOVL_EvIz + P_REXW, 0, ret); |
| tcg_out32(s, arg); |
| return; |
| } |
| |
| /* Try a 7 byte pc-relative lea before the 10 byte movq. */ |
| diff = tcg_pcrel_diff(s, (const void *)arg) - 7; |
| if (diff == (int32_t)diff) { |
| tcg_out_opc(s, OPC_LEA | P_REXW, ret, 0, 0); |
| tcg_out8(s, (LOWREGMASK(ret) << 3) | 5); |
| tcg_out32(s, diff); |
| return; |
| } |
| |
| tcg_out_opc(s, OPC_MOVL_Iv + P_REXW + LOWREGMASK(ret), 0, ret, 0); |
| tcg_out64(s, arg); |
| } |
| |
| static void tcg_out_movi(TCGContext *s, TCGType type, |
| TCGReg ret, tcg_target_long arg) |
| { |
| switch (type) { |
| case TCG_TYPE_I32: |
| #if TCG_TARGET_REG_BITS == 64 |
| case TCG_TYPE_I64: |
| #endif |
| if (ret < 16) { |
| tcg_out_movi_int(s, type, ret, arg); |
| } else { |
| tcg_out_movi_vec(s, type, ret, arg); |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static bool tcg_out_xchg(TCGContext *s, TCGType type, TCGReg r1, TCGReg r2) |
| { |
| int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; |
| tcg_out_modrm(s, OPC_XCHG_EvGv + rexw, r1, r2); |
| return true; |
| } |
| |
| static void tcg_out_addi_ptr(TCGContext *s, TCGReg rd, TCGReg rs, |
| tcg_target_long imm) |
| { |
| /* This function is only used for passing structs by reference. */ |
| tcg_debug_assert(imm == (int32_t)imm); |
| tcg_out_modrm_offset(s, OPC_LEA | P_REXW, rd, rs, imm); |
| } |
| |
| static inline void tcg_out_pushi(TCGContext *s, tcg_target_long val) |
| { |
| if (val == (int8_t)val) { |
| tcg_out_opc(s, OPC_PUSH_Ib, 0, 0, 0); |
| tcg_out8(s, val); |
| } else if (val == (int32_t)val) { |
| tcg_out_opc(s, OPC_PUSH_Iv, 0, 0, 0); |
| tcg_out32(s, val); |
| } else { |
| g_assert_not_reached(); |
| } |
| } |
| |
| static inline void tcg_out_mb(TCGContext *s, TCGArg a0) |
| { |
| /* Given the strength of x86 memory ordering, we only need care for |
| store-load ordering. Experimentally, "lock orl $0,0(%esp)" is |
| faster than "mfence", so don't bother with the sse insn. */ |
| if (a0 & TCG_MO_ST_LD) { |
| tcg_out8(s, 0xf0); |
| tcg_out_modrm_offset(s, OPC_ARITH_EvIb, ARITH_OR, TCG_REG_ESP, 0); |
| tcg_out8(s, 0); |
| } |
| } |
| |
| static inline void tcg_out_push(TCGContext *s, int reg) |
| { |
| tcg_out_opc(s, OPC_PUSH_r32 + LOWREGMASK(reg), 0, reg, 0); |
| } |
| |
| static inline void tcg_out_pop(TCGContext *s, int reg) |
| { |
| tcg_out_opc(s, OPC_POP_r32 + LOWREGMASK(reg), 0, reg, 0); |
| } |
| |
| static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret, |
| TCGReg arg1, intptr_t arg2) |
| { |
| switch (type) { |
| case TCG_TYPE_I32: |
| if (ret < 16) { |
| tcg_out_modrm_offset(s, OPC_MOVL_GvEv, ret, arg1, arg2); |
| } else { |
| tcg_out_vex_modrm_offset(s, OPC_MOVD_VyEy, ret, 0, arg1, arg2); |
| } |
| break; |
| case TCG_TYPE_I64: |
| if (ret < 16) { |
| tcg_out_modrm_offset(s, OPC_MOVL_GvEv | P_REXW, ret, arg1, arg2); |
| break; |
| } |
| /* FALLTHRU */ |
| case TCG_TYPE_V64: |
| /* There is no instruction that can validate 8-byte alignment. */ |
| tcg_debug_assert(ret >= 16); |
| tcg_out_vex_modrm_offset(s, OPC_MOVQ_VqWq, ret, 0, arg1, arg2); |
| break; |
| case TCG_TYPE_V128: |
| /* |
| * The gvec infrastructure is asserts that v128 vector loads |
| * and stores use a 16-byte aligned offset. Validate that the |
| * final pointer is aligned by using an insn that will SIGSEGV. |
| */ |
| tcg_debug_assert(ret >= 16); |
| tcg_out_vex_modrm_offset(s, OPC_MOVDQA_VxWx, ret, 0, arg1, arg2); |
| break; |
| case TCG_TYPE_V256: |
| /* |
| * The gvec infrastructure only requires 16-byte alignment, |
| * so here we must use an unaligned load. |
| */ |
| tcg_debug_assert(ret >= 16); |
| tcg_out_vex_modrm_offset(s, OPC_MOVDQU_VxWx | P_VEXL, |
| ret, 0, arg1, arg2); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg, |
| TCGReg arg1, intptr_t arg2) |
| { |
| switch (type) { |
| case TCG_TYPE_I32: |
| if (arg < 16) { |
| tcg_out_modrm_offset(s, OPC_MOVL_EvGv, arg, arg1, arg2); |
| } else { |
| tcg_out_vex_modrm_offset(s, OPC_MOVD_EyVy, arg, 0, arg1, arg2); |
| } |
| break; |
| case TCG_TYPE_I64: |
| if (arg < 16) { |
| tcg_out_modrm_offset(s, OPC_MOVL_EvGv | P_REXW, arg, arg1, arg2); |
| break; |
| } |
| /* FALLTHRU */ |
| case TCG_TYPE_V64: |
| /* There is no instruction that can validate 8-byte alignment. */ |
| tcg_debug_assert(arg >= 16); |
| tcg_out_vex_modrm_offset(s, OPC_MOVQ_WqVq, arg, 0, arg1, arg2); |
| break; |
| case TCG_TYPE_V128: |
| /* |
| * The gvec infrastructure is asserts that v128 vector loads |
| * and stores use a 16-byte aligned offset. Validate that the |
| * final pointer is aligned by using an insn that will SIGSEGV. |
| * |
| * This specific instance is also used by TCG_CALL_RET_BY_VEC, |
| * for _WIN64, which must have SSE2 but may not have AVX. |
| */ |
| tcg_debug_assert(arg >= 16); |
| if (have_avx1) { |
| tcg_out_vex_modrm_offset(s, OPC_MOVDQA_WxVx, arg, 0, arg1, arg2); |
| } else { |
| tcg_out_modrm_offset(s, OPC_MOVDQA_WxVx, arg, arg1, arg2); |
| } |
| break; |
| case TCG_TYPE_V256: |
| /* |
| * The gvec infrastructure only requires 16-byte alignment, |
| * so here we must use an unaligned store. |
| */ |
| tcg_debug_assert(arg >= 16); |
| tcg_out_vex_modrm_offset(s, OPC_MOVDQU_WxVx | P_VEXL, |
| arg, 0, arg1, arg2); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val, |
| TCGReg base, intptr_t ofs) |
| { |
| int rexw = 0; |
| if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I64) { |
| if (val != (int32_t)val) { |
| return false; |
| } |
| rexw = P_REXW; |
| } else if (type != TCG_TYPE_I32) { |
| return false; |
| } |
| tcg_out_modrm_offset(s, OPC_MOVL_EvIz | rexw, 0, base, ofs); |
| tcg_out32(s, val); |
| return true; |
| } |
| |
| static void tcg_out_shifti(TCGContext *s, int subopc, int reg, int count) |
| { |
| /* Propagate an opcode prefix, such as P_DATA16. */ |
| int ext = subopc & ~0x7; |
| subopc &= 0x7; |
| |
| if (count == 1) { |
| tcg_out_modrm(s, OPC_SHIFT_1 + ext, subopc, reg); |
| } else { |
| tcg_out_modrm(s, OPC_SHIFT_Ib + ext, subopc, reg); |
| tcg_out8(s, count); |
| } |
| } |
| |
| static inline void tcg_out_bswap32(TCGContext *s, int reg) |
| { |
| tcg_out_opc(s, OPC_BSWAP + LOWREGMASK(reg), 0, reg, 0); |
| } |
| |
| static inline void tcg_out_rolw_8(TCGContext *s, int reg) |
| { |
| tcg_out_shifti(s, SHIFT_ROL + P_DATA16, reg, 8); |
| } |
| |
| static void tcg_out_ext8u(TCGContext *s, TCGReg dest, TCGReg src) |
| { |
| /* movzbl */ |
| tcg_debug_assert(src < 4 || TCG_TARGET_REG_BITS == 64); |
| tcg_out_modrm(s, OPC_MOVZBL + P_REXB_RM, dest, src); |
| } |
| |
| static void tcg_out_ext8s(TCGContext *s, TCGType type, TCGReg dest, TCGReg src) |
| { |
| int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; |
| /* movsbl */ |
| tcg_debug_assert(src < 4 || TCG_TARGET_REG_BITS == 64); |
| tcg_out_modrm(s, OPC_MOVSBL + P_REXB_RM + rexw, dest, src); |
| } |
| |
| static void tcg_out_ext16u(TCGContext *s, TCGReg dest, TCGReg src) |
| { |
| /* movzwl */ |
| tcg_out_modrm(s, OPC_MOVZWL, dest, src); |
| } |
| |
| static void tcg_out_ext16s(TCGContext *s, TCGType type, TCGReg dest, TCGReg src) |
| { |
| int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; |
| /* movsw[lq] */ |
| tcg_out_modrm(s, OPC_MOVSWL + rexw, dest, src); |
| } |
| |
| static void tcg_out_ext32u(TCGContext *s, TCGReg dest, TCGReg src) |
| { |
| /* 32-bit mov zero extends. */ |
| tcg_out_modrm(s, OPC_MOVL_GvEv, dest, src); |
| } |
| |
| static void tcg_out_ext32s(TCGContext *s, TCGReg dest, TCGReg src) |
| { |
| tcg_debug_assert(TCG_TARGET_REG_BITS == 64); |
| tcg_out_modrm(s, OPC_MOVSLQ, dest, src); |
| } |
| |
| static void tcg_out_exts_i32_i64(TCGContext *s, TCGReg dest, TCGReg src) |
| { |
| tcg_out_ext32s(s, dest, src); |
| } |
| |
| static void tcg_out_extu_i32_i64(TCGContext *s, TCGReg dest, TCGReg src) |
| { |
| if (dest != src) { |
| tcg_out_ext32u(s, dest, src); |
| } |
| } |
| |
| static void tcg_out_extrl_i64_i32(TCGContext *s, TCGReg dest, TCGReg src) |
| { |
| tcg_out_ext32u(s, dest, src); |
| } |
| |
| static inline void tcg_out_bswap64(TCGContext *s, int reg) |
| { |
| tcg_out_opc(s, OPC_BSWAP + P_REXW + LOWREGMASK(reg), 0, reg, 0); |
| } |
| |
| static void tgen_arithi(TCGContext *s, int c, int r0, |
| tcg_target_long val, int cf) |
| { |
| int rexw = 0; |
| |
| if (TCG_TARGET_REG_BITS == 64) { |
| rexw = c & -8; |
| c &= 7; |
| } |
| |
| /* ??? While INC is 2 bytes shorter than ADDL $1, they also induce |
| partial flags update stalls on Pentium4 and are not recommended |
| by current Intel optimization manuals. */ |
| if (!cf && (c == ARITH_ADD || c == ARITH_SUB) && (val == 1 || val == -1)) { |
| int is_inc = (c == ARITH_ADD) ^ (val < 0); |
| if (TCG_TARGET_REG_BITS == 64) { |
| /* The single-byte increment encodings are re-tasked as the |
| REX prefixes. Use the MODRM encoding. */ |
| tcg_out_modrm(s, OPC_GRP5 + rexw, |
| (is_inc ? EXT5_INC_Ev : EXT5_DEC_Ev), r0); |
| } else { |
| tcg_out8(s, (is_inc ? OPC_INC_r32 : OPC_DEC_r32) + r0); |
| } |
| return; |
| } |
| |
| if (c == ARITH_AND) { |
| if (TCG_TARGET_REG_BITS == 64) { |
| if (val == 0xffffffffu) { |
| tcg_out_ext32u(s, r0, r0); |
| return; |
| } |
| if (val == (uint32_t)val) { |
| /* AND with no high bits set can use a 32-bit operation. */ |
| rexw = 0; |
| } |
| } |
| if (val == 0xffu && (r0 < 4 || TCG_TARGET_REG_BITS == 64)) { |
| tcg_out_ext8u(s, r0, r0); |
| return; |
| } |
| if (val == 0xffffu) { |
| tcg_out_ext16u(s, r0, r0); |
| return; |
| } |
| } |
| |
| if (val == (int8_t)val) { |
| tcg_out_modrm(s, OPC_ARITH_EvIb + rexw, c, r0); |
| tcg_out8(s, val); |
| return; |
| } |
| if (rexw == 0 || val == (int32_t)val) { |
| tcg_out_modrm(s, OPC_ARITH_EvIz + rexw, c, r0); |
| tcg_out32(s, val); |
| return; |
| } |
| |
| g_assert_not_reached(); |
| } |
| |
| static void tcg_out_addi(TCGContext *s, int reg, tcg_target_long val) |
| { |
| if (val != 0) { |
| tgen_arithi(s, ARITH_ADD + P_REXW, reg, val, 0); |
| } |
| } |
| |
| /* Set SMALL to force a short forward branch. */ |
| static void tcg_out_jxx(TCGContext *s, int opc, TCGLabel *l, bool small) |
| { |
| int32_t val, val1; |
| |
| if (l->has_value) { |
| val = tcg_pcrel_diff(s, l->u.value_ptr); |
| val1 = val - 2; |
| if ((int8_t)val1 == val1) { |
| if (opc == -1) { |
| tcg_out8(s, OPC_JMP_short); |
| } else { |
| tcg_out8(s, OPC_JCC_short + opc); |
| } |
| tcg_out8(s, val1); |
| } else { |
| tcg_debug_assert(!small); |
| if (opc == -1) { |
| tcg_out8(s, OPC_JMP_long); |
| tcg_out32(s, val - 5); |
| } else { |
| tcg_out_opc(s, OPC_JCC_long + opc, 0, 0, 0); |
| tcg_out32(s, val - 6); |
| } |
| } |
| } else if (small) { |
| if (opc == -1) { |
| tcg_out8(s, OPC_JMP_short); |
| } else { |
| tcg_out8(s, OPC_JCC_short + opc); |
| } |
| tcg_out_reloc(s, s->code_ptr, R_386_PC8, l, -1); |
| s->code_ptr += 1; |
| } else { |
| if (opc == -1) { |
| tcg_out8(s, OPC_JMP_long); |
| } else { |
| tcg_out_opc(s, OPC_JCC_long + opc, 0, 0, 0); |
| } |
| tcg_out_reloc(s, s->code_ptr, R_386_PC32, l, -4); |
| s->code_ptr += 4; |
| } |
| } |
| |
| static void tcg_out_cmp(TCGContext *s, TCGArg arg1, TCGArg arg2, |
| int const_arg2, int rexw) |
| { |
| if (const_arg2) { |
| if (arg2 == 0) { |
| /* test r, r */ |
| tcg_out_modrm(s, OPC_TESTL + rexw, arg1, arg1); |
| } else { |
| tgen_arithi(s, ARITH_CMP + rexw, arg1, arg2, 0); |
| } |
| } else { |
| tgen_arithr(s, ARITH_CMP + rexw, arg1, arg2); |
| } |
| } |
| |
| static void tcg_out_brcond32(TCGContext *s, TCGCond cond, |
| TCGArg arg1, TCGArg arg2, int const_arg2, |
| TCGLabel *label, int small) |
| { |
| tcg_out_cmp(s, arg1, arg2, const_arg2, 0); |
| tcg_out_jxx(s, tcg_cond_to_jcc[cond], label, small); |
| } |
| |
| #if TCG_TARGET_REG_BITS == 64 |
| static void tcg_out_brcond64(TCGContext *s, TCGCond cond, |
