| /* |
| * Luminary Micro Stellaris peripherals |
| * |
| * Copyright (c) 2006 CodeSourcery. |
| * Written by Paul Brook |
| * |
| * This code is licensed under the GPL. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qapi/error.h" |
| #include "hw/sysbus.h" |
| #include "hw/ssi/ssi.h" |
| #include "hw/arm/boot.h" |
| #include "qemu/timer.h" |
| #include "hw/i2c/i2c.h" |
| #include "net/net.h" |
| #include "hw/boards.h" |
| #include "qemu/log.h" |
| #include "exec/address-spaces.h" |
| #include "sysemu/sysemu.h" |
| #include "hw/arm/armv7m.h" |
| #include "hw/char/pl011.h" |
| #include "hw/input/gamepad.h" |
| #include "hw/irq.h" |
| #include "hw/watchdog/cmsdk-apb-watchdog.h" |
| #include "migration/vmstate.h" |
| #include "hw/misc/unimp.h" |
| #include "hw/timer/stellaris-gptm.h" |
| #include "hw/qdev-clock.h" |
| #include "qom/object.h" |
| |
| #define GPIO_A 0 |
| #define GPIO_B 1 |
| #define GPIO_C 2 |
| #define GPIO_D 3 |
| #define GPIO_E 4 |
| #define GPIO_F 5 |
| #define GPIO_G 6 |
| |
| #define BP_OLED_I2C 0x01 |
| #define BP_OLED_SSI 0x02 |
| #define BP_GAMEPAD 0x04 |
| |
| #define NUM_IRQ_LINES 64 |
| |
| typedef const struct { |
| const char *name; |
| uint32_t did0; |
| uint32_t did1; |
| uint32_t dc0; |
| uint32_t dc1; |
| uint32_t dc2; |
| uint32_t dc3; |
| uint32_t dc4; |
| uint32_t peripherals; |
| } stellaris_board_info; |
| |
| /* System controller. */ |
| |
| #define TYPE_STELLARIS_SYS "stellaris-sys" |
| OBJECT_DECLARE_SIMPLE_TYPE(ssys_state, STELLARIS_SYS) |
| |
| struct ssys_state { |
| SysBusDevice parent_obj; |
| |
| MemoryRegion iomem; |
| uint32_t pborctl; |
| uint32_t ldopctl; |
| uint32_t int_status; |
| uint32_t int_mask; |
| uint32_t resc; |
| uint32_t rcc; |
| uint32_t rcc2; |
| uint32_t rcgc[3]; |
| uint32_t scgc[3]; |
| uint32_t dcgc[3]; |
| uint32_t clkvclr; |
| uint32_t ldoarst; |
| qemu_irq irq; |
| Clock *sysclk; |
| /* Properties (all read-only registers) */ |
| uint32_t user0; |
| uint32_t user1; |
| uint32_t did0; |
| uint32_t did1; |
| uint32_t dc0; |
| uint32_t dc1; |
| uint32_t dc2; |
| uint32_t dc3; |
| uint32_t dc4; |
| }; |
| |
| static void ssys_update(ssys_state *s) |
| { |
| qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0); |
| } |
| |
| static uint32_t pllcfg_sandstorm[16] = { |
| 0x31c0, /* 1 Mhz */ |
| 0x1ae0, /* 1.8432 Mhz */ |
| 0x18c0, /* 2 Mhz */ |
| 0xd573, /* 2.4576 Mhz */ |
| 0x37a6, /* 3.57954 Mhz */ |
| 0x1ae2, /* 3.6864 Mhz */ |
| 0x0c40, /* 4 Mhz */ |
| 0x98bc, /* 4.906 Mhz */ |
| 0x935b, /* 4.9152 Mhz */ |
| 0x09c0, /* 5 Mhz */ |
| 0x4dee, /* 5.12 Mhz */ |
| 0x0c41, /* 6 Mhz */ |
| 0x75db, /* 6.144 Mhz */ |
| 0x1ae6, /* 7.3728 Mhz */ |
| 0x0600, /* 8 Mhz */ |
| 0x585b /* 8.192 Mhz */ |
| }; |
| |
| static uint32_t pllcfg_fury[16] = { |
| 0x3200, /* 1 Mhz */ |
| 0x1b20, /* 1.8432 Mhz */ |
| 0x1900, /* 2 Mhz */ |
| 0xf42b, /* 2.4576 Mhz */ |
| 0x37e3, /* 3.57954 Mhz */ |
| 0x1b21, /* 3.6864 Mhz */ |
| 0x0c80, /* 4 Mhz */ |
| 0x98ee, /* 4.906 Mhz */ |
| 0xd5b4, /* 4.9152 Mhz */ |
| 0x0a00, /* 5 Mhz */ |
| 0x4e27, /* 5.12 Mhz */ |
| 0x1902, /* 6 Mhz */ |
| 0xec1c, /* 6.144 Mhz */ |
| 0x1b23, /* 7.3728 Mhz */ |
| 0x0640, /* 8 Mhz */ |
| 0xb11c /* 8.192 Mhz */ |
| }; |
| |
| #define DID0_VER_MASK 0x70000000 |
| #define DID0_VER_0 0x00000000 |
| #define DID0_VER_1 0x10000000 |
| |
| #define DID0_CLASS_MASK 0x00FF0000 |
| #define DID0_CLASS_SANDSTORM 0x00000000 |
| #define DID0_CLASS_FURