| /* |
| * m68k op helpers |
| * |
| * Copyright (c) 2006-2007 CodeSourcery |
| * Written by Paul Brook |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "exec/exec-all.h" |
| #include "exec/gdbstub.h" |
| |
| #include "exec/helper-proto.h" |
| |
| #define SIGNBIT (1u << 31) |
| |
| /* Sort alphabetically, except for "any". */ |
| static gint m68k_cpu_list_compare(gconstpointer a, gconstpointer b) |
| { |
| ObjectClass *class_a = (ObjectClass *)a; |
| ObjectClass *class_b = (ObjectClass *)b; |
| const char *name_a, *name_b; |
| |
| name_a = object_class_get_name(class_a); |
| name_b = object_class_get_name(class_b); |
| if (strcmp(name_a, "any-" TYPE_M68K_CPU) == 0) { |
| return 1; |
| } else if (strcmp(name_b, "any-" TYPE_M68K_CPU) == 0) { |
| return -1; |
| } else { |
| return strcasecmp(name_a, name_b); |
| } |
| } |
| |
| static void m68k_cpu_list_entry(gpointer data, gpointer user_data) |
| { |
| ObjectClass *c = data; |
| CPUListState *s = user_data; |
| const char *typename; |
| char *name; |
| |
| typename = object_class_get_name(c); |
| name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_M68K_CPU)); |
| (*s->cpu_fprintf)(s->file, "%s\n", |
| name); |
| g_free(name); |
| } |
| |
| void m68k_cpu_list(FILE *f, fprintf_function cpu_fprintf) |
| { |
| CPUListState s = { |
| .file = f, |
| .cpu_fprintf = cpu_fprintf, |
| }; |
| GSList *list; |
| |
| list = object_class_get_list(TYPE_M68K_CPU, false); |
| list = g_slist_sort(list, m68k_cpu_list_compare); |
| g_slist_foreach(list, m68k_cpu_list_entry, &s); |
| g_slist_free(list); |
| } |
| |
| static int cf_fpu_gdb_get_reg(CPUM68KState *env, uint8_t *mem_buf, int n) |
| { |
| if (n < 8) { |
| float_status s; |
| stfq_p(mem_buf, floatx80_to_float64(env->fregs[n].d, &s)); |
| return 8; |
| } |
| switch (n) { |
| case 8: /* fpcontrol */ |
| stl_be_p(mem_buf, env->fpcr); |
| return 4; |
| case 9: /* fpstatus */ |
| stl_be_p(mem_buf, env->fpsr); |
| return 4; |
| case 10: /* fpiar, not implemented */ |
| memset(mem_buf, 0, 4); |
| return 4; |
| } |
| return 0; |
| } |
| |
| static int cf_fpu_gdb_set_reg(CPUM68KState *env, uint8_t *mem_buf, int n) |
| { |
| if (n < 8) { |
| float_status s; |
| env->fregs[n].d = float64_to_floatx80(ldfq_p(mem_buf), &s); |
| return 8; |
| } |
| switch (n) { |
| case 8: /* fpcontrol */ |
| cpu_m68k_set_fpcr(env, ldl_p(mem_buf)); |
| return 4; |
| case 9: /* fpstatus */ |
| env->fpsr = ldl_p(mem_buf); |
| return 4; |
| case 10: /* fpiar, not implemented */ |
| return 4; |
| } |
| return 0; |
| } |
| |
| static int m68k_fpu_gdb_get_reg(CPUM68KState *env, uint8_t *mem_buf, int n) |
| { |
| if (n < 8) { |
| stw_be_p(mem_buf, env->fregs[n].l.upper); |
| memset(mem_buf + 2, 0, 2); |
| stq_be_p(mem_buf + 4, env->fregs[n].l.lower); |
| return 12; |
| } |
| switch (n) { |
| case 8: /* fpcontrol */ |
| stl_be_p(mem_buf, env->fpcr); |
| return 4; |
| case 9: /* fpstatus */ |
| stl_be_p(mem_buf, env->fpsr); |
| return 4; |
| case 10: /* fpiar, not implemented */ |
| memset(mem_buf, 0, 4); |
| return 4; |
| } |
| return 0; |
| } |
| |
| static int m68k_fpu_gdb_set_reg(CPUM68KState *env, uint8_t *mem_buf, int n) |
| { |
| if (n < 8) { |
| env->fregs[n].l.upper = lduw_be_p(mem_buf); |
| env->fregs[n].l.lower = ldq_be_p(mem_buf + 4); |
| return 12; |
| } |
| switch (n) { |
| case 8: /* fpcontrol */ |
| cpu_m68k_set_fpcr(env, ldl_p(mem_buf)); |
| return 4; |
| case 9: /* fpstatus */ |
| env->fpsr = ldl_p(mem_buf); |
| return 4; |
| case 10: /* fpiar, not implemented */ |
| return 4; |
| } |
| return 0; |
| } |
| |
| void m68k_cpu_init_gdb(M68kCPU *cpu) |
| { |
| CPUState *cs = CPU(cpu); |
| CPUM68KState *env = &cpu->env; |
| |
| if (m68k_feature(env, M68K_FEATURE_CF_FPU)) { |
| gdb_register_coprocessor(cs, cf_fpu_gdb_get_reg, cf_fpu_gdb_set_reg, |
| 11, "cf-fp.xml", 18); |
| } else if (m68k_feature(env, M68K_FEATURE_FPU)) { |
| gdb_register_coprocessor(cs, m68k_fpu_gdb_get_reg, |
| m68k_fpu_gdb_set_reg, 11, "m68k-fp.xml", 18); |
| } |
| /* TODO: Add [E]MAC registers. */ |
| } |
| |
| void HELPER(movec)(CPUM68KState *env, uint32_t reg, uint32_t val) |
| { |
| M68kCPU *cpu = m68k_env_get_cpu(env); |
| |
| switch (reg) { |
| case 0x02: /* CACR */ |
| env->cacr = val; |
| m68k_switch_sp(env); |
| break; |
| case 0x04: case 0x05: case 0x06: case 0x07: /* ACR[0-3] */ |
| /* TODO: Implement Access Control Registers. */ |
| break; |
| case 0x801: /* VBR */ |
| env->vbr = val; |
| break; |
| /* TODO: Implement control registers. */ |
| default: |
| cpu_abort(CPU(cpu), "Unimplemented control register write 0x%x = 0x%x\n", |
| reg, val); |
| } |
| } |
| |
| void HELPER(set_macsr)(CPUM68KState *env, uint32_t val) |
| { |
| uint32_t acc; |
| int8_t exthigh; |
| uint8_t extlow; |
| uint64_t regval; |
| int i; |
| if ((env->macsr ^ val) & (MACSR_FI | MACSR_SU)) { |
| for (i = 0; i < 4; i++) { |
| regval = env->macc[i]; |
| exthigh = regval >> 40; |
| if (env->macsr & MACSR_FI) { |
| acc = regval >> 8; |
| extlow = regval; |
| } else { |
| acc = regval; |
| extlow = regval >> 32; |
| } |
| if (env->macsr & MACSR_FI) { |
| regval = (((uint64_t)acc) << 8) | extlow; |
| regval |= ((int64_t)exthigh) << 40; |
| } else if (env->macsr & MACSR_SU) { |
| regval = acc | (((int64_t)extlow) << 32); |
| regval |= ((int64_t)exthigh) << 40; |
| } else { |
| regval = acc | (((uint64_t)extlow) << 32); |
| regval |= ((uint64_t)(uint8_t)exthigh) << 40; |
| } |
| env->macc[i] = regval; |
| } |
| } |
| env->macsr = val; |
| } |
| |
| void m68k_switch_sp(CPUM68KState *env) |
| { |
| int new_sp; |
| |
| env->sp[env->current_sp] = env->aregs[7]; |
| new_sp = (env->sr & SR_S && env->cacr & M68K_CACR_EUSP) |
| ? M68K_SSP : M68K_USP; |
| env->aregs[7] = env->sp[new_sp]; |
| env->current_sp = new_sp; |
| } |
| |
| #if defined(CONFIG_USER_ONLY) |
| |
| int m68k_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw, |
| int mmu_idx) |
| { |
| M68kCPU *cpu = M68K_CPU(cs); |
| |
| cs->exception_index = EXCP_ACCESS; |
| cpu->env.mmu.ar = address; |
| return 1; |
| } |
| |
| #else |
| |
| /* MMU */ |
| |
| /* TODO: This will need fixing once the MMU is implemented. */ |
| hwaddr m68k_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) |
| { |
| return addr; |
| } |
| |
| int m68k_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw, |
| int mmu_idx) |
| { |
| int prot; |
| |
| address &= TARGET_PAGE_MASK; |
| prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| tlb_set_page(cs, address, address, prot, mmu_idx, TARGET_PAGE_SIZE); |
| return 0; |
| } |
| |
| /* Notify CPU of a pending interrupt. Prioritization and vectoring should |
| be handled by the interrupt controller. Real hardware only requests |
| the vector when the interrupt is acknowledged by the CPU. For |
| simplicitly we calculate it when the interrupt is signalled. */ |
| void m68k_set_irq_level(M68kCPU *cpu, int level, uint8_t vector) |
| { |
| CPUState *cs = CPU(cpu); |
| CPUM68KState *env = &cpu->env; |
| |
| env->pending_level = level; |
| env->pending_vector = vector; |
| if (level) { |
| cpu_interrupt(cs, CPU_INTERRUPT_HARD); |
| } else { |
| cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); |
| } |
| } |
| |
| #endif |
| |
| uint32_t HELPER(bitrev)(uint32_t x) |
| { |
| x = ((x >> 1) & 0x55555555u) | ((x << 1) & 0xaaaaaaaau); |
| x = ((x >> 2) & 0x33333333u) | ((x << 2) & 0xccccccccu); |
| x = ((x >> 4) & 0x0f0f0f0fu) | ((x << 4) & 0xf0f0f0f0u); |
| return bswap32(x); |
| } |
| |
| uint32_t HELPER(ff1)(uint32_t x) |
| { |
| int n; |
| for (n = 32; x; n--) |
| x >>= 1; |
| return n; |
| } |
| |
| uint32_t HELPER(sats)(uint32_t val, uint32_t v) |
| { |
| /* The result has the opposite sign to the original value. */ |
| if ((int32_t)v < 0) { |
| val = (((int32_t)val) >> 31) ^ SIGNBIT; |
| } |
| return val; |
| } |
| |
| void HELPER(set_sr)(CPUM68KState *env, uint32_t val) |
| { |
| env->sr = val & 0xffe0; |
| cpu_m68k_set_ccr(env, val); |
| m68k_switch_sp(env); |
| } |
| |
| |
| /* MAC unit. */ |
| /* FIXME: The MAC unit implementation is a bit of a mess. Some helpers |
| take values, others take register numbers and manipulate the contents |
| in-place. */ |
| void HELPER(mac_move)(CPUM68KState *env, uint32_t dest, uint32_t src) |
| { |
| uint32_t mask; |
| env->macc[dest] = env->macc[src]; |
| mask = MACSR_PAV0 << dest; |
| if (env->macsr & (MACSR_PAV0 << src)) |
| env->macsr |= mask; |
| else |
| env->macsr &= ~mask; |
| } |
| |
| uint64_t HELPER(macmuls)(CPUM68KState *env, uint32_t op1, uint32_t op2) |
| { |
| int64_t product; |
| int64_t res; |
| |
| product = (uint64_t)op1 * op2; |
| res = (product << 24) >> 24; |
| if (res != product) { |
| env->macsr |= MACSR_V; |
| if (env->macsr & MACSR_OMC) { |
| /* Make sure the accumulate operation overflows. */ |
| if (product < 0) |
| res = ~(1ll << 50); |
| else |
| res = 1ll << 50; |
| } |
| } |
| return res; |
| } |
| |
| uint64_t HELPER(macmulu)(CPUM68KState *env, uint32_t op1, uint32_t op2) |
| { |
| uint64_t product; |
| |
| product = (uint64_t)op1 * op2; |
| if (product & (0xffffffull << 40)) { |
| env->macsr |= MACSR_V; |
| if (env->macsr & MACSR_OMC) { |
| /* Make sure the accumulate operation overflows. */ |
| product = 1ll << 50; |
| } else { |
| product &= ((1ull << 40) - 1); |
| } |
| } |
| return product; |
| } |
| |
| uint64_t HELPER(macmulf)(CPUM68KState *env, uint32_t op1, uint32_t op2) |
| { |
| uint64_t product; |
| uint32_t remainder; |
| |
| product = (uint64_t)op1 * op2; |
| if (env->macsr & MACSR_RT) { |
| remainder = product & 0xffffff; |
| product >>= 24; |
| if (remainder > 0x800000) |
| product++; |
| else if (remainder == 0x800000) |
| product += (product & 1); |
| } else { |
| product >>= 24; |
| } |
| return product; |
| } |
| |
| void HELPER(macsats)(CPUM68KState *env, uint32_t acc) |
| { |
| int64_t tmp; |
| int64_t result; |
| tmp = env->macc[acc]; |
| result = ((tmp << 16) >> 16); |
| if (result != tmp) { |
| env->macsr |= MACSR_V; |
| } |
| if (env->macsr & MACSR_V) { |
| env->macsr |= MACSR_PAV0 << acc; |
| if (env->macsr & MACSR_OMC) { |
| /* The result is saturated to 32 bits, despite overflow occurring |
| at 48 bits. Seems weird, but that's what the hardware docs |
| say. */ |
| result = (result >> 63) ^ 0x7fffffff; |
| } |
| } |
| env->macc[acc] = result; |
| } |
| |
| void HELPER(macsatu)(CPUM68KState *env, uint32_t acc) |
| { |
| uint64_t val; |
| |
| val = env->macc[acc]; |
| if (val & (0xffffull << 48)) { |
| env->macsr |= MACSR_V; |
| } |
| if (env->macsr & MACSR_V) { |
| env->macsr |= MACSR_PAV0 << acc; |
| if (env->macsr & MACSR_OMC) { |
| if (val > (1ull << 53)) |
| val = 0; |
| else |
| val = (1ull << 48) - 1; |
| } else { |
| val &= ((1ull << 48) - 1); |
| } |
| } |
| env->macc[acc] = val; |
| } |
| |
| void HELPER(macsatf)(CPUM68KState *env, uint32_t acc) |
| { |
| int64_t sum; |
| int64_t result; |
| |
| sum = env->macc[acc]; |
| result = (sum << 16) >> 16; |
| if (result != sum) { |
| env->macsr |= MACSR_V; |
| } |
| if (env->macsr & MACSR_V) { |
| env->macsr |= MACSR_PAV0 << acc; |
| if (env->macsr & MACSR_OMC) { |
| result = (result >> 63) ^ 0x7fffffffffffll; |
| } |
| } |
| env->macc[acc] = result; |
| } |
| |
| void HELPER(mac_set_flags)(CPUM68KState *env, uint32_t acc) |
| { |
| uint64_t val; |
| val = env->macc[acc]; |
| if (val == 0) { |
| env->macsr |= MACSR_Z; |
| } else if (val & (1ull << 47)) { |
| env->macsr |= MACSR_N; |
| } |
| if (env->macsr & (MACSR_PAV0 << acc)) { |
| env->macsr |= MACSR_V; |
| } |
| if (env->macsr & MACSR_FI) { |
| val = ((int64_t)val) >> 40; |
| if (val != 0 && val != -1) |
| env->macsr |= MACSR_EV; |
| } else if (env->macsr & MACSR_SU) { |
| val = ((int64_t)val) >> 32; |
| if (val != 0 && val != -1) |
| env->macsr |= MACSR_EV; |
| } else { |
| if ((val >> 32) != 0) |
| env->macsr |= MACSR_EV; |
| } |
| } |
| |
| #define EXTSIGN(val, index) ( \ |
| (index == 0) ? (int8_t)(val) : ((index == 1) ? (int16_t)(val) : (val)) \ |
| ) |
| |
| #define COMPUTE_CCR(op, x, n, z, v, c) { \ |
| switch (op) { \ |
| case CC_OP_FLAGS: \ |
| /* Everything in place. */ \ |
| break; \ |
| case CC_OP_ADDB: \ |
| case CC_OP_ADDW: \ |
| case CC_OP_ADDL: \ |
| res = n; \ |
| src2 = v; \ |
| src1 = EXTSIGN(res - src2, op - CC_OP_ADDB); \ |
| c = x; \ |
| z = n; \ |
| v = (res ^ src1) & ~(src1 ^ src2); \ |
| break; \ |
| case CC_OP_SUBB: \ |
| case CC_OP_SUBW: \ |
| case CC_OP_SUBL: \ |
| res = n; \ |
| src2 = v; \ |
| src1 = EXTSIGN(res + src2, op - CC_OP_SUBB); \ |
| c = x; \ |
| z = n; \ |
| v = (res ^ src1) & (src1 ^ src2); \ |
| break; \ |
| case CC_OP_CMPB: \ |
| case CC_OP_CMPW: \ |
| case CC_OP_CMPL: \ |
| src1 = n; \ |
| src2 = v; \ |
| res = EXTSIGN(src1 - src2, op - CC_OP_CMPB); \ |
| n = res; \ |
| z = res; \ |
| c = src1 < src2; \ |
| v = (res ^ src1) & (src1 ^ src2); \ |
| break; \ |
| case CC_OP_LOGIC: \ |
| c = v = 0; \ |
| z = n; \ |
| break; \ |
| default: \ |
| cpu_abort(CPU(m68k_env_get_cpu(env)), "Bad CC_OP %d", op); \ |
| } \ |
| } while (0) |
| |
| uint32_t cpu_m68k_get_ccr(CPUM68KState *env) |
| { |
| uint32_t x, c, n, z, v; |
| uint32_t res, src1, src2; |
| |
| x = env->cc_x; |
| n = env->cc_n; |
| z = env->cc_z; |
| v = env->cc_v; |
| c = env->cc_c; |
| |
| COMPUTE_CCR(env->cc_op, x, n, z, v, c); |
| |
| n = n >> 31; |
| z = (z == 0); |
| v = v >> 31; |
| |
| return x * CCF_X + n * CCF_N + z * CCF_Z + v * CCF_V + c * CCF_C; |
| } |
| |
| uint32_t HELPER(get_ccr)(CPUM68KState *env) |
| { |
| return cpu_m68k_get_ccr(env); |
| } |
| |
| void cpu_m68k_set_ccr(CPUM68KState *env, uint32_t ccr) |
| { |
| env->cc_x = (ccr & CCF_X ? 1 : 0); |
| env->cc_n = (ccr & CCF_N ? -1 : 0); |
| env->cc_z = (ccr & CCF_Z ? 0 : 1); |
| env->cc_v = (ccr & CCF_V ? -1 : 0); |
| env->cc_c = (ccr & CCF_C ? 1 : 0); |
| env->cc_op = CC_OP_FLAGS; |
| } |
| |
| void HELPER(set_ccr)(CPUM68KState *env, uint32_t ccr) |
| { |
| cpu_m68k_set_ccr(env, ccr); |
| } |
| |
| void HELPER(flush_flags)(CPUM68KState *env, uint32_t cc_op) |
| { |
| uint32_t res, src1, src2; |
| |
| COMPUTE_CCR(cc_op, env->cc_x, env->cc_n, env->cc_z, env->cc_v, env->cc_c); |
| env->cc_op = CC_OP_FLAGS; |
| } |
| |
| uint32_t HELPER(get_macf)(CPUM68KState *env, uint64_t val) |
| { |
| int rem; |
| uint32_t result; |
| |
| if (env->macsr & MACSR_SU) { |
| /* 16-bit rounding. */ |
| rem = val & 0xffffff; |
| val = (val >> 24) & 0xffffu; |
| if (rem > 0x800000) |