| TCGArg arg1, TCGArg arg2, int const_arg2, |
| TCGLabel *label, int small) |
| { |
| tcg_out_cmp(s, arg1, arg2, const_arg2, P_REXW); |
| tcg_out_jxx(s, tcg_cond_to_jcc[cond], label, small); |
| } |
| #else |
| /* XXX: we implement it at the target level to avoid having to |
| handle cross basic blocks temporaries */ |
| static void tcg_out_brcond2(TCGContext *s, const TCGArg *args, |
| const int *const_args, int small) |
| { |
| TCGLabel *label_next = gen_new_label(); |
| TCGLabel *label_this = arg_label(args[5]); |
| |
| switch(args[4]) { |
| case TCG_COND_EQ: |
| tcg_out_brcond32(s, TCG_COND_NE, args[0], args[2], const_args[2], |
| label_next, 1); |
| tcg_out_brcond32(s, TCG_COND_EQ, args[1], args[3], const_args[3], |
| label_this, small); |
| break; |
| case TCG_COND_NE: |
| tcg_out_brcond32(s, TCG_COND_NE, args[0], args[2], const_args[2], |
| label_this, small); |
| tcg_out_brcond32(s, TCG_COND_NE, args[1], args[3], const_args[3], |
| label_this, small); |
| break; |
| case TCG_COND_LT: |
| tcg_out_brcond32(s, TCG_COND_LT, args[1], args[3], const_args[3], |
| label_this, small); |
| tcg_out_jxx(s, JCC_JNE, label_next, 1); |
| tcg_out_brcond32(s, TCG_COND_LTU, args[0], args[2], const_args[2], |
| label_this, small); |
| break; |
| case TCG_COND_LE: |
| tcg_out_brcond32(s, TCG_COND_LT, args[1], args[3], const_args[3], |
| label_this, small); |
| tcg_out_jxx(s, JCC_JNE, label_next, 1); |
| tcg_out_brcond32(s, TCG_COND_LEU, args[0], args[2], const_args[2], |
| label_this, small); |
| break; |
| case TCG_COND_GT: |
| tcg_out_brcond32(s, TCG_COND_GT, args[1], args[3], const_args[3], |
| label_this, small); |
| tcg_out_jxx(s, JCC_JNE, label_next, 1); |
| tcg_out_brcond32(s, TCG_COND_GTU, args[0], args[2], const_args[2], |
| label_this, small); |
| break; |
| case TCG_COND_GE: |
| tcg_out_brcond32(s, TCG_COND_GT, args[1], args[3], const_args[3], |
| label_this, small); |
| tcg_out_jxx(s, JCC_JNE, label_next, 1); |
| tcg_out_brcond32(s, TCG_COND_GEU, args[0], args[2], const_args[2], |
| label_this, small); |
| break; |
| case TCG_COND_LTU: |
| tcg_out_brcond32(s, TCG_COND_LTU, args[1], args[3], const_args[3], |
| label_this, small); |
| tcg_out_jxx(s, JCC_JNE, label_next, 1); |
| tcg_out_brcond32(s, TCG_COND_LTU, args[0], args[2], const_args[2], |
| label_this, small); |
| break; |
| case TCG_COND_LEU: |
| tcg_out_brcond32(s, TCG_COND_LTU, args[1], args[3], const_args[3], |
| label_this, small); |
| tcg_out_jxx(s, JCC_JNE, label_next, 1); |
| tcg_out_brcond32(s, TCG_COND_LEU, args[0], args[2], const_args[2], |
| label_this, small); |
| break; |
| case TCG_COND_GTU: |
| tcg_out_brcond32(s, TCG_COND_GTU, args[1], args[3], const_args[3], |
| label_this, small); |
| tcg_out_jxx(s, JCC_JNE, label_next, 1); |
| tcg_out_brcond32(s, TCG_COND_GTU, args[0], args[2], const_args[2], |
| label_this, small); |
| break; |
| case TCG_COND_GEU: |
| tcg_out_brcond32(s, TCG_COND_GTU, args[1], args[3], const_args[3], |
| label_this, small); |
| tcg_out_jxx(s, JCC_JNE, label_next, 1); |
| tcg_out_brcond32(s, TCG_COND_GEU, args[0], args[2], const_args[2], |
| label_this, small); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| tcg_out_label(s, label_next); |
| } |
| #endif |
| |
| static void tcg_out_setcond32(TCGContext *s, TCGCond cond, TCGArg dest, |
| TCGArg arg1, TCGArg arg2, int const_arg2) |
| { |
| tcg_out_cmp(s, arg1, arg2, const_arg2, 0); |
| tcg_out_modrm(s, OPC_SETCC | tcg_cond_to_jcc[cond], 0, dest); |
| tcg_out_ext8u(s, dest, dest); |
| } |
| |
| #if TCG_TARGET_REG_BITS == 64 |
| static void tcg_out_setcond64(TCGContext *s, TCGCond cond, TCGArg dest, |
| TCGArg arg1, TCGArg arg2, int const_arg2) |
| { |
| tcg_out_cmp(s, arg1, arg2, const_arg2, P_REXW); |
| tcg_out_modrm(s, OPC_SETCC | tcg_cond_to_jcc[cond], 0, dest); |
| tcg_out_ext8u(s, dest, dest); |
| } |
| #else |
| static void tcg_out_setcond2(TCGContext *s, const TCGArg *args, |
| const int *const_args) |
| { |
| TCGArg new_args[6]; |
| TCGLabel *label_true, *label_over; |
| |
| memcpy(new_args, args+1, 5*sizeof(TCGArg)); |
| |
| if (args[0] == args[1] || args[0] == args[2] |
| || (!const_args[3] && args[0] == args[3]) |
| || (!const_args[4] && args[0] == args[4])) { |
| /* When the destination overlaps with one of the argument |
| registers, don't do anything tricky. */ |
| label_true = gen_new_label(); |
| label_over = gen_new_label(); |
| |
| new_args[5] = label_arg(label_true); |
| tcg_out_brcond2(s, new_args, const_args+1, 1); |
| |
| tcg_out_movi(s, TCG_TYPE_I32, args[0], 0); |
| tcg_out_jxx(s, JCC_JMP, label_over, 1); |
| tcg_out_label(s, label_true); |
| |
| tcg_out_movi(s, TCG_TYPE_I32, args[0], 1); |
| tcg_out_label(s, label_over); |
| } else { |
| /* When the destination does not overlap one of the arguments, |
| clear the destination first, jump if cond false, and emit an |
| increment in the true case. This results in smaller code. */ |
| |
| tcg_out_movi(s, TCG_TYPE_I32, args[0], 0); |
| |
| label_over = gen_new_label(); |
| new_args[4] = tcg_invert_cond(new_args[4]); |
| new_args[5] = label_arg(label_over); |
| tcg_out_brcond2(s, new_args, const_args+1, 1); |
| |
| tgen_arithi(s, ARITH_ADD, args[0], 1, 0); |
| tcg_out_label(s, label_over); |
| } |
| } |
| #endif |
| |
| static void tcg_out_cmov(TCGContext *s, TCGCond cond, int rexw, |
| TCGReg dest, TCGReg v1) |
| { |
| if (have_cmov) { |
| tcg_out_modrm(s, OPC_CMOVCC | tcg_cond_to_jcc[cond] | rexw, dest, v1); |
| } else { |
| TCGLabel *over = gen_new_label(); |
| tcg_out_jxx(s, tcg_cond_to_jcc[tcg_invert_cond(cond)], over, 1); |
| tcg_out_mov(s, TCG_TYPE_I32, dest, v1); |
| tcg_out_label(s, over); |
| } |
| } |
| |
| static void tcg_out_movcond32(TCGContext *s, TCGCond cond, TCGReg dest, |
| TCGReg c1, TCGArg c2, int const_c2, |
| TCGReg v1) |
| { |
| tcg_out_cmp(s, c1, c2, const_c2, 0); |
| tcg_out_cmov(s, cond, 0, dest, v1); |
| } |
| |
| #if TCG_TARGET_REG_BITS == 64 |
| static void tcg_out_movcond64(TCGContext *s, TCGCond cond, TCGReg dest, |
| TCGReg c1, TCGArg c2, int const_c2, |
| TCGReg v1) |
| { |
| tcg_out_cmp(s, c1, c2, const_c2, P_REXW); |
| tcg_out_cmov(s, cond, P_REXW, dest, v1); |
| } |
| #endif |
| |
| static void tcg_out_ctz(TCGContext *s, int rexw, TCGReg dest, TCGReg arg1, |
| TCGArg arg2, bool const_a2) |
| { |
| if (have_bmi1) { |
| tcg_out_modrm(s, OPC_TZCNT + rexw, dest, arg1); |
| if (const_a2) { |
| tcg_debug_assert(arg2 == (rexw ? 64 : 32)); |
| } else { |
| tcg_debug_assert(dest != arg2); |
| tcg_out_cmov(s, TCG_COND_LTU, rexw, dest, arg2); |
| } |
| } else { |
| tcg_debug_assert(dest != arg2); |
| tcg_out_modrm(s, OPC_BSF + rexw, dest, arg1); |
| tcg_out_cmov(s, TCG_COND_EQ, rexw, dest, arg2); |
| } |
| } |
| |
| static void tcg_out_clz(TCGContext *s, int rexw, TCGReg dest, TCGReg arg1, |
| TCGArg arg2, bool const_a2) |
| { |
| if (have_lzcnt) { |
| tcg_out_modrm(s, OPC_LZCNT + rexw, dest, arg1); |
| if (const_a2) { |
| tcg_debug_assert(arg2 == (rexw ? 64 : 32)); |
| } else { |
| tcg_debug_assert(dest != arg2); |
| tcg_out_cmov(s, TCG_COND_LTU, rexw, dest, arg2); |
| } |
| } else { |
| tcg_debug_assert(!const_a2); |
| tcg_debug_assert(dest != arg1); |
| tcg_debug_assert(dest != arg2); |
| |
| /* Recall that the output of BSR is the index not the count. */ |
| tcg_out_modrm(s, OPC_BSR + rexw, dest, arg1); |
| tgen_arithi(s, ARITH_XOR + rexw, dest, rexw ? 63 : 31, 0); |
| |
| /* Since we have destroyed the flags from BSR, we have to re-test. */ |
| tcg_out_cmp(s, arg1, 0, 1, rexw); |
| tcg_out_cmov(s, TCG_COND_EQ, rexw, dest, arg2); |
| } |
| } |
| |
| static void tcg_out_branch(TCGContext *s, int call, const tcg_insn_unit *dest) |
| { |
| intptr_t disp = tcg_pcrel_diff(s, dest) - 5; |
| |
| if (disp == (int32_t)disp) { |
| tcg_out_opc(s, call ? OPC_CALL_Jz : OPC_JMP_long, 0, 0, 0); |
| tcg_out32(s, disp); |
| } else { |
| /* rip-relative addressing into the constant pool. |
| This is 6 + 8 = 14 bytes, as compared to using an |
| immediate load 10 + 6 = 16 bytes, plus we may |
| be able to re-use the pool constant for more calls. */ |
| tcg_out_opc(s, OPC_GRP5, 0, 0, 0); |
| tcg_out8(s, (call ? EXT5_CALLN_Ev : EXT5_JMPN_Ev) << 3 | 5); |
| new_pool_label(s, (uintptr_t)dest, R_386_PC32, s->code_ptr, -4); |
| tcg_out32(s, 0); |
| } |
| } |
| |
| static void tcg_out_call(TCGContext *s, const tcg_insn_unit *dest, |
| const TCGHelperInfo *info) |
| { |
| tcg_out_branch(s, 1, dest); |
| |
| #ifndef _WIN32 |
| if (TCG_TARGET_REG_BITS == 32 && info->out_kind == TCG_CALL_RET_BY_REF) { |
| /* |
| * The sysv i386 abi for struct return places a reference as the |
| * first argument of the stack, and pops that argument with the |
| * return statement. Since we want to retain the aligned stack |
| * pointer for the callee, we do not want to actually push that |
| * argument before the call but rely on the normal store to the |
| * stack slot. But we do need to compensate for the pop in order |
| * to reset our correct stack pointer value. |
| * Pushing a garbage value back onto the stack is quickest. |
| */ |
| tcg_out_push(s, TCG_REG_EAX); |
| } |
| #endif |
| } |
| |
| static void tcg_out_jmp(TCGContext *s, const tcg_insn_unit *dest) |
| { |
| tcg_out_branch(s, 0, dest); |
| } |
| |
| static void tcg_out_nopn(TCGContext *s, int n) |
| { |
| int i; |
| /* Emit 1 or 2 operand size prefixes for the standard one byte nop, |
| * "xchg %eax,%eax", forming "xchg %ax,%ax". All cores accept the |
| * duplicate prefix, and all of the interesting recent cores can |
| * decode and discard the duplicates in a single cycle. |
| */ |
| tcg_debug_assert(n >= 1); |
| for (i = 1; i < n; ++i) { |
| tcg_out8(s, 0x66); |
| } |
| tcg_out8(s, 0x90); |
| } |
| |
| /* Test register R vs immediate bits I, setting Z flag for EQ/NE. */ |
| static void __attribute__((unused)) |
| tcg_out_testi(TCGContext *s, TCGReg r, uint32_t i) |
| { |
| /* |
| * This is used for testing alignment, so we can usually use testb. |
| * For i686, we have to use testl for %esi/%edi. |
| */ |
| if (i <= 0xff && (TCG_TARGET_REG_BITS == 64 || r < 4)) { |
| tcg_out_modrm(s, OPC_GRP3_Eb | P_REXB_RM, EXT3_TESTi, r); |
| tcg_out8(s, i); |
| } else { |
| tcg_out_modrm(s, OPC_GRP3_Ev, EXT3_TESTi, r); |
| tcg_out32(s, i); |
| } |
| } |
| |
| typedef struct { |
| TCGReg base; |
| int index; |
| int ofs; |
| int seg; |
| TCGAtomAlign aa; |
| } HostAddress; |
| |
| bool tcg_target_has_memory_bswap(MemOp memop) |
| { |
| TCGAtomAlign aa; |
| |
| if (!have_movbe) { |
| return false; |
| } |
| if ((memop & MO_SIZE) < MO_128) { |
| return true; |
| } |
| |
| /* |
| * Reject 16-byte memop with 16-byte atomicity, i.e. VMOVDQA, |
| * but do allow a pair of 64-bit operations, i.e. MOVBEQ. |
| */ |
| aa = atom_and_align_for_opc(tcg_ctx, memop, MO_ATOM_IFALIGN, true); |
| return aa.atom < MO_128; |
| } |
| |
| /* |
| * Because i686 has no register parameters and because x86_64 has xchg |
| * to handle addr/data register overlap, we have placed all input arguments |
| * before we need might need a scratch reg. |
| * |
| * Even then, a scratch is only needed for l->raddr. Rather than expose |
| * a general-purpose scratch when we don't actually know it's available, |
| * use the ra_gen hook to load into RAX if needed. |
| */ |
| #if TCG_TARGET_REG_BITS == 64 |
| static TCGReg ldst_ra_gen(TCGContext *s, const TCGLabelQemuLdst *l, int arg) |
| { |
| if (arg < 0) { |
| arg = TCG_REG_RAX; |
| } |
| tcg_out_movi(s, TCG_TYPE_PTR, arg, (uintptr_t)l->raddr); |
| return arg; |
| } |
| static const TCGLdstHelperParam ldst_helper_param = { |
| .ra_gen = ldst_ra_gen |
| }; |
| #else |
| static const TCGLdstHelperParam ldst_helper_param = { }; |
| #endif |
| |
| static void tcg_out_vec_to_pair(TCGContext *s, TCGType type, |
| TCGReg l, TCGReg h, TCGReg v) |
| { |
| int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; |
| |
| /* vpmov{d,q} %v, %l */ |
| tcg_out_vex_modrm(s, OPC_MOVD_EyVy + rexw, v, 0, l); |
| /* vpextr{d,q} $1, %v, %h */ |
| tcg_out_vex_modrm(s, OPC_PEXTRD + rexw, v, 0, h); |
| tcg_out8(s, 1); |
| } |
| |
| static void tcg_out_pair_to_vec(TCGContext *s, TCGType type, |
| TCGReg v, TCGReg l, TCGReg h) |
| { |
| int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; |
| |
| /* vmov{d,q} %l, %v */ |
| tcg_out_vex_modrm(s, OPC_MOVD_VyEy + rexw, v, 0, l); |
| /* vpinsr{d,q} $1, %h, %v, %v */ |
| tcg_out_vex_modrm(s, OPC_PINSRD + rexw, v, v, h); |
| tcg_out8(s, 1); |
| } |
| |
| /* |
| * Generate code for the slow path for a load at the end of block |
| */ |
| static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *l) |
| { |
| MemOp opc = get_memop(l->oi); |
| tcg_insn_unit **label_ptr = &l->label_ptr[0]; |
| |
| /* resolve label address */ |
| tcg_patch32(label_ptr[0], s->code_ptr - label_ptr[0] - 4); |
| if (label_ptr[1]) { |
| tcg_patch32(label_ptr[1], s->code_ptr - label_ptr[1] - 4); |
| } |
| |
| tcg_out_ld_helper_args(s, l, &ldst_helper_param); |
| tcg_out_branch(s, 1, qemu_ld_helpers[opc & MO_SIZE]); |
| tcg_out_ld_helper_ret(s, l, false, &ldst_helper_param); |
| |
| tcg_out_jmp(s, l->raddr); |
| return true; |
| } |
| |
| /* |
| * Generate code for the slow path for a store at the end of block |
| */ |
| static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *l) |
| { |
| MemOp opc = get_memop(l->oi); |
| tcg_insn_unit **label_ptr = &l->label_ptr[0]; |
| |
| /* resolve label address */ |
| tcg_patch32(label_ptr[0], s->code_ptr - label_ptr[0] - 4); |
| if (label_ptr[1]) { |
| tcg_patch32(label_ptr[1], s->code_ptr - label_ptr[1] - 4); |
| } |
| |
| tcg_out_st_helper_args(s, l, &ldst_helper_param); |
| tcg_out_branch(s, 1, qemu_st_helpers[opc & MO_SIZE]); |
| |
| tcg_out_jmp(s, l->raddr); |
| return true; |
| } |
| |
| #ifndef CONFIG_SOFTMMU |
| static HostAddress x86_guest_base = { |
| .index = -1 |
| }; |
| |
| #if defined(__x86_64__) && defined(__linux__) |
| # include <asm/prctl.h> |
| # include <sys/prctl.h> |
| int arch_prctl(int code, unsigned long addr); |
| static inline int setup_guest_base_seg(void) |
| { |
| if (arch_prctl(ARCH_SET_GS, guest_base) == 0) { |
| return P_GS; |
| } |
| return 0; |
| } |
| #elif defined(__x86_64__) && \ |
| (defined (__FreeBSD__) || defined (__FreeBSD_kernel__)) |
| # include <machine/sysarch.h> |
| static inline int setup_guest_base_seg(void) |
| { |
| if (sysarch(AMD64_SET_GSBASE, &guest_base) == 0) { |
| return P_GS; |
| } |
| return 0; |
| } |
| #else |
| static inline int setup_guest_base_seg(void) |
| { |
| return 0; |
| } |
| #endif /* setup_guest_base_seg */ |
| #endif /* !SOFTMMU */ |
| |
| #define MIN_TLB_MASK_TABLE_OFS INT_MIN |
| |
| /* |
| * For softmmu, perform the TLB load and compare. |
| * For useronly, perform any required alignment tests. |
| * In both cases, return a TCGLabelQemuLdst structure if the slow path |
| * is required and fill in @h with the host address for the fast path. |
| */ |
| static TCGLabelQemuLdst *prepare_host_addr(TCGContext *s, HostAddress *h, |
| TCGReg addrlo, TCGReg addrhi, |
| MemOpIdx oi, bool is_ld) |
| { |
| TCGLabelQemuLdst *ldst = NULL; |
| MemOp opc = get_memop(oi); |
| MemOp s_bits = opc & MO_SIZE; |
| unsigned a_mask; |
| |
| #ifdef CONFIG_SOFTMMU |
| h->index = TCG_REG_L0; |
| h->ofs = 0; |
| h->seg = 0; |
| #else |
| *h = x86_guest_base; |
| #endif |
| h->base = addrlo; |
| h->aa = atom_and_align_for_opc(s, opc, MO_ATOM_IFALIGN, s_bits == MO_128); |
| a_mask = (1 << h->aa.align) - 1; |
| |
| #ifdef CONFIG_SOFTMMU |
| int cmp_ofs = is_ld ? offsetof(CPUTLBEntry, addr_read) |
| : offsetof(CPUTLBEntry, addr_write); |
| TCGType ttype = TCG_TYPE_I32; |
| TCGType tlbtype = TCG_TYPE_I32; |
| int trexw = 0, hrexw = 0, tlbrexw = 0; |
| unsigned mem_index = get_mmuidx(oi); |
| unsigned s_mask = (1 << s_bits) - 1; |
| int fast_ofs = tlb_mask_table_ofs(s, mem_index); |
| int tlb_mask; |
| |
| ldst = new_ldst_label(s); |
| ldst->is_ld = is_ld; |
| ldst->oi = oi; |
| ldst->addrlo_reg = addrlo; |
| ldst->addrhi_reg = addrhi; |
| |
| if (TCG_TARGET_REG_BITS == 64) { |
| ttype = s->addr_type; |
| trexw = (ttype == TCG_TYPE_I32 ? 0 : P_REXW); |
| if (TCG_TYPE_PTR == TCG_TYPE_I64) { |
| hrexw = P_REXW; |
| if (s->page_bits + s->tlb_dyn_max_bits > 32) { |
| tlbtype = TCG_TYPE_I64; |
| tlbrexw = P_REXW; |
| } |
| } |
| } |
| |
| tcg_out_mov(s, tlbtype, TCG_REG_L0, addrlo); |
| tcg_out_shifti(s, SHIFT_SHR + tlbrexw, TCG_REG_L0, |
| s->page_bits - CPU_TLB_ENTRY_BITS); |
| |
| tcg_out_modrm_offset(s, OPC_AND_GvEv + trexw, TCG_REG_L0, TCG_AREG0, |
| fast_ofs + offsetof(CPUTLBDescFast, mask)); |
| |
| tcg_out_modrm_offset(s, OPC_ADD_GvEv + hrexw, TCG_REG_L0, TCG_AREG0, |
| fast_ofs + offsetof(CPUTLBDescFast, table)); |
| |
| /* |
| * If the required alignment is at least as large as the access, simply |
| * copy the address and mask. For lesser alignments, check that we don't |
| * cross pages for the complete access. |
| */ |
| if (a_mask >= s_mask) { |
| tcg_out_mov(s, ttype, TCG_REG_L1, addrlo); |
| } else { |
| tcg_out_modrm_offset(s, OPC_LEA + trexw, TCG_REG_L1, |
| addrlo, s_mask - a_mask); |
| } |
| tlb_mask = s->page_mask | a_mask; |
| tgen_arithi(s, ARITH_AND + trexw, TCG_REG_L1, tlb_mask, 0); |
| |
| /* cmp 0(TCG_REG_L0), TCG_REG_L1 */ |
| tcg_out_modrm_offset(s, OPC_CMP_GvEv + trexw, |
| TCG_REG_L1, TCG_REG_L0, cmp_ofs); |
| |
| /* jne slow_path */ |
| tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0); |
| ldst->label_ptr[0] = s->code_ptr; |
| s->code_ptr += 4; |
| |
| if (TCG_TARGET_REG_BITS == 32 && s->addr_type == TCG_TYPE_I64) { |
| /* cmp 4(TCG_REG_L0), addrhi */ |
| tcg_out_modrm_offset(s, OPC_CMP_GvEv, addrhi, TCG_REG_L0, cmp_ofs + 4); |
| |
| /* jne slow_path */ |
| tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0); |
| ldst->label_ptr[1] = s->code_ptr; |
| s->code_ptr += 4; |
| } |
| |
| /* TLB Hit. */ |
| tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_L0, TCG_REG_L0, |
| offsetof(CPUTLBEntry, addend)); |
| #else |
| if (a_mask) { |
| ldst = new_ldst_label(s); |
| |
| ldst->is_ld = is_ld; |
| ldst->oi = oi; |
| ldst->addrlo_reg = addrlo; |
| ldst->addrhi_reg = addrhi; |
| |
| tcg_out_testi(s, addrlo, a_mask); |
| /* jne slow_path */ |
| tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0); |
| ldst->label_ptr[0] = s->code_ptr; |
| s->code_ptr += 4; |
| } |
| #endif |
| |
| return ldst; |
| } |
| |
| static void tcg_out_qemu_ld_direct(TCGContext *s, TCGReg datalo, TCGReg datahi, |
| HostAddress h, TCGType type, MemOp memop) |
| { |
| bool use_movbe = false; |
| int rexw = (type == TCG_TYPE_I32 ? 0 : P_REXW); |
| int movop = OPC_MOVL_GvEv; |
| |
| /* Do big-endian loads with movbe. */ |
| if (memop & MO_BSWAP) { |
| tcg_debug_assert(have_movbe); |
| use_movbe = true; |
| movop = OPC_MOVBE_GyMy; |
| } |
| |
| switch (memop & MO_SSIZE) { |
| case MO_UB: |
| tcg_out_modrm_sib_offset(s, OPC_MOVZBL + h.seg, datalo, |
| h.base, h.index, 0, h.ofs); |
| break; |
| case MO_SB: |
| tcg_out_modrm_sib_offset(s, OPC_MOVSBL + rexw + h.seg, datalo, |
| h.base, h.index, 0, h.ofs); |
| break; |
| case MO_UW: |
| if (use_movbe) { |
| /* There is no extending movbe; only low 16-bits are modified. */ |
| if (datalo != h.base && datalo != h.index) { |
| /* XOR breaks dependency chains. */ |
| tgen_arithr(s, ARITH_XOR, datalo, datalo); |
| tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg, |
| datalo, h.base, h.index, 0, h.ofs); |
| } else { |
| tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg, |
| datalo, h.base, h.index, 0, h.ofs); |
| tcg_out_ext16u(s, datalo, datalo); |
| } |
| } else { |
| tcg_out_modrm_sib_offset(s, OPC_MOVZWL + h.seg, datalo, |
| h.base, h.index, 0, h.ofs); |
| } |
| break; |
| case MO_SW: |
| if (use_movbe) { |
| tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg, |
| datalo, h.base, h.index, 0, h.ofs); |
| tcg_out_ext16s(s, type, datalo, datalo); |
| } else { |
| tcg_out_modrm_sib_offset(s, OPC_MOVSWL + rexw + h.seg, |
| datalo, h.base, h.index, 0, h.ofs); |
| } |
| break; |
| case MO_UL: |
| tcg_out_modrm_sib_offset(s, movop + h.seg, datalo, |
| h.base, h.index, 0, h.ofs); |
| break; |
| #if TCG_TARGET_REG_BITS == 64 |
| case MO_SL: |
| if (use_movbe) { |
| tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + h.seg, datalo, |
| h.base, h.index, 0, h.ofs); |
| tcg_out_ext32s(s, datalo, datalo); |
| } else { |
| tcg_out_modrm_sib_offset(s, OPC_MOVSLQ + h.seg, datalo, |
| h.base, h.index, 0, h.ofs); |
| } |
| break; |
| #endif |
| case MO_UQ: |
| if (TCG_TARGET_REG_BITS == 64) { |
| tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo, |
| h.base, h.index, 0, h.ofs); |
| break; |
| } |
| if (use_movbe) { |
| TCGReg t = datalo; |
| datalo = datahi; |
| datahi = t; |
| } |
| if (h.base == datalo || h.index == datalo) { |
| tcg_out_modrm_sib_offset(s, OPC_LEA, datahi, |
| h.base, h.index, 0, h.ofs); |
| tcg_out_modrm_offset(s, movop + h.seg, datalo, datahi, 0); |
| tcg_out_modrm_offset(s, movop + h.seg, datahi, datahi, 4); |
| } else { |
| tcg_out_modrm_sib_offset(s, movop + h.seg, datalo, |
| h.base, h.index, 0, h.ofs); |
| tcg_out_modrm_sib_offset(s, movop + h.seg, datahi, |
| h.base, h.index, 0, h.ofs + 4); |
| } |
| break; |
| |
| case MO_128: |
| tcg_debug_assert(TCG_TARGET_REG_BITS == 64); |
| |
| /* |
| * Without 16-byte atomicity, use integer regs. |
| * That is where we want the data, and it allows bswaps. |
| */ |
| if (h.aa.atom < MO_128) { |
| if (use_movbe) { |
| TCGReg t = datalo; |
| datalo = datahi; |
| datahi = t; |
| } |
| if (h.base == datalo || h.index == datalo) { |
| tcg_out_modrm_sib_offset(s, OPC_LEA + P_REXW, datahi, |
| h.base, h.index, 0, h.ofs); |
| tcg_out_modrm_offset(s, movop + P_REXW + h.seg, |
| datalo, datahi, 0); |
| tcg_out_modrm_offset(s, movop + P_REXW + h.seg, |
| datahi, datahi, 8); |
| } else { |
| tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo, |
| h.base, h.index, 0, h.ofs); |
| tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datahi, |
| h.base, h.index, 0, h.ofs + 8); |
| } |
| break; |
| } |
| |
| /* |
| * With 16-byte atomicity, a vector load is required. |
| * If we already have 16-byte alignment, then VMOVDQA always works. |
| * Else if VMOVDQU has atomicity with dynamic alignment, use that. |
| * Else use we require a runtime test for alignment for VMOVDQA; |
| * use VMOVDQU on the unaligned nonatomic path for simplicity. |
| */ |
| if (h.aa.align >= MO_128) { |
| tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_VxWx + h.seg, |
| TCG_TMP_VEC, 0, |
| h.base, h.index, 0, h.ofs); |
| } else if (cpuinfo & CPUINFO_ATOMIC_VMOVDQU) { |
| tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_VxWx + h.seg, |
| TCG_TMP_VEC, 0, |
| h.base, h.index, 0, h.ofs); |
| } else { |
| TCGLabel *l1 = gen_new_label(); |
| TCGLabel *l2 = gen_new_label(); |
| |
| tcg_out_testi(s, h.base, 15); |
| tcg_out_jxx(s, JCC_JNE, l1, true); |
| |
| tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_VxWx + h.seg, |
| TCG_TMP_VEC, 0, |
| h.base, h.index, 0, h.ofs); |
| tcg_out_jxx(s, JCC_JMP, l2, true); |
| |
| tcg_out_label(s, l1); |
| tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_VxWx + h.seg, |
| TCG_TMP_VEC, 0, |
| h.base, h.index, 0, h.ofs); |
| tcg_out_label(s, l2); |
| } |
| tcg_out_vec_to_pair(s, TCG_TYPE_I64, datalo, datahi, TCG_TMP_VEC); |
| break; |
| |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static void tcg_out_qemu_ld(TCGContext *s, TCGReg datalo, TCGReg datahi, |