| val++; |
| else if (rem == 0x800000) |
| val += (val & 1); |
| } else if (env->macsr & MACSR_RT) { |
| /* 32-bit rounding. */ |
| rem = val & 0xff; |
| val >>= 8; |
| if (rem > 0x80) |
| val++; |
| else if (rem == 0x80) |
| val += (val & 1); |
| } else { |
| /* No rounding. */ |
| val >>= 8; |
| } |
| if (env->macsr & MACSR_OMC) { |
| /* Saturate. */ |
| if (env->macsr & MACSR_SU) { |
| if (val != (uint16_t) val) { |
| result = ((val >> 63) ^ 0x7fff) & 0xffff; |
| } else { |
| result = val & 0xffff; |
| } |
| } else { |
| if (val != (uint32_t)val) { |
| result = ((uint32_t)(val >> 63) & 0x7fffffff); |
| } else { |
| result = (uint32_t)val; |
| } |
| } |
| } else { |
| /* No saturation. */ |
| if (env->macsr & MACSR_SU) { |
| result = val & 0xffff; |
| } else { |
| result = (uint32_t)val; |
| } |
| } |
| return result; |
| } |
| |
| uint32_t HELPER(get_macs)(uint64_t val) |
| { |
| if (val == (int32_t)val) { |
| return (int32_t)val; |
| } else { |
| return (val >> 61) ^ ~SIGNBIT; |
| } |
| } |
| |
| uint32_t HELPER(get_macu)(uint64_t val) |
| { |
| if ((val >> 32) == 0) { |
| return (uint32_t)val; |
| } else { |
| return 0xffffffffu; |
| } |
| } |
| |
| uint32_t HELPER(get_mac_extf)(CPUM68KState *env, uint32_t acc) |
| { |
| uint32_t val; |
| val = env->macc[acc] & 0x00ff; |
| val |= (env->macc[acc] >> 32) & 0xff00; |
| val |= (env->macc[acc + 1] << 16) & 0x00ff0000; |
| val |= (env->macc[acc + 1] >> 16) & 0xff000000; |
| return val; |
| } |
| |
| uint32_t HELPER(get_mac_exti)(CPUM68KState *env, uint32_t acc) |
| { |
| uint32_t val; |
| val = (env->macc[acc] >> 32) & 0xffff; |
| val |= (env->macc[acc + 1] >> 16) & 0xffff0000; |
| return val; |
| } |
| |
| void HELPER(set_mac_extf)(CPUM68KState *env, uint32_t val, uint32_t acc) |
| { |
| int64_t res; |
| int32_t tmp; |
| res = env->macc[acc] & 0xffffffff00ull; |
| tmp = (int16_t)(val & 0xff00); |
| res |= ((int64_t)tmp) << 32; |
| res |= val & 0xff; |
| env->macc[acc] = res; |
| res = env->macc[acc + 1] & 0xffffffff00ull; |
| tmp = (val & 0xff000000); |
| res |= ((int64_t)tmp) << 16; |
| res |= (val >> 16) & 0xff; |
| env->macc[acc + 1] = res; |
| } |
| |
| void HELPER(set_mac_exts)(CPUM68KState *env, uint32_t val, uint32_t acc) |
| { |
| int64_t res; |
| int32_t tmp; |
| res = (uint32_t)env->macc[acc]; |
| tmp = (int16_t)val; |
| res |= ((int64_t)tmp) << 32; |
| env->macc[acc] = res; |
| res = (uint32_t)env->macc[acc + 1]; |
| tmp = val & 0xffff0000; |
| res |= (int64_t)tmp << 16; |
| env->macc[acc + 1] = res; |
| } |
| |
| void HELPER(set_mac_extu)(CPUM68KState *env, uint32_t val, uint32_t acc) |
| { |
| uint64_t res; |
| res = (uint32_t)env->macc[acc]; |
| res |= ((uint64_t)(val & 0xffff)) << 32; |
| env->macc[acc] = res; |
| res = (uint32_t)env->macc[acc + 1]; |
| res |= (uint64_t)(val & 0xffff0000) << 16; |
| env->macc[acc + 1] = res; |
| } |