| TCGReg addrlo, TCGReg addrhi, |
| MemOpIdx oi, TCGType data_type) |
| { |
| TCGLabelQemuLdst *ldst; |
| HostAddress h; |
| |
| ldst = prepare_host_addr(s, &h, addrlo, addrhi, oi, true); |
| tcg_out_qemu_ld_direct(s, datalo, datahi, h, data_type, get_memop(oi)); |
| |
| if (ldst) { |
| ldst->type = data_type; |
| ldst->datalo_reg = datalo; |
| ldst->datahi_reg = datahi; |
| ldst->raddr = tcg_splitwx_to_rx(s->code_ptr); |
| } |
| } |
| |
| static void tcg_out_qemu_st_direct(TCGContext *s, TCGReg datalo, TCGReg datahi, |
| HostAddress h, MemOp memop) |
| { |
| bool use_movbe = false; |
| int movop = OPC_MOVL_EvGv; |
| |
| /* |
| * Do big-endian stores with movbe or softmmu. |
| * User-only without movbe will have its swapping done generically. |
| */ |
| if (memop & MO_BSWAP) { |
| tcg_debug_assert(have_movbe); |
| use_movbe = true; |
| movop = OPC_MOVBE_MyGy; |
| } |
| |
| switch (memop & MO_SIZE) { |
| case MO_8: |
| /* This is handled with constraints on INDEX_op_qemu_st8_i32. */ |
| tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || datalo < 4); |
| tcg_out_modrm_sib_offset(s, OPC_MOVB_EvGv + P_REXB_R + h.seg, |
| datalo, h.base, h.index, 0, h.ofs); |
| break; |
| case MO_16: |
| tcg_out_modrm_sib_offset(s, movop + P_DATA16 + h.seg, datalo, |
| h.base, h.index, 0, h.ofs); |
| break; |
| case MO_32: |
| tcg_out_modrm_sib_offset(s, movop + h.seg, datalo, |
| h.base, h.index, 0, h.ofs); |
| break; |
| case MO_64: |
| if (TCG_TARGET_REG_BITS == 64) { |
| tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo, |
| h.base, h.index, 0, h.ofs); |
| } else { |
| if (use_movbe) { |
| TCGReg t = datalo; |
| datalo = datahi; |
| datahi = t; |
| } |
| tcg_out_modrm_sib_offset(s, movop + h.seg, datalo, |
| h.base, h.index, 0, h.ofs); |
| tcg_out_modrm_sib_offset(s, movop + h.seg, datahi, |
| h.base, h.index, 0, h.ofs + 4); |
| } |
| break; |
| |
| case MO_128: |
| tcg_debug_assert(TCG_TARGET_REG_BITS == 64); |
| |
| /* |
| * Without 16-byte atomicity, use integer regs. |
| * That is where we have the data, and it allows bswaps. |
| */ |
| if (h.aa.atom < MO_128) { |
| if (use_movbe) { |
| TCGReg t = datalo; |
| datalo = datahi; |
| datahi = t; |
| } |
| tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo, |
| h.base, h.index, 0, h.ofs); |
| tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datahi, |
| h.base, h.index, 0, h.ofs + 8); |
| break; |
| } |
| |
| /* |
| * With 16-byte atomicity, a vector store is required. |
| * If we already have 16-byte alignment, then VMOVDQA always works. |
| * Else if VMOVDQU has atomicity with dynamic alignment, use that. |
| * Else use we require a runtime test for alignment for VMOVDQA; |
| * use VMOVDQU on the unaligned nonatomic path for simplicity. |
| */ |
| tcg_out_pair_to_vec(s, TCG_TYPE_I64, TCG_TMP_VEC, datalo, datahi); |
| if (h.aa.align >= MO_128) { |
| tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_WxVx + h.seg, |
| TCG_TMP_VEC, 0, |
| h.base, h.index, 0, h.ofs); |
| } else if (cpuinfo & CPUINFO_ATOMIC_VMOVDQU) { |
| tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_WxVx + h.seg, |
| TCG_TMP_VEC, 0, |
| h.base, h.index, 0, h.ofs); |
| } else { |
| TCGLabel *l1 = gen_new_label(); |
| TCGLabel *l2 = gen_new_label(); |
| |
| tcg_out_testi(s, h.base, 15); |
| tcg_out_jxx(s, JCC_JNE, l1, true); |
| |
| tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_WxVx + h.seg, |
| TCG_TMP_VEC, 0, |
| h.base, h.index, 0, h.ofs); |
| tcg_out_jxx(s, JCC_JMP, l2, true); |
| |
| tcg_out_label(s, l1); |
| tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_WxVx + h.seg, |
| TCG_TMP_VEC, 0, |
| h.base, h.index, 0, h.ofs); |
| tcg_out_label(s, l2); |
| } |
| break; |
| |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static void tcg_out_qemu_st(TCGContext *s, TCGReg datalo, TCGReg datahi, |
| TCGReg addrlo, TCGReg addrhi, |
| MemOpIdx oi, TCGType data_type) |
| { |
| TCGLabelQemuLdst *ldst; |
| HostAddress h; |
| |
| ldst = prepare_host_addr(s, &h, addrlo, addrhi, oi, false); |
| tcg_out_qemu_st_direct(s, datalo, datahi, h, get_memop(oi)); |
| |
| if (ldst) { |
| ldst->type = data_type; |
| ldst->datalo_reg = datalo; |
| ldst->datahi_reg = datahi; |
| ldst->raddr = tcg_splitwx_to_rx(s->code_ptr); |
| } |
| } |
| |
| static void tcg_out_exit_tb(TCGContext *s, uintptr_t a0) |
| { |
| /* Reuse the zeroing that exists for goto_ptr. */ |
| if (a0 == 0) { |
| tcg_out_jmp(s, tcg_code_gen_epilogue); |
| } else { |
| tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_EAX, a0); |
| tcg_out_jmp(s, tb_ret_addr); |
| } |
| } |
| |
| static void tcg_out_goto_tb(TCGContext *s, int which) |
| { |
| /* |
| * Jump displacement must be aligned for atomic patching; |
| * see if we need to add extra nops before jump |
| */ |
| int gap = QEMU_ALIGN_PTR_UP(s->code_ptr + 1, 4) - s->code_ptr; |
| if (gap != 1) { |
| tcg_out_nopn(s, gap - 1); |
| } |
| tcg_out8(s, OPC_JMP_long); /* jmp im */ |
| set_jmp_insn_offset(s, which); |
| tcg_out32(s, 0); |
| set_jmp_reset_offset(s, which); |
| } |
| |
| void tb_target_set_jmp_target(const TranslationBlock *tb, int n, |
| uintptr_t jmp_rx, uintptr_t jmp_rw) |
| { |
| /* patch the branch destination */ |
| uintptr_t addr = tb->jmp_target_addr[n]; |
| qatomic_set((int32_t *)jmp_rw, addr - (jmp_rx + 4)); |
| /* no need to flush icache explicitly */ |
| } |
| |
| static inline void tcg_out_op(TCGContext *s, TCGOpcode opc, |
| const TCGArg args[TCG_MAX_OP_ARGS], |
| const int const_args[TCG_MAX_OP_ARGS]) |
| { |
| TCGArg a0, a1, a2; |
| int c, const_a2, vexop, rexw = 0; |
| |
| #if TCG_TARGET_REG_BITS == 64 |
| # define OP_32_64(x) \ |
| case glue(glue(INDEX_op_, x), _i64): \ |
| rexw = P_REXW; /* FALLTHRU */ \ |
| case glue(glue(INDEX_op_, x), _i32) |
| #else |
| # define OP_32_64(x) \ |
| case glue(glue(INDEX_op_, x), _i32) |
| #endif |
| |
| /* Hoist the loads of the most common arguments. */ |
| a0 = args[0]; |
| a1 = args[1]; |
| a2 = args[2]; |
| const_a2 = const_args[2]; |
| |
| switch (opc) { |
| case INDEX_op_goto_ptr: |
| /* jmp to the given host address (could be epilogue) */ |
| tcg_out_modrm(s, OPC_GRP5, EXT5_JMPN_Ev, a0); |
| break; |
| case INDEX_op_br: |
| tcg_out_jxx(s, JCC_JMP, arg_label(a0), 0); |
| break; |
| OP_32_64(ld8u): |
| /* Note that we can ignore REXW for the zero-extend to 64-bit. */ |
| tcg_out_modrm_offset(s, OPC_MOVZBL, a0, a1, a2); |
| break; |
| OP_32_64(ld8s): |
| tcg_out_modrm_offset(s, OPC_MOVSBL + rexw, a0, a1, a2); |
| break; |
| OP_32_64(ld16u): |
| /* Note that we can ignore REXW for the zero-extend to 64-bit. */ |
| tcg_out_modrm_offset(s, OPC_MOVZWL, a0, a1, a2); |
| break; |
| OP_32_64(ld16s): |
| tcg_out_modrm_offset(s, OPC_MOVSWL + rexw, a0, a1, a2); |
| break; |
| #if TCG_TARGET_REG_BITS == 64 |
| case INDEX_op_ld32u_i64: |
| #endif |
| case INDEX_op_ld_i32: |
| tcg_out_ld(s, TCG_TYPE_I32, a0, a1, a2); |
| break; |
| |
| OP_32_64(st8): |
| if (const_args[0]) { |
| tcg_out_modrm_offset(s, OPC_MOVB_EvIz, 0, a1, a2); |
| tcg_out8(s, a0); |
| } else { |
| tcg_out_modrm_offset(s, OPC_MOVB_EvGv | P_REXB_R, a0, a1, a2); |
| } |
| break; |
| OP_32_64(st16): |
| if (const_args[0]) { |
| tcg_out_modrm_offset(s, OPC_MOVL_EvIz | P_DATA16, 0, a1, a2); |
| tcg_out16(s, a0); |
| } else { |
| tcg_out_modrm_offset(s, OPC_MOVL_EvGv | P_DATA16, a0, a1, a2); |
| } |
| break; |
| #if TCG_TARGET_REG_BITS == 64 |
| case INDEX_op_st32_i64: |
| #endif |
| case INDEX_op_st_i32: |
| if (const_args[0]) { |
| tcg_out_modrm_offset(s, OPC_MOVL_EvIz, 0, a1, a2); |
| tcg_out32(s, a0); |
| } else { |
| tcg_out_st(s, TCG_TYPE_I32, a0, a1, a2); |
| } |
| break; |
| |
| OP_32_64(add): |
| /* For 3-operand addition, use LEA. */ |
| if (a0 != a1) { |
| TCGArg c3 = 0; |
| if (const_a2) { |
| c3 = a2, a2 = -1; |
| } else if (a0 == a2) { |
| /* Watch out for dest = src + dest, since we've removed |
| the matching constraint on the add. */ |
| tgen_arithr(s, ARITH_ADD + rexw, a0, a1); |
| break; |
| } |
| |
| tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, a2, 0, c3); |
| break; |
| } |
| c = ARITH_ADD; |
| goto gen_arith; |
| OP_32_64(sub): |
| c = ARITH_SUB; |
| goto gen_arith; |
| OP_32_64(and): |
| c = ARITH_AND; |
| goto gen_arith; |
| OP_32_64(or): |
| c = ARITH_OR; |
| goto gen_arith; |
| OP_32_64(xor): |
| c = ARITH_XOR; |
| goto gen_arith; |
| gen_arith: |
| if (const_a2) { |
| tgen_arithi(s, c + rexw, a0, a2, 0); |
| } else { |
| tgen_arithr(s, c + rexw, a0, a2); |
| } |
| break; |
| |
| OP_32_64(andc): |
| if (const_a2) { |
| tcg_out_mov(s, rexw ? TCG_TYPE_I64 : TCG_TYPE_I32, a0, a1); |
| tgen_arithi(s, ARITH_AND + rexw, a0, ~a2, 0); |
| } else { |
| tcg_out_vex_modrm(s, OPC_ANDN + rexw, a0, a2, a1); |
| } |
| break; |
| |
| OP_32_64(mul): |
| if (const_a2) { |
| int32_t val; |
| val = a2; |
| if (val == (int8_t)val) { |
| tcg_out_modrm(s, OPC_IMUL_GvEvIb + rexw, a0, a0); |
| tcg_out8(s, val); |
| } else { |
| tcg_out_modrm(s, OPC_IMUL_GvEvIz + rexw, a0, a0); |
| tcg_out32(s, val); |
| } |
| } else { |
| tcg_out_modrm(s, OPC_IMUL_GvEv + rexw, a0, a2); |
| } |
| break; |
| |
| OP_32_64(div2): |
| tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_IDIV, args[4]); |
| break; |
| OP_32_64(divu2): |
| tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_DIV, args[4]); |
| break; |
| |
| OP_32_64(shl): |
| /* For small constant 3-operand shift, use LEA. */ |
| if (const_a2 && a0 != a1 && (a2 - 1) < 3) { |
| if (a2 - 1 == 0) { |
| /* shl $1,a1,a0 -> lea (a1,a1),a0 */ |
| tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, a1, 0, 0); |
| } else { |
| /* shl $n,a1,a0 -> lea 0(,a1,n),a0 */ |
| tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, -1, a1, a2, 0); |
| } |
| break; |
| } |
| c = SHIFT_SHL; |
| vexop = OPC_SHLX; |
| goto gen_shift_maybe_vex; |
| OP_32_64(shr): |
| c = SHIFT_SHR; |
| vexop = OPC_SHRX; |
| goto gen_shift_maybe_vex; |
| OP_32_64(sar): |
| c = SHIFT_SAR; |
| vexop = OPC_SARX; |
| goto gen_shift_maybe_vex; |
| OP_32_64(rotl): |
| c = SHIFT_ROL; |
| goto gen_shift; |
| OP_32_64(rotr): |
| c = SHIFT_ROR; |
| goto gen_shift; |
| gen_shift_maybe_vex: |
| if (have_bmi2) { |
| if (!const_a2) { |
| tcg_out_vex_modrm(s, vexop + rexw, a0, a2, a1); |
| break; |
| } |
| tcg_out_mov(s, rexw ? TCG_TYPE_I64 : TCG_TYPE_I32, a0, a1); |
| } |
| /* FALLTHRU */ |
| gen_shift: |
| if (const_a2) { |
| tcg_out_shifti(s, c + rexw, a0, a2); |
| } else { |
| tcg_out_modrm(s, OPC_SHIFT_cl + rexw, c, a0); |
| } |
| break; |
| |
| OP_32_64(ctz): |
| tcg_out_ctz(s, rexw, args[0], args[1], args[2], const_args[2]); |
| break; |
| OP_32_64(clz): |
| tcg_out_clz(s, rexw, args[0], args[1], args[2], const_args[2]); |
| break; |
| OP_32_64(ctpop): |
| tcg_out_modrm(s, OPC_POPCNT + rexw, a0, a1); |
| break; |
| |
| case INDEX_op_brcond_i32: |
| tcg_out_brcond32(s, a2, a0, a1, const_args[1], arg_label(args[3]), 0); |
| break; |
| case INDEX_op_setcond_i32: |
| tcg_out_setcond32(s, args[3], a0, a1, a2, const_a2); |
| break; |
| case INDEX_op_movcond_i32: |
| tcg_out_movcond32(s, args[5], a0, a1, a2, const_a2, args[3]); |
| break; |
| |
| OP_32_64(bswap16): |
| if (a2 & TCG_BSWAP_OS) { |
| /* Output must be sign-extended. */ |
| if (rexw) { |
| tcg_out_bswap64(s, a0); |
| tcg_out_shifti(s, SHIFT_SAR + rexw, a0, 48); |
| } else { |
| tcg_out_bswap32(s, a0); |
| tcg_out_shifti(s, SHIFT_SAR, a0, 16); |
| } |
| } else if ((a2 & (TCG_BSWAP_IZ | TCG_BSWAP_OZ)) == TCG_BSWAP_OZ) { |
| /* Output must be zero-extended, but input isn't. */ |
| tcg_out_bswap32(s, a0); |
| tcg_out_shifti(s, SHIFT_SHR, a0, 16); |
| } else { |
| tcg_out_rolw_8(s, a0); |
| } |
| break; |
| OP_32_64(bswap32): |
| tcg_out_bswap32(s, a0); |
| if (rexw && (a2 & TCG_BSWAP_OS)) { |
| tcg_out_ext32s(s, a0, a0); |
| } |
| break; |
| |
| OP_32_64(neg): |
| tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NEG, a0); |
| break; |
| OP_32_64(not): |
| tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, a0); |
| break; |
| |
| case INDEX_op_qemu_ld_a64_i32: |
| if (TCG_TARGET_REG_BITS == 32) { |
| tcg_out_qemu_ld(s, a0, -1, a1, a2, args[3], TCG_TYPE_I32); |
| break; |
| } |
| /* fall through */ |
| case INDEX_op_qemu_ld_a32_i32: |
| tcg_out_qemu_ld(s, a0, -1, a1, -1, a2, TCG_TYPE_I32); |
| break; |
| case INDEX_op_qemu_ld_a32_i64: |
| if (TCG_TARGET_REG_BITS == 64) { |
| tcg_out_qemu_ld(s, a0, -1, a1, -1, a2, TCG_TYPE_I64); |
| } else { |
| tcg_out_qemu_ld(s, a0, a1, a2, -1, args[3], TCG_TYPE_I64); |
| } |
| break; |
| case INDEX_op_qemu_ld_a64_i64: |
| if (TCG_TARGET_REG_BITS == 64) { |
| tcg_out_qemu_ld(s, a0, -1, a1, -1, a2, TCG_TYPE_I64); |
| } else { |
| tcg_out_qemu_ld(s, a0, a1, a2, args[3], args[4], TCG_TYPE_I64); |
| } |
| break; |
| case INDEX_op_qemu_ld_a32_i128: |
| case INDEX_op_qemu_ld_a64_i128: |
| tcg_debug_assert(TCG_TARGET_REG_BITS == 64); |
| tcg_out_qemu_ld(s, a0, a1, a2, -1, args[3], TCG_TYPE_I128); |
| break; |
| |
| case INDEX_op_qemu_st_a64_i32: |
| case INDEX_op_qemu_st8_a64_i32: |
| if (TCG_TARGET_REG_BITS == 32) { |
| tcg_out_qemu_st(s, a0, -1, a1, a2, args[3], TCG_TYPE_I32); |
| break; |
| } |
| /* fall through */ |
| case INDEX_op_qemu_st_a32_i32: |
| case INDEX_op_qemu_st8_a32_i32: |
| tcg_out_qemu_st(s, a0, -1, a1, -1, a2, TCG_TYPE_I32); |
| break; |
| case INDEX_op_qemu_st_a32_i64: |
| if (TCG_TARGET_REG_BITS == 64) { |
| tcg_out_qemu_st(s, a0, -1, a1, -1, a2, TCG_TYPE_I64); |
| } else { |
| tcg_out_qemu_st(s, a0, a1, a2, -1, args[3], TCG_TYPE_I64); |
| } |
| break; |
| case INDEX_op_qemu_st_a64_i64: |
| if (TCG_TARGET_REG_BITS == 64) { |
| tcg_out_qemu_st(s, a0, -1, a1, -1, a2, TCG_TYPE_I64); |
| } else { |
| tcg_out_qemu_st(s, a0, a1, a2, args[3], args[4], TCG_TYPE_I64); |
| } |
| break; |
| case INDEX_op_qemu_st_a32_i128: |
| case INDEX_op_qemu_st_a64_i128: |
| tcg_debug_assert(TCG_TARGET_REG_BITS == 64); |
| tcg_out_qemu_st(s, a0, a1, a2, -1, args[3], TCG_TYPE_I128); |
| break; |
| |
| OP_32_64(mulu2): |
| tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_MUL, args[3]); |
| break; |
| OP_32_64(muls2): |
| tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_IMUL, args[3]); |
| break; |
| OP_32_64(add2): |
| if (const_args[4]) { |
| tgen_arithi(s, ARITH_ADD + rexw, a0, args[4], 1); |
| } else { |
| tgen_arithr(s, ARITH_ADD + rexw, a0, args[4]); |
| } |
| if (const_args[5]) { |
| tgen_arithi(s, ARITH_ADC + rexw, a1, args[5], 1); |
| } else { |
| tgen_arithr(s, ARITH_ADC + rexw, a1, args[5]); |
| } |
| break; |
| OP_32_64(sub2): |
| if (const_args[4]) { |
| tgen_arithi(s, ARITH_SUB + rexw, a0, args[4], 1); |
| } else { |
| tgen_arithr(s, ARITH_SUB + rexw, a0, args[4]); |
| } |
| if (const_args[5]) { |
| tgen_arithi(s, ARITH_SBB + rexw, a1, args[5], 1); |
| } else { |
| tgen_arithr(s, ARITH_SBB + rexw, a1, args[5]); |
| } |
| break; |
| |
| #if TCG_TARGET_REG_BITS == 32 |
| case INDEX_op_brcond2_i32: |
| tcg_out_brcond2(s, args, const_args, 0); |
| break; |
| case INDEX_op_setcond2_i32: |
| tcg_out_setcond2(s, args, const_args); |
| break; |
| #else /* TCG_TARGET_REG_BITS == 64 */ |
| case INDEX_op_ld32s_i64: |
| tcg_out_modrm_offset(s, OPC_MOVSLQ, a0, a1, a2); |
| break; |
| case INDEX_op_ld_i64: |
| tcg_out_ld(s, TCG_TYPE_I64, a0, a1, a2); |
| break; |
| case INDEX_op_st_i64: |
| if (const_args[0]) { |
| tcg_out_modrm_offset(s, OPC_MOVL_EvIz | P_REXW, 0, a1, a2); |
| tcg_out32(s, a0); |
| } else { |
| tcg_out_st(s, TCG_TYPE_I64, a0, a1, a2); |
| } |
| break; |
| |
| case INDEX_op_brcond_i64: |
| tcg_out_brcond64(s, a2, a0, a1, const_args[1], arg_label(args[3]), 0); |
| break; |
| case INDEX_op_setcond_i64: |
| tcg_out_setcond64(s, args[3], a0, a1, a2, const_a2); |
| break; |
| case INDEX_op_movcond_i64: |
| tcg_out_movcond64(s, args[5], a0, a1, a2, const_a2, args[3]); |
| break; |
| |
| case INDEX_op_bswap64_i64: |
| tcg_out_bswap64(s, a0); |
| break; |
| case INDEX_op_extrh_i64_i32: |
| tcg_out_shifti(s, SHIFT_SHR + P_REXW, a0, 32); |
| break; |
| #endif |
| |
| OP_32_64(deposit): |
| if (args[3] == 0 && args[4] == 8) { |
| /* load bits 0..7 */ |
| tcg_out_modrm(s, OPC_MOVB_EvGv | P_REXB_R | P_REXB_RM, a2, a0); |
| } else if (args[3] == 8 && args[4] == 8) { |
| /* load bits 8..15 */ |
| tcg_out_modrm(s, OPC_MOVB_EvGv, a2, a0 + 4); |
| } else if (args[3] == 0 && args[4] == 16) { |
| /* load bits 0..15 */ |
| tcg_out_modrm(s, OPC_MOVL_EvGv | P_DATA16, a2, a0); |
| } else { |
| g_assert_not_reached(); |
| } |
| break; |
| |
| case INDEX_op_extract_i64: |
| if (a2 + args[3] == 32) { |
| /* This is a 32-bit zero-extending right shift. */ |
| tcg_out_mov(s, TCG_TYPE_I32, a0, a1); |
| tcg_out_shifti(s, SHIFT_SHR, a0, a2); |
| break; |
| } |
| /* FALLTHRU */ |
| case INDEX_op_extract_i32: |
| /* On the off-chance that we can use the high-byte registers. |
| Otherwise we emit the same ext16 + shift pattern that we |
| would have gotten from the normal tcg-op.c expansion. */ |
| tcg_debug_assert(a2 == 8 && args[3] == 8); |
| if (a1 < 4 && a0 < 8) { |
| tcg_out_modrm(s, OPC_MOVZBL, a0, a1 + 4); |
| } else { |
| tcg_out_ext16u(s, a0, a1); |
| tcg_out_shifti(s, SHIFT_SHR, a0, 8); |
| } |
| break; |
| |
| case INDEX_op_sextract_i32: |
| /* We don't implement sextract_i64, as we cannot sign-extend to |
| 64-bits without using the REX prefix that explicitly excludes |
| access to the high-byte registers. */ |
| tcg_debug_assert(a2 == 8 && args[3] == 8); |
| if (a1 < 4 && a0 < 8) { |
| tcg_out_modrm(s, OPC_MOVSBL, a0, a1 + 4); |
| } else { |
| tcg_out_ext16s(s, TCG_TYPE_I32, a0, a1); |
| tcg_out_shifti(s, SHIFT_SAR, a0, 8); |
| } |
| break; |
| |
| OP_32_64(extract2): |
| /* Note that SHRD outputs to the r/m operand. */ |
| tcg_out_modrm(s, OPC_SHRD_Ib + rexw, a2, a0); |
| tcg_out8(s, args[3]); |
| break; |
| |
| case INDEX_op_mb: |
| tcg_out_mb(s, a0); |
| break; |
| case INDEX_op_mov_i32: /* Always emitted via tcg_out_mov. */ |
| case INDEX_op_mov_i64: |
| case INDEX_op_call: /* Always emitted via tcg_out_call. */ |
| case INDEX_op_exit_tb: /* Always emitted via tcg_out_exit_tb. */ |
| case INDEX_op_goto_tb: /* Always emitted via tcg_out_goto_tb. */ |
| case INDEX_op_ext8s_i32: /* Always emitted via tcg_reg_alloc_op. */ |
| case INDEX_op_ext8s_i64: |
| case INDEX_op_ext8u_i32: |
| case INDEX_op_ext8u_i64: |
| case INDEX_op_ext16s_i32: |
| case INDEX_op_ext16s_i64: |
| case INDEX_op_ext16u_i32: |
| case INDEX_op_ext16u_i64: |
| case INDEX_op_ext32s_i64: |
| case INDEX_op_ext32u_i64: |
| case INDEX_op_ext_i32_i64: |
| case INDEX_op_extu_i32_i64: |
| case INDEX_op_extrl_i64_i32: |
| default: |
| g_assert_not_reached(); |
| } |
| |
| #undef OP_32_64 |
| } |
| |
| static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, |
| unsigned vecl, unsigned vece, |
| const TCGArg args[TCG_MAX_OP_ARGS], |
| const int const_args[TCG_MAX_OP_ARGS]) |
| { |
| static int const add_insn[4] = { |
| OPC_PADDB, OPC_PADDW, OPC_PADDD, OPC_PADDQ |
| }; |
| static int const ssadd_insn[4] = { |
| OPC_PADDSB, OPC_PADDSW, OPC_UD2, OPC_UD2 |
| }; |
| static int const usadd_insn[4] = { |
| OPC_PADDUB, OPC_PADDUW, OPC_UD2, OPC_UD2 |
| }; |
| static int const sub_insn[4] = { |
| OPC_PSUBB, OPC_PSUBW, OPC_PSUBD, OPC_PSUBQ |
| }; |
| static int const sssub_insn[4] = { |
| OPC_PSUBSB, OPC_PSUBSW, OPC_UD2, OPC_UD2 |
| }; |
| static int const ussub_insn[4] = { |
| OPC_PSUBUB, OPC_PSUBUW, OPC_UD2, OPC_UD2 |
| }; |
| static int const mul_insn[4] = { |
| OPC_UD2, OPC_PMULLW, OPC_PMULLD, OPC_VPMULLQ |
| }; |
| static int const shift_imm_insn[4] = { |
| OPC_UD2, OPC_PSHIFTW_Ib, OPC_PSHIFTD_Ib, OPC_PSHIFTQ_Ib |
| }; |
| static int const cmpeq_insn[4] = { |
| OPC_PCMPEQB, OPC_PCMPEQW, OPC_PCMPEQD, OPC_PCMPEQQ |
| }; |
| static int const cmpgt_insn[4] = { |
| OPC_PCMPGTB, OPC_PCMPGTW, OPC_PCMPGTD, OPC_PCMPGTQ |
| }; |
| static int const punpckl_insn[4] = { |
| OPC_PUNPCKLBW, OPC_PUNPCKLWD, OPC_PUNPCKLDQ, OPC_PUNPCKLQDQ |
| }; |
| static int const punpckh_insn[4] = { |
| OPC_PUNPCKHBW, OPC_PUNPCKHWD, OPC_PUNPCKHDQ, OPC_PUNPCKHQDQ |
| }; |
| static int const packss_insn[4] = { |
| OPC_PACKSSWB, OPC_PACKSSDW, OPC_UD2, OPC_UD2 |
| }; |
| static int const packus_insn[4] = { |
| OPC_PACKUSWB, OPC_PACKUSDW, OPC_UD2, OPC_UD2 |
| }; |
| static int const smin_insn[4] = { |
| OPC_PMINSB, OPC_PMINSW, OPC_PMINSD, OPC_VPMINSQ |
| }; |
| static int const smax_insn[4] = { |
| OPC_PMAXSB, OPC_PMAXSW, OPC_PMAXSD, OPC_VPMAXSQ |
| }; |
| static int const umin_insn[4] = { |
| OPC_PMINUB, OPC_PMINUW, OPC_PMINUD, OPC_VPMINUQ |
| }; |
| static int const umax_insn[4] = { |
| OPC_PMAXUB, OPC_PMAXUW, OPC_PMAXUD, OPC_VPMAXUQ |
| }; |
| static int const rotlv_insn[4] = { |
| OPC_UD2, OPC_UD2, OPC_VPROLVD, OPC_VPROLVQ |
| }; |
| static int const rotrv_insn[4] = { |
| OPC_UD2, OPC_UD2, OPC_VPRORVD, OPC_VPRORVQ |
| }; |
| static int const shlv_insn[4] = { |
| OPC_UD2, OPC_VPSLLVW, OPC_VPSLLVD, OPC_VPSLLVQ |
| }; |
| static int const shrv_insn[4] = { |
| OPC_UD2, OPC_VPSRLVW, OPC_VPSRLVD, OPC_VPSRLVQ |
| }; |
| static int const sarv_insn[4] = { |
| OPC_UD2, OPC_VPSRAVW, OPC_VPSRAVD, OPC_VPSRAVQ |
| }; |
| static int const shls_insn[4] = { |
| OPC_UD2, OPC_PSLLW, OPC_PSLLD, OPC_PSLLQ |
| }; |
| static int const shrs_insn[4] = { |
| OPC_UD2, OPC_PSRLW, OPC_PSRLD, OPC_PSRLQ |
| }; |
| static int const sars_insn[4] = { |
| OPC_UD2, OPC_PSRAW, OPC_PSRAD, OPC_VPSRAQ |
| }; |
| static int const vpshldi_insn[4] = { |
| OPC_UD2, OPC_VPSHLDW, OPC_VPSHLDD, OPC_VPSHLDQ |
| }; |
| static int const vpshldv_insn[4] = { |
| OPC_UD2, OPC_VPSHLDVW, OPC_VPSHLDVD, OPC_VPSHLDVQ |
| }; |
| static int const vpshrdv_insn[4] = { |
| OPC_UD2, OPC_VPSHRDVW, OPC_VPSHRDVD, OPC_VPSHRDVQ |
| }; |
| static int const abs_insn[4] = { |
| OPC_PABSB, OPC_PABSW, OPC_PABSD, OPC_VPABSQ |
| }; |
| |
| TCGType type = vecl + TCG_TYPE_V64; |
| int insn, sub; |
| TCGArg a0, a1, a2, a3; |
| |
| a0 = args[0]; |
| a1 = args[1]; |
| a2 = args[2]; |
| |
| switch (opc) { |
| case INDEX_op_add_vec: |
| insn = add_insn[vece]; |
| goto gen_simd; |
| case INDEX_op_ssadd_vec: |
| insn = ssadd_insn[vece]; |
| goto gen_simd; |
| case INDEX_op_usadd_vec: |
| insn = usadd_insn[vece]; |
| goto gen_simd; |
| case INDEX_op_sub_vec: |
| insn = sub_insn[vece]; |
| goto gen_simd; |
| case INDEX_op_sssub_vec: |
| insn = sssub_insn[vece]; |
| goto gen_simd; |
| case INDEX_op_ussub_vec: |
| insn = ussub_insn[vece]; |
| goto gen_simd; |
| case INDEX_op_mul_vec: |
| insn = mul_insn[vece]; |
| goto gen_simd; |
| case INDEX_op_and_vec: |
| insn = OPC_PAND; |
| goto gen_simd; |
| case INDEX_op_or_vec: |
| insn = OPC_POR; |
| goto gen_simd; |
| case INDEX_op_xor_vec: |
| insn = OPC_PXOR; |
| goto gen_simd; |
| case INDEX_op_smin_vec: |
| insn = smin_insn[vece]; |
| goto gen_simd; |
| case INDEX_op_umin_vec: |
| insn = umin_insn[vece]; |
| goto gen_simd; |
| case INDEX_op_smax_vec: |
| insn = smax_insn[vece]; |
| goto gen_simd; |
| case INDEX_op_umax_vec: |
| insn = umax_insn[vece]; |
| goto gen_simd; |
| case INDEX_op_shlv_vec: |
| insn = shlv_insn[vece]; |
| goto gen_simd; |
| case INDEX_op_shrv_vec: |
| insn = shrv_insn[vece]; |
| goto gen_simd; |
| case INDEX_op_sarv_vec: |
| insn = sarv_insn[vece]; |
| goto gen_simd; |
| case INDEX_op_rotlv_vec: |
| insn = rotlv_insn[vece]; |
| goto gen_simd; |
| case INDEX_op_rotrv_vec: |
| insn = rotrv_insn[vece]; |
| goto gen_simd; |
| case INDEX_op_shls_vec: |
| insn = shls_insn[vece]; |
| goto gen_simd; |
| case INDEX_op_shrs_vec: |
| insn = shrs_insn[vece]; |
| goto gen_simd; |
| case INDEX_op_sars_vec: |
| insn = sars_insn[vece]; |
| goto gen_simd; |
| case INDEX_op_x86_punpckl_vec: |
| insn = punpckl_insn[vece]; |
| goto gen_simd; |
| case INDEX_op_x86_punpckh_vec: |
| insn = punpckh_insn[vece]; |
| goto gen_simd; |
| case INDEX_op_x86_packss_vec: |
| insn = packss_insn[vece]; |
| goto gen_simd; |
| case INDEX_op_x86_packus_vec: |
| insn = packus_insn[vece]; |
| goto gen_simd; |
| case INDEX_op_x86_vpshldv_vec: |
| insn = vpshldv_insn[vece]; |
| a1 = a2; |
| a2 = args[3]; |
| goto gen_simd; |
| case INDEX_op_x86_vpshrdv_vec: |
| insn = vpshrdv_insn[vece]; |
| a1 = a2; |
| a2 = args[3]; |
| goto gen_simd; |
| #if TCG_TARGET_REG_BITS == 32 |
| case INDEX_op_dup2_vec: |
| /* First merge the two 32-bit inputs to a single 64-bit element. */ |
| tcg_out_vex_modrm(s, OPC_PUNPCKLDQ, a0, a1, a2); |
| /* Then replicate the 64-bit elements across the rest of the vector. */ |
| if (type != TCG_TYPE_V64) { |
| tcg_out_dup_vec(s, type, MO_64, a0, a0); |
| } |
| break; |
| #endif |
| case INDEX_op_abs_vec: |
| insn = abs_insn[vece]; |
| a2 = a1; |
| a1 = 0; |
| goto gen_simd; |
| gen_simd: |
| tcg_debug_assert(insn != OPC_UD2); |
| if (type == TCG_TYPE_V256) { |
| insn |= P_VEXL; |
| } |
| tcg_out_vex_modrm(s, insn, a0, a1, a2); |
| break; |
| |
| case INDEX_op_cmp_vec: |
| sub = args[3]; |
| if (sub == TCG_COND_EQ) { |
| insn = cmpeq_insn[vece]; |
| } else if (sub == TCG_COND_GT) { |
| insn = cmpgt_insn[vece]; |
| } else { |
| g_assert_not_reached(); |
| } |
| goto gen_simd; |
| |
| case INDEX_op_andc_vec: |
| insn = OPC_PANDN; |
| if (type == TCG_TYPE_V256) { |
| insn |= P_VEXL; |
| } |
| tcg_out_vex_modrm(s, insn, a0, a2, a1); |
| break; |
| |
| case INDEX_op_shli_vec: |
| insn = shift_imm_insn[vece]; |
| sub = 6; |
| goto gen_shift; |
| case INDEX_op_shri_vec: |
| insn = shift_imm_insn[vece]; |
| sub = 2; |
| goto gen_shift; |
| case INDEX_op_sari_vec: |
| if (vece == MO_64) { |
| insn = OPC_PSHIFTD_Ib | P_VEXW | P_EVEX; |
| } else { |
| insn = shift_imm_insn[vece]; |
| } |
| sub = 4; |
| goto gen_shift; |
| case INDEX_op_rotli_vec: |
| insn = OPC_PSHIFTD_Ib | P_EVEX; /* VPROL[DQ] */ |
| if (vece == MO_64) { |
| insn |= P_VEXW; |
| } |
| sub = 1; |
| goto gen_shift; |
| gen_shift: |
| tcg_debug_assert(vece != MO_8); |
| if (type == TCG_TYPE_V256) { |
| insn |= P_VEXL; |
| } |
| tcg_out_vex_modrm(s, insn, sub, a0, a1); |
| tcg_out8(s, a2); |
| break; |
| |
| case INDEX_op_ld_vec: |
| tcg_out_ld(s, type, a0, a1, a2); |
| break; |
| case INDEX_op_st_vec: |
| tcg_out_st(s, type, a0, a1, a2); |
| break; |
| case INDEX_op_dupm_vec: |
| tcg_out_dupm_vec(s, type, vece, a0, a1, a2); |
| break; |
| |
| case INDEX_op_x86_shufps_vec: |
| insn = OPC_SHUFPS; |
| sub = args[3]; |
| goto gen_simd_imm8; |
| case INDEX_op_x86_blend_vec: |
| if (vece == MO_16) { |
| insn = OPC_PBLENDW; |
| } else if (vece == MO_32) { |
| insn = (have_avx2 ? OPC_VPBLENDD : OPC_BLENDPS); |
| } else { |
| g_assert_not_reached(); |
| } |
| sub = args[3]; |
| goto gen_simd_imm8; |
| case INDEX_op_x86_vperm2i128_vec: |
| insn = OPC_VPERM2I128; |
| sub = args[3]; |
| goto gen_simd_imm8; |
| case INDEX_op_x86_vpshldi_vec: |
| insn = vpshldi_insn[vece]; |
| sub = args[3]; |
| goto gen_simd_imm8; |
| |
| case INDEX_op_not_vec: |
| insn = OPC_VPTERNLOGQ; |
| a2 = a1; |
| sub = 0x33; /* !B */ |
| goto gen_simd_imm8; |
| case INDEX_op_nor_vec: |
| insn = OPC_VPTERNLOGQ; |
| sub = 0x11; /* norCB */ |
| goto gen_simd_imm8; |
| case INDEX_op_nand_vec: |
| insn = OPC_VPTERNLOGQ; |
| sub = 0x77; /* nandCB */ |
| goto gen_simd_imm8; |
| case INDEX_op_eqv_vec: |
| insn = OPC_VPTERNLOGQ; |
| sub = 0x99; /* xnorCB */ |
| goto gen_simd_imm8; |
| case INDEX_op_orc_vec: |
| insn = OPC_VPTERNLOGQ; |
| sub = 0xdd; /* orB!C */ |
| goto gen_simd_imm8; |
| |
| case INDEX_op_bitsel_vec: |
| insn = OPC_VPTERNLOGQ; |
| a3 = args[3]; |
| if (a0 == a1) { |
| a1 = a2; |
| a2 = a3; |
| sub = 0xca; /* A?B:C */ |
| } else if (a0 == a2) { |
| a2 = a3; |
| sub = 0xe2; /* B?A:C */ |
| } else { |
| tcg_out_mov(s, type, a0, a3); |
| sub = 0xb8; /* B?C:A */ |
| } |
| goto gen_simd_imm8; |
| |
| gen_simd_imm8: |
| tcg_debug_assert(insn != OPC_UD2); |
| if (type == TCG_TYPE_V256) { |
| insn |= P_VEXL; |
| } |
| tcg_out_vex_modrm(s, insn, a0, a1, a2); |
| tcg_out8(s, sub); |
| break; |
| |
| case INDEX_op_x86_vpblendvb_vec: |
| insn = OPC_VPBLENDVB; |
| if (type == TCG_TYPE_V256) { |
| insn |= P_VEXL; |
| } |
| tcg_out_vex_modrm(s, insn, a0, a1, a2); |
| tcg_out8(s, args[3] << 4); |
| break; |
| |
| case INDEX_op_x86_psrldq_vec: |
| tcg_out_vex_modrm(s, OPC_GRP14, 3, a0, a1); |
| tcg_out8(s, a2); |
| break; |
| |
| case INDEX_op_mov_vec: /* Always emitted via tcg_out_mov. */ |
| case INDEX_op_dup_vec: /* Always emitted via tcg_out_dup_vec. */ |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static TCGConstraintSetIndex tcg_target_op_def(TCGOpcode op) |
| { |
| switch (op) { |
| case INDEX_op_goto_ptr: |
| return C_O0_I1(r); |
| |
| case INDEX_op_ld8u_i32: |
| case INDEX_op_ld8u_i64: |
| case INDEX_op_ld8s_i32: |
| case INDEX_op_ld8s_i64: |
| case INDEX_op_ld16u_i32: |
| case INDEX_op_ld16u_i64: |
| case INDEX_op_ld16s_i32: |
| case INDEX_op_ld16s_i64: |
| case INDEX_op_ld_i32: |
| case INDEX_op_ld32u_i64: |
| case INDEX_op_ld32s_i64: |
| case INDEX_op_ld_i64: |
| return C_O1_I1(r, r); |
| |
| case INDEX_op_st8_i32: |
| case INDEX_op_st8_i64: |
| return C_O0_I2(qi, r); |
| |
| case INDEX_op_st16_i32: |
| case INDEX_op_st16_i64: |
| case INDEX_op_st_i32: |
| case INDEX_op_st32_i64: |
| return C_O0_I2(ri, r); |
| |
| case INDEX_op_st_i64: |
| return C_O0_I2(re, r); |
| |
| case INDEX_op_add_i32: |
| case INDEX_op_add_i64: |
| return C_O1_I2(r, r, re); |
| |
| case INDEX_op_sub_i32: |
| case INDEX_op_sub_i64: |
| case INDEX_op_mul_i32: |
| case INDEX_op_mul_i64: |
| case INDEX_op_or_i32: |
| case INDEX_op_or_i64: |
| case INDEX_op_xor_i32: |
| case INDEX_op_xor_i64: |
| return C_O1_I2(r, 0, re); |
| |
| case INDEX_op_and_i32: |
| case INDEX_op_and_i64: |
| return C_O1_I2(r, 0, reZ); |
| |
| case INDEX_op_andc_i32: |
| case INDEX_op_andc_i64: |
| return C_O1_I2(r, r, rI); |
| |
| case INDEX_op_shl_i32: |
| case INDEX_op_shl_i64: |
| case INDEX_op_shr_i32: |
| case INDEX_op_shr_i64: |
| case INDEX_op_sar_i32: |
| case INDEX_op_sar_i64: |
| return have_bmi2 ? C_O1_I2(r, r, ri) : C_O1_I2(r, 0, ci); |
| |
| case INDEX_op_rotl_i32: |
| case INDEX_op_rotl_i64: |
| case INDEX_op_rotr_i32: |
| case INDEX_op_rotr_i64: |
| return C_O1_I2(r, 0, ci); |
| |
| case INDEX_op_brcond_i32: |
| case INDEX_op_brcond_i64: |
| return C_O0_I2(r, re); |
| |
| case INDEX_op_bswap16_i32: |
| case INDEX_op_bswap16_i64: |
| case INDEX_op_bswap32_i32: |
| case INDEX_op_bswap32_i64: |
| case INDEX_op_bswap64_i64: |
| case INDEX_op_neg_i32: |
| case INDEX_op_neg_i64: |
| case INDEX_op_not_i32: |
| case INDEX_op_not_i64: |
| case INDEX_op_extrh_i64_i32: |
| return C_O1_I1(r, 0); |
| |
| case INDEX_op_ext8s_i32: |
| case INDEX_op_ext8s_i64: |
| case INDEX_op_ext8u_i32: |
| case INDEX_op_ext8u_i64: |
| return C_O1_I1(r, q); |
| |
| case INDEX_op_ext16s_i32: |
| case INDEX_op_ext16s_i64: |
| case INDEX_op_ext16u_i32: |
| case INDEX_op_ext16u_i64: |
| case INDEX_op_ext32s_i64: |
| case INDEX_op_ext32u_i64: |
| case INDEX_op_ext_i32_i64: |
| case INDEX_op_extu_i32_i64: |
| case INDEX_op_extrl_i64_i32: |
| case INDEX_op_extract_i32: |
| case INDEX_op_extract_i64: |
| case INDEX_op_sextract_i32: |
| case INDEX_op_ctpop_i32: |
| case INDEX_op_ctpop_i64: |
| return C_O1_I1(r, r); |
| |
| case INDEX_op_extract2_i32: |
| case INDEX_op_extract2_i64: |
| return C_O1_I2(r, 0, r); |
| |
| case INDEX_op_deposit_i32: |
| case INDEX_op_deposit_i64: |
| return C_O1_I2(Q, 0, Q); |
| |
| case INDEX_op_setcond_i32: |
| case INDEX_op_setcond_i64: |
| return C_O1_I2(q, r, re); |
| |
| case INDEX_op_movcond_i32: |
| case INDEX_op_movcond_i64: |
| return C_O1_I4(r, r, re, r, 0); |
| |
| case INDEX_op_div2_i32: |
| case INDEX_op_div2_i64: |
| case INDEX_op_divu2_i32: |
| case INDEX_op_divu2_i64: |
| return C_O2_I3(a, d, 0, 1, r); |
| |
| case INDEX_op_mulu2_i32: |
| case INDEX_op_mulu2_i64: |
| case INDEX_op_muls2_i32: |
| case INDEX_op_muls2_i64: |
| return C_O2_I2(a, d, a, r); |
| |
| case INDEX_op_add2_i32: |
| case INDEX_op_add2_i64: |
| case INDEX_op_sub2_i32: |
| case INDEX_op_sub2_i64: |
| return C_N1_O1_I4(r, r, 0, 1, re, re); |
| |
| case INDEX_op_ctz_i32: |
| case INDEX_op_ctz_i64: |
| return have_bmi1 ? C_N1_I2(r, r, rW) : C_N1_I2(r, r, r); |
| |
| case INDEX_op_clz_i32: |
| case INDEX_op_clz_i64: |
| return have_lzcnt ? C_N1_I2(r, r, rW) : C_N1_I2(r, r, r); |
| |
| case INDEX_op_qemu_ld_a32_i32: |
| return C_O1_I1(r, L); |
| case INDEX_op_qemu_ld_a64_i32: |
| return TCG_TARGET_REG_BITS == 64 ? C_O1_I1(r, L) : C_O1_I2(r, L, L); |
| |
| case INDEX_op_qemu_st_a32_i32: |
| return C_O0_I2(L, L); |
| case INDEX_op_qemu_st_a64_i32: |
| return TCG_TARGET_REG_BITS == 64 ? C_O0_I2(L, L) : C_O0_I3(L, L, L); |
| case INDEX_op_qemu_st8_a32_i32: |
| return C_O0_I2(s, L); |
| case INDEX_op_qemu_st8_a64_i32: |
| return TCG_TARGET_REG_BITS == 64 ? C_O0_I2(s, L) : C_O0_I3(s, L, L); |
| |
| case INDEX_op_qemu_ld_a32_i64: |
| return TCG_TARGET_REG_BITS == 64 ? C_O1_I1(r, L) : C_O2_I1(r, r, L); |
| case INDEX_op_qemu_ld_a64_i64: |
| return TCG_TARGET_REG_BITS == 64 ? C_O1_I1(r, L) : C_O2_I2(r, r, L, L); |
| |
| case INDEX_op_qemu_st_a32_i64: |
| return TCG_TARGET_REG_BITS == 64 ? C_O0_I2(L, L) : C_O0_I3(L, L, L); |
| case INDEX_op_qemu_st_a64_i64: |
| return TCG_TARGET_REG_BITS == 64 ? C_O0_I2(L, L) : C_O0_I4(L, L, L, L); |
| |
| case INDEX_op_qemu_ld_a32_i128: |
| case INDEX_op_qemu_ld_a64_i128: |
| tcg_debug_assert(TCG_TARGET_REG_BITS == 64); |
| return C_O2_I1(r, r, L); |
| case INDEX_op_qemu_st_a32_i128: |
| case INDEX_op_qemu_st_a64_i128: |
| tcg_debug_assert(TCG_TARGET_REG_BITS == 64); |
| return C_O0_I3(L, L, L); |
| |
| case INDEX_op_brcond2_i32: |
| return C_O0_I4(r, r, ri, ri); |
| |
| case INDEX_op_setcond2_i32: |
| return C_O1_I4(r, r, r, ri, ri); |
| |
| case INDEX_op_ld_vec: |
| case INDEX_op_dupm_vec: |
| return C_O1_I1(x, r); |
| |
| case INDEX_op_st_vec: |
| return C_O0_I2(x, r); |
| |
| case INDEX_op_add_vec: |
| case INDEX_op_sub_vec: |
| case INDEX_op_mul_vec: |
| case INDEX_op_and_vec: |
| case INDEX_op_or_vec: |
| case INDEX_op_xor_vec: |
| case INDEX_op_andc_vec: |
| case INDEX_op_orc_vec: |
| case INDEX_op_nand_vec: |
| case INDEX_op_nor_vec: |
| case INDEX_op_eqv_vec: |
| case INDEX_op_ssadd_vec: |
| case INDEX_op_usadd_vec: |
| case INDEX_op_sssub_vec: |
| case INDEX_op_ussub_vec: |
| case INDEX_op_smin_vec: |
| case INDEX_op_umin_vec: |
| case INDEX_op_smax_vec: |
| case INDEX_op_umax_vec: |
| case INDEX_op_shlv_vec: |
| case INDEX_op_shrv_vec: |
| case INDEX_op_sarv_vec: |
| case INDEX_op_rotlv_vec: |
| case INDEX_op_rotrv_vec: |
| case INDEX_op_shls_vec: |
| case INDEX_op_shrs_vec: |
| case INDEX_op_sars_vec: |
| case INDEX_op_cmp_vec: |
| case INDEX_op_x86_shufps_vec: |
| case INDEX_op_x86_blend_vec: |
| case INDEX_op_x86_packss_vec: |
| case INDEX_op_x86_packus_vec: |
| case INDEX_op_x86_vperm2i128_vec: |
| case INDEX_op_x86_punpckl_vec: |
| case INDEX_op_x86_punpckh_vec: |
| case INDEX_op_x86_vpshldi_vec: |
| #if TCG_TARGET_REG_BITS == 32 |
| case INDEX_op_dup2_vec: |
| #endif |
| return C_O1_I2(x, x, x); |
| |
| case INDEX_op_abs_vec: |
| case INDEX_op_dup_vec: |
| case INDEX_op_not_vec: |
| case INDEX_op_shli_vec: |
| case INDEX_op_shri_vec: |
| case INDEX_op_sari_vec: |
| case INDEX_op_rotli_vec: |
| case INDEX_op_x86_psrldq_vec: |
| return C_O1_I1(x, x); |
| |
| case INDEX_op_x86_vpshldv_vec: |
| case INDEX_op_x86_vpshrdv_vec: |
| return C_O1_I3(x, 0, x, x); |
| |
| case INDEX_op_bitsel_vec: |
| case INDEX_op_x86_vpblendvb_vec: |
| return C_O1_I3(x, x, x, x); |
| |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| int tcg_can_emit_vec_op(TCGOpcode opc, TCGType type, unsigned vece) |
| { |
| switch (opc) { |
| case INDEX_op_add_vec: |
| case INDEX_op_sub_vec: |
| case INDEX_op_and_vec: |
| case INDEX_op_or_vec: |
| case INDEX_op_xor_vec: |
| case INDEX_op_andc_vec: |
| case INDEX_op_orc_vec: |
| case INDEX_op_nand_vec: |
| case INDEX_op_nor_vec: |
| case INDEX_op_eqv_vec: |
| case INDEX_op_not_vec: |
| case INDEX_op_bitsel_vec: |
| return 1; |
| case INDEX_op_cmp_vec: |
| case INDEX_op_cmpsel_vec: |
| return -1; |
| |
| case INDEX_op_rotli_vec: |
| return have_avx512vl && vece >= MO_32 ? 1 : -1; |
| |
| case INDEX_op_shli_vec: |
| case INDEX_op_shri_vec: |
| /* We must expand the operation for MO_8. */ |
| return vece == MO_8 ? -1 : 1; |
| |
| case INDEX_op_sari_vec: |
| switch (vece) { |
| case MO_8: |
| return -1; |
| case MO_16: |
| case MO_32: |
| return 1; |
| case MO_64: |
| if (have_avx512vl) { |
| return 1; |
| } |
| /* |
| * We can emulate this for MO_64, but it does not pay off |
| * unless we're producing at least 4 values. |
| */ |
| return type >= TCG_TYPE_V256 ? -1 : 0; |
| } |
| return 0; |
| |
| case INDEX_op_shls_vec: |
| case INDEX_op_shrs_vec: |
| return vece >= MO_16; |
| case INDEX_op_sars_vec: |
| switch (vece) { |
| case MO_16: |
| case MO_32: |
| return 1; |
| case MO_64: |
| return have_avx512vl; |
| } |
| return 0; |
| case INDEX_op_rotls_vec: |
| return vece >= MO_16 ? -1 : 0; |
| |
| case INDEX_op_shlv_vec: |
| case INDEX_op_shrv_vec: |
| switch (vece) { |
| case MO_16: |
| return have_avx512bw; |
| case MO_32: |
| case MO_64: |
| return have_avx2; |
| } |
| return 0; |
| case INDEX_op_sarv_vec: |
| switch (vece) { |
| case MO_16: |
| return have_avx512bw; |
| case MO_32: |
| return have_avx2; |
| case MO_64: |
| return have_avx512vl; |
| } |
| return 0; |
| case INDEX_op_rotlv_vec: |
| case INDEX_op_rotrv_vec: |
| switch (vece) { |
| case MO_16: |
| return have_avx512vbmi2 ? -1 : 0; |
| case MO_32: |
| case MO_64: |
| return have_avx512vl ? 1 : have_avx2 ? -1 : 0; |
| } |
| return 0; |
| |
| case INDEX_op_mul_vec: |
| switch (vece) { |
| case MO_8: |
| return -1; |
| case MO_64: |
| return have_avx512dq; |
| } |
| return 1; |
| |
| case INDEX_op_ssadd_vec: |
| case INDEX_op_usadd_vec: |
| case INDEX_op_sssub_vec: |
| case INDEX_op_ussub_vec: |
| return vece <= MO_16; |
| case INDEX_op_smin_vec: |
| case INDEX_op_smax_vec: |
| case INDEX_op_umin_vec: |
| case INDEX_op_umax_vec: |
| case INDEX_op_abs_vec: |
| return vece <= MO_32 || have_avx512vl; |
| |
| default: |
| return 0; |
| } |
| } |
| |
| static void expand_vec_shi(TCGType type, unsigned vece, TCGOpcode opc, |
| TCGv_vec v0, TCGv_vec v1, TCGArg imm) |
| { |
| TCGv_vec t1, t2; |
| |
| tcg_debug_assert(vece == MO_8); |
| |
| t1 = tcg_temp_new_vec(type); |
| t2 = tcg_temp_new_vec(type); |
| |
| /* |
| * Unpack to W, shift, and repack. Tricky bits: |
| * (1) Use punpck*bw x,x to produce DDCCBBAA, |
| * i.e. duplicate in other half of the 16-bit lane. |
| * (2) For right-shift, add 8 so that the high half of the lane |
| * becomes zero. For left-shift, and left-rotate, we must |
| * shift up and down again. |
| * (3) Step 2 leaves high half zero such that PACKUSWB |
| * (pack with unsigned saturation) does not modify |
| * the quantity. |
| */ |
| vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8, |
| tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(v1)); |
| vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8, |
| tcgv_vec_arg(t2), tcgv_vec_arg(v1), tcgv_vec_arg(v1)); |
| |
| if (opc != INDEX_op_rotli_vec) { |
| imm += 8; |
| } |
| if (opc == INDEX_op_shri_vec) { |
| tcg_gen_shri_vec(MO_16, t1, t1, imm); |
| tcg_gen_shri_vec(MO_16, t2, t2, imm); |
| } else { |
| tcg_gen_shli_vec(MO_16, t1, t1, imm); |
| tcg_gen_shli_vec(MO_16, t2, t2, imm); |
| tcg_gen_shri_vec(MO_16, t1, t1, 8); |
| tcg_gen_shri_vec(MO_16, t2, t2, 8); |
| } |
| |
| vec_gen_3(INDEX_op_x86_packus_vec, type, MO_8, |
| tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t2)); |
| tcg_temp_free_vec(t1); |
| tcg_temp_free_vec(t2); |
| } |
| |
| static void expand_vec_sari(TCGType type, unsigned vece, |
| TCGv_vec v0, TCGv_vec v1, TCGArg imm) |
| { |
| TCGv_vec t1, t2; |
| |
| switch (vece) { |
| case MO_8: |
| /* Unpack to W, shift, and repack, as in expand_vec_shi. */ |
| t1 = tcg_temp_new_vec(type); |
| t2 = tcg_temp_new_vec(type); |
| vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8, |
| tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(v1)); |
| vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8, |
| tcgv_vec_arg(t2), tcgv_vec_arg(v1), tcgv_vec_arg(v1)); |
| tcg_gen_sari_vec(MO_16, t1, t1, imm + 8); |
| tcg_gen_sari_vec(MO_16, t2, t2, imm + 8); |
| vec_gen_3(INDEX_op_x86_packss_vec, type, MO_8, |
| tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t2)); |
| tcg_temp_free_vec(t1); |
| tcg_temp_free_vec(t2); |
| break; |
| |
| case MO_64: |
| t1 = tcg_temp_new_vec(type); |
| if (imm <= 32) { |
| /* |
| * We can emulate a small sign extend by performing an arithmetic |
| * 32-bit shift and overwriting the high half of a 64-bit logical |
| * shift. Note that the ISA says shift of 32 is valid, but TCG |
| * does not, so we have to bound the smaller shift -- we get the |
| * same result in the high half either way. |
| */ |
| tcg_gen_sari_vec(MO_32, t1, v1, MIN(imm, 31)); |
| tcg_gen_shri_vec(MO_64, v0, v1, imm); |
| vec_gen_4(INDEX_op_x86_blend_vec, type, MO_32, |
| tcgv_vec_arg(v0), tcgv_vec_arg(v0), |
| tcgv_vec_arg(t1), 0xaa); |
| } else { |
| /* Otherwise we will need to use a compare vs 0 to produce |
| * the sign-extend, shift and merge. |
| */ |
| tcg_gen_cmp_vec(TCG_COND_GT, MO_64, t1, |
| tcg_constant_vec(type, MO_64, 0), v1); |
| tcg_gen_shri_vec(MO_64, v0, v1, imm); |
| tcg_gen_shli_vec(MO_64, t1, t1, 64 - imm); |
| tcg_gen_or_vec(MO_64, v0, v0, t1); |
| } |
| tcg_temp_free_vec(t1); |
| break; |
| |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static void expand_vec_rotli(TCGType type, unsigned vece, |
| TCGv_vec v0, TCGv_vec v1, TCGArg imm) |
| { |
| TCGv_vec t; |
| |
| if (vece == MO_8) { |
| expand_vec_shi(type, vece, INDEX_op_rotli_vec, v0, v1, imm); |
| return; |
| } |
| |
| if (have_avx512vbmi2) { |
| vec_gen_4(INDEX_op_x86_vpshldi_vec, type, vece, |
| tcgv_vec_arg(v0), tcgv_vec_arg(v1), tcgv_vec_arg(v1), imm); |
| return; |
| } |
| |
| t = tcg_temp_new_vec(type); |
| tcg_gen_shli_vec(vece, t, v1, imm); |
| tcg_gen_shri_vec(vece, v0, v1, (8 << vece) - imm); |
| tcg_gen_or_vec(vece, v0, v0, t); |
| tcg_temp_free_vec(t); |
| } |
| |
| static void expand_vec_rotv(TCGType type, unsigned vece, TCGv_vec v0, |
| TCGv_vec v1, TCGv_vec sh, bool right) |
| { |
| TCGv_vec t; |
| |
| if (have_avx512vbmi2) { |
| vec_gen_4(right ? INDEX_op_x86_vpshrdv_vec : INDEX_op_x86_vpshldv_vec, |
| type, vece, tcgv_vec_arg(v0), tcgv_vec_arg(v1), |
| tcgv_vec_arg(v1), tcgv_vec_arg(sh)); |
| return; |
| } |
| |
| t = tcg_temp_new_vec(type); |
| tcg_gen_dupi_vec(vece, t, 8 << vece); |
| tcg_gen_sub_vec(vece, t, t, sh); |
| if (right) { |
| tcg_gen_shlv_vec(vece, t, v1, t); |
| tcg_gen_shrv_vec(vece, v0, v1, sh); |
| } else { |
| tcg_gen_shrv_vec(vece, t, v1, t); |
| tcg_gen_shlv_vec(vece, v0, v1, sh); |
| } |
| tcg_gen_or_vec(vece, v0, v0, t); |
| tcg_temp_free_vec(t); |
| } |
| |
| static void expand_vec_rotls(TCGType type, unsigned vece, |
| TCGv_vec v0, TCGv_vec v1, TCGv_i32 lsh) |
| { |
| TCGv_vec t = tcg_temp_new_vec(type); |
| |
| tcg_debug_assert(vece != MO_8); |
| |
| if (vece >= MO_32 ? have_avx512vl : have_avx512vbmi2) { |
| tcg_gen_dup_i32_vec(vece, t, lsh); |
| if (vece >= MO_32) { |
| tcg_gen_rotlv_vec(vece, v0, v1, t); |
| } else { |
| expand_vec_rotv(type, vece, v0, v1, t, false); |
| } |
| } else { |
| TCGv_i32 rsh = tcg_temp_new_i32(); |
| |
| tcg_gen_neg_i32(rsh, lsh); |
| tcg_gen_andi_i32(rsh, rsh, (8 << vece) - 1); |
| tcg_gen_shls_vec(vece, t, v1, lsh); |
| tcg_gen_shrs_vec(vece, v0, v1, rsh); |
| tcg_gen_or_vec(vece, v0, v0, t); |
| |
| tcg_temp_free_i32(rsh); |
| } |
| |
| tcg_temp_free_vec(t); |
| } |
| |
| static void expand_vec_mul(TCGType type, unsigned vece, |
| TCGv_vec v0, TCGv_vec v1, TCGv_vec v2) |
| { |
| TCGv_vec t1, t2, t3, t4, zero; |
| |
| tcg_debug_assert(vece == MO_8); |
| |
| /* |
| * Unpack v1 bytes to words, 0 | x. |
| * Unpack v2 bytes to words, y | 0. |
| * This leaves the 8-bit result, x * y, with 8 bits of right padding. |
| * Shift logical right by 8 bits to clear the high 8 bytes before |
| * using an unsigned saturated pack. |
| * |
| * The difference between the V64, V128 and V256 cases is merely how |
| * we distribute the expansion between temporaries. |
| */ |
| switch (type) { |
| case TCG_TYPE_V64: |
| t1 = tcg_temp_new_vec(TCG_TYPE_V128); |
| t2 = tcg_temp_new_vec(TCG_TYPE_V128); |
| zero = tcg_constant_vec(TCG_TYPE_V128, MO_8, 0); |
| vec_gen_3(INDEX_op_x86_punpckl_vec, TCG_TYPE_V128, MO_8, |
| tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(zero)); |
| vec_gen_3(INDEX_op_x86_punpckl_vec, TCG_TYPE_V128, MO_8, |
| tcgv_vec_arg(t2), tcgv_vec_arg(zero), tcgv_vec_arg(v2)); |
| tcg_gen_mul_vec(MO_16, t1, t1, t2); |
| tcg_gen_shri_vec(MO_16, t1, t1, 8); |
| vec_gen_3(INDEX_op_x86_packus_vec, TCG_TYPE_V128, MO_8, |
| tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t1)); |
| tcg_temp_free_vec(t1); |
| tcg_temp_free_vec(t2); |
| break; |
| |
| case TCG_TYPE_V128: |
| case TCG_TYPE_V256: |
| t1 = tcg_temp_new_vec(type); |
| t2 = tcg_temp_new_vec(type); |
| t3 = tcg_temp_new_vec(type); |
| t4 = tcg_temp_new_vec(type); |
| zero = tcg_constant_vec(TCG_TYPE_V128, MO_8, 0); |
| vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8, |
| tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(zero)); |
| vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8, |
| tcgv_vec_arg(t2), tcgv_vec_arg(zero), tcgv_vec_arg(v2)); |
| vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8, |
| tcgv_vec_arg(t3), tcgv_vec_arg(v1), tcgv_vec_arg(zero)); |
| vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8, |
| tcgv_vec_arg(t4), tcgv_vec_arg(zero), tcgv_vec_arg(v2)); |
| tcg_gen_mul_vec(MO_16, t1, t1, t2); |
| tcg_gen_mul_vec(MO_16, t3, t3, t4); |
| tcg_gen_shri_vec(MO_16, t1, t1, 8); |
| tcg_gen_shri_vec(MO_16, t3, t3, 8); |
| vec_gen_3(INDEX_op_x86_packus_vec, type, MO_8, |
| tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t3)); |
| tcg_temp_free_vec(t1); |
| tcg_temp_free_vec(t2); |
| tcg_temp_free_vec(t3); |
| tcg_temp_free_vec(t4); |
| break; |
| |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static bool expand_vec_cmp_noinv(TCGType type, unsigned vece, TCGv_vec v0, |
| TCGv_vec v1, TCGv_vec v2, TCGCond cond) |
| { |
| enum { |
| NEED_INV = 1, |
| NEED_SWAP = 2, |
| NEED_BIAS = 4, |
| NEED_UMIN = 8, |
| NEED_UMAX = 16, |
| }; |
| TCGv_vec t1, t2, t3; |
| uint8_t fixup; |
| |
| switch (cond) { |
| case TCG_COND_EQ: |
| case TCG_COND_GT: |
| fixup = 0; |
| break; |
| case TCG_COND_NE: |
| case TCG_COND_LE: |
| fixup = NEED_INV; |
| break; |
| case TCG_COND_LT: |
| fixup = NEED_SWAP; |
| break; |
| case TCG_COND_GE: |
| fixup = NEED_SWAP | NEED_INV; |
| break; |
| case TCG_COND_LEU: |
| if (tcg_can_emit_vec_op(INDEX_op_umin_vec, type, vece)) { |
| fixup = NEED_UMIN; |
| } else { |
| fixup = NEED_BIAS | NEED_INV; |
| } |
| break; |
| case TCG_COND_GTU: |
| if (tcg_can_emit_vec_op(INDEX_op_umin_vec, type, vece)) { |
| fixup = NEED_UMIN | NEED_INV; |
| } else { |
| fixup = NEED_BIAS; |
| } |
| break; |
| case TCG_COND_GEU: |
| if (tcg_can_emit_vec_op(INDEX_op_umax_vec, type, vece)) { |
| fixup = NEED_UMAX; |
| } else { |
| fixup = NEED_BIAS | NEED_SWAP | NEED_INV; |
| } |
| break; |
| case TCG_COND_LTU: |
| if (tcg_can_emit_vec_op(INDEX_op_umax_vec, type, vece)) { |
| fixup = NEED_UMAX | NEED_INV; |
| } else { |
| fixup = NEED_BIAS | NEED_SWAP; |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (fixup & NEED_INV) { |
| cond = tcg_invert_cond(cond); |
| } |
| if (fixup & NEED_SWAP) { |
| t1 = v1, v1 = v2, v2 = t1; |
| cond = tcg_swap_cond(cond); |
| } |
| |
| t1 = t2 = NULL; |
| if (fixup & (NEED_UMIN | NEED_UMAX)) { |
| t1 = tcg_temp_new_vec(type); |
| if (fixup & NEED_UMIN) { |
| tcg_gen_umin_vec(vece, t1, v1, v2); |
| } else { |
| tcg_gen_umax_vec(vece, t1, v1, v2); |
| } |
| v2 = t1; |
| cond = TCG_COND_EQ; |
| } else if (fixup & NEED_BIAS) { |
| t1 = tcg_temp_new_vec(type); |
| t2 = tcg_temp_new_vec(type); |
| t3 = tcg_constant_vec(type, vece, 1ull << ((8 << vece) - 1)); |
| tcg_gen_sub_vec(vece, t1, v1, t3); |
| tcg_gen_sub_vec(vece, t2, v2, t3); |
| v1 = t1; |
| v2 = t2; |
| cond = tcg_signed_cond(cond); |
| } |
| |
| tcg_debug_assert(cond == TCG_COND_EQ || cond == TCG_COND_GT); |
| /* Expand directly; do not recurse. */ |
| vec_gen_4(INDEX_op_cmp_vec, type, vece, |
| tcgv_vec_arg(v0), tcgv_vec_arg(v1), tcgv_vec_arg(v2), cond); |
| |
| if (t1) { |
| tcg_temp_free_vec(t1); |
| if (t2) { |
| tcg_temp_free_vec(t2); |
| } |
| } |
| return fixup & NEED_INV; |
| } |
| |
| static void expand_vec_cmp(TCGType type, unsigned vece, TCGv_vec v0, |
| TCGv_vec v1, TCGv_vec v2, TCGCond cond) |
| { |
| if (expand_vec_cmp_noinv(type, vece, v0, v1, v2, cond)) { |
| tcg_gen_not_vec(vece, v0, v0); |
| } |
| } |
| |
| static void expand_vec_cmpsel(TCGType type, unsigned vece, TCGv_vec v0, |
| TCGv_vec c1, TCGv_vec c2, |
| TCGv_vec v3, TCGv_vec v4, TCGCond cond) |
| { |
| TCGv_vec t = tcg_temp_new_vec(type); |
| |
| if (expand_vec_cmp_noinv(type, vece, t, c1, c2, cond)) { |
| /* Invert the sense of the compare by swapping arguments. */ |
| TCGv_vec x; |
| x = v3, v3 = v4, v4 = x; |
| } |
| vec_gen_4(INDEX_op_x86_vpblendvb_vec, type, vece, |
| tcgv_vec_arg(v0), tcgv_vec_arg(v4), |
| tcgv_vec_arg(v3), tcgv_vec_arg(t)); |
| tcg_temp_free_vec(t); |
| } |
| |
| void tcg_expand_vec_op(TCGOpcode opc, TCGType type, unsigned vece, |
| TCGArg a0, ...) |
| { |
| va_list va; |
| TCGArg a2; |
| TCGv_vec v0, v1, v2, v3, v4; |
| |
| va_start(va, a0); |
| v0 = temp_tcgv_vec(arg_temp(a0)); |
| v1 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg))); |
| a2 = va_arg(va, TCGArg); |
| |
| switch (opc) { |
| case INDEX_op_shli_vec: |
| case INDEX_op_shri_vec: |
| expand_vec_shi(type, vece, opc, v0, v1, a2); |
| break; |
| |
| case INDEX_op_sari_vec: |
| expand_vec_sari(type, vece, v0, v1, a2); |
| break; |
| |
| case INDEX_op_rotli_vec: |
| expand_vec_rotli(type, vece, v0, v1, a2); |
| break; |
| |
| case INDEX_op_rotls_vec: |
| expand_vec_rotls(type, vece, v0, v1, temp_tcgv_i32(arg_temp(a2))); |
| break; |
| |
| case INDEX_op_rotlv_vec: |
| v2 = temp_tcgv_vec(arg_temp(a2)); |
| expand_vec_rotv(type, vece, v0, v1, v2, false); |
| break; |
| case INDEX_op_rotrv_vec: |
| v2 = temp_tcgv_vec(arg_temp(a2)); |
| expand_vec_rotv(type, vece, v0, v1, v2, true); |
| break; |
| |
| case INDEX_op_mul_vec: |
| v2 = temp_tcgv_vec(arg_temp(a2)); |
| expand_vec_mul(type, vece, v0, v1, v2); |
| break; |
| |
| case INDEX_op_cmp_vec: |
| v2 = temp_tcgv_vec(arg_temp(a2)); |
| expand_vec_cmp(type, vece, v0, v1, v2, va_arg(va, TCGArg)); |
| break; |
| |
| case INDEX_op_cmpsel_vec: |
| v2 = temp_tcgv_vec(arg_temp(a2)); |
| v3 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg))); |
| v4 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg))); |
| expand_vec_cmpsel(type, vece, v0, v1, v2, v3, v4, va_arg(va, TCGArg)); |
| break; |
| |
| default: |
| break; |
| } |
| |
| va_end(va); |
| } |
| |
| static const int tcg_target_callee_save_regs[] = { |
| #if TCG_TARGET_REG_BITS == 64 |
| TCG_REG_RBP, |
| TCG_REG_RBX, |
| #if defined(_WIN64) |
| TCG_REG_RDI, |
| TCG_REG_RSI, |
| #endif |
| TCG_REG_R12, |
| TCG_REG_R13, |
| TCG_REG_R14, /* Currently used for the global env. */ |
| TCG_REG_R15, |
| #else |
| TCG_REG_EBP, /* Currently used for the global env. */ |
| TCG_REG_EBX, |
| TCG_REG_ESI, |
| TCG_REG_EDI, |
| #endif |
| }; |
| |
| /* Compute frame size via macros, to share between tcg_target_qemu_prologue |
| and tcg_register_jit. */ |
| |
| #define PUSH_SIZE \ |
| ((1 + ARRAY_SIZE(tcg_target_callee_save_regs)) \ |
| * (TCG_TARGET_REG_BITS / 8)) |
| |
| #define FRAME_SIZE \ |
| ((PUSH_SIZE \ |
| + TCG_STATIC_CALL_ARGS_SIZE \ |
| + CPU_TEMP_BUF_NLONGS * sizeof(long) \ |
| + TCG_TARGET_STACK_ALIGN - 1) \ |
| & ~(TCG_TARGET_STACK_ALIGN - 1)) |
| |
| /* Generate global QEMU prologue and epilogue code */ |
| static void tcg_target_qemu_prologue(TCGContext *s) |
| { |
| int i, stack_addend; |
| |
| /* TB prologue */ |
| |
| /* Reserve some stack space, also for TCG temps. */ |
| stack_addend = FRAME_SIZE - PUSH_SIZE; |
| tcg_set_frame(s, TCG_REG_CALL_STACK, TCG_STATIC_CALL_ARGS_SIZE, |
| CPU_TEMP_BUF_NLONGS * sizeof(long)); |
| |
| /* Save all callee saved registers. */ |
| for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); i++) { |
| tcg_out_push(s, tcg_target_callee_save_regs[i]); |
| } |
| |
| #if TCG_TARGET_REG_BITS == 32 |
| tcg_out_ld(s, TCG_TYPE_PTR, TCG_AREG0, TCG_REG_ESP, |
| (ARRAY_SIZE(tcg_target_callee_save_regs) + 1) * 4); |
| tcg_out_addi(s, TCG_REG_ESP, -stack_addend); |
| /* jmp *tb. */ |
| tcg_out_modrm_offset(s, OPC_GRP5, EXT5_JMPN_Ev, TCG_REG_ESP, |
| (ARRAY_SIZE(tcg_target_callee_save_regs) + 2) * 4 |
| + stack_addend); |
| #else |
| # if !defined(CONFIG_SOFTMMU) |
| if (guest_base) { |
| int seg = setup_guest_base_seg(); |
| if (seg != 0) { |
| x86_guest_base.seg = seg; |
| } else if (guest_base == (int32_t)guest_base) { |
| x86_guest_base.ofs = guest_base; |
| } else { |
| /* Choose R12 because, as a base, it requires a SIB byte. */ |
| x86_guest_base.index = TCG_REG_R12; |
| tcg_out_movi(s, TCG_TYPE_PTR, x86_guest_base.index, guest_base); |
| tcg_regset_set_reg(s->reserved_regs, x86_guest_base.index); |
| } |
| } |
| # endif |
| tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]); |
| tcg_out_addi(s, TCG_REG_ESP, -stack_addend); |
| /* jmp *tb. */ |
| tcg_out_modrm(s, OPC_GRP5, EXT5_JMPN_Ev, tcg_target_call_iarg_regs[1]); |
| #endif |
| |
| /* |
| * Return path for goto_ptr. Set return value to 0, a-la exit_tb, |
| * and fall through to the rest of the epilogue. |
| */ |
| tcg_code_gen_epilogue = tcg_splitwx_to_rx(s->code_ptr); |
| tcg_out_movi(s, TCG_TYPE_REG, TCG_REG_EAX, 0); |
| |
| /* TB epilogue */ |
| tb_ret_addr = tcg_splitwx_to_rx(s->code_ptr); |
| |
| tcg_out_addi(s, TCG_REG_CALL_STACK, stack_addend); |
| |
| if (have_avx2) { |
| tcg_out_vex_opc(s, OPC_VZEROUPPER, 0, 0, 0, 0); |
| } |
| for (i = ARRAY_SIZE(tcg_target_callee_save_regs) - 1; i >= 0; i--) { |
| tcg_out_pop(s, tcg_target_callee_save_regs[i]); |
| } |
| tcg_out_opc(s, OPC_RET, 0, 0, 0); |
| } |
| |
| static void tcg_out_nop_fill(tcg_insn_unit *p, int count) |
| { |
| memset(p, 0x90, count); |
| } |
| |
| static void tcg_target_init(TCGContext *s) |
| { |
| tcg_target_available_regs[TCG_TYPE_I32] = ALL_GENERAL_REGS; |
| if (TCG_TARGET_REG_BITS == 64) { |
| tcg_target_available_regs[TCG_TYPE_I64] = ALL_GENERAL_REGS; |
| } |
| if (have_avx1) { |
| tcg_target_available_regs[TCG_TYPE_V64] = ALL_VECTOR_REGS; |
| tcg_target_available_regs[TCG_TYPE_V128] = ALL_VECTOR_REGS; |
| } |
| if (have_avx2) { |
| tcg_target_available_regs[TCG_TYPE_V256] = ALL_VECTOR_REGS; |
| } |
| |
| tcg_target_call_clobber_regs = ALL_VECTOR_REGS; |
| tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_EAX); |
| tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_EDX); |
| tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_ECX); |
| if (TCG_TARGET_REG_BITS == 64) { |
| #if !defined(_WIN64) |
| tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_RDI); |
| tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_RSI); |
| #endif |
| tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R8); |
| tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R9); |
| tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R10); |
| tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R11); |
| } |
| |
| s->reserved_regs = 0; |
| tcg_regset_set_reg(s->reserved_regs, TCG_REG_CALL_STACK); |
| tcg_regset_set_reg(s->reserved_regs, TCG_TMP_VEC); |
| #ifdef _WIN64 |
| /* These are call saved, and we don't save them, so don't use them. */ |
| tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM6); |
| tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM7); |
| tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM8); |
| tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM9); |
| tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM10); |
| tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM11); |
| tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM12); |
| tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM13); |
| tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM14); |
| tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM15); |
| #endif |
| } |
| |
| typedef struct { |
| DebugFrameHeader h; |
| uint8_t fde_def_cfa[4]; |
| uint8_t fde_reg_ofs[14]; |
| } DebugFrame; |
| |
| /* We're expecting a 2 byte uleb128 encoded value. */ |
| QEMU_BUILD_BUG_ON(FRAME_SIZE >= (1 << 14)); |
| |
| #if !defined(__ELF__) |
| /* Host machine without ELF. */ |
| #elif TCG_TARGET_REG_BITS == 64 |
| #define ELF_HOST_MACHINE EM_X86_64 |
| static const DebugFrame debug_frame = { |
| .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */ |
| .h.cie.id = -1, |
| .h.cie.version = 1, |
| .h.cie.code_align = 1, |
| .h.cie.data_align = 0x78, /* sleb128 -8 */ |
| .h.cie.return_column = 16, |
| |
| /* Total FDE size does not include the "len" member. */ |
| .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset), |
| |
| .fde_def_cfa = { |
| 12, 7, /* DW_CFA_def_cfa %rsp, ... */ |
| (FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */ |
| (FRAME_SIZE >> 7) |
| }, |
| .fde_reg_ofs = { |
| 0x90, 1, /* DW_CFA_offset, %rip, -8 */ |
| /* The following ordering must match tcg_target_callee_save_regs. */ |
| 0x86, 2, /* DW_CFA_offset, %rbp, -16 */ |
| 0x83, 3, /* DW_CFA_offset, %rbx, -24 */ |
| 0x8c, 4, /* DW_CFA_offset, %r12, -32 */ |
| 0x8d, 5, /* DW_CFA_offset, %r13, -40 */ |
| 0x8e, 6, /* DW_CFA_offset, %r14, -48 */ |
| 0x8f, 7, /* DW_CFA_offset, %r15, -56 */ |
| } |
| }; |
| #else |
| #define ELF_HOST_MACHINE EM_386 |
| static const DebugFrame debug_frame = { |
| .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */ |
| .h.cie.id = -1, |
| .h.cie.version = 1, |
| .h.cie.code_align = 1, |
| .h.cie.data_align = 0x7c, /* sleb128 -4 */ |
| .h.cie.return_column = 8, |
| |
| /* Total FDE size does not include the "len" member. */ |
| .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset), |
| |
| .fde_def_cfa = { |
| 12, 4, /* DW_CFA_def_cfa %esp, ... */ |
| (FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */ |
| (FRAME_SIZE >> 7) |
| }, |
| .fde_reg_ofs = { |
| 0x88, 1, /* DW_CFA_offset, %eip, -4 */ |
| /* The following ordering must match tcg_target_callee_save_regs. */ |
| 0x85, 2, /* DW_CFA_offset, %ebp, -8 */ |
| 0x83, 3, /* DW_CFA_offset, %ebx, -12 */ |
| 0x86, 4, /* DW_CFA_offset, %esi, -16 */ |
| 0x87, 5, /* DW_CFA_offset, %edi, -20 */ |
| } |
| }; |
| #endif |
| |
| #if defined(ELF_HOST_MACHINE) |
| void tcg_register_jit(const void *buf, size_t buf_size) |
| { |
| tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame)); |
| } |
| #endif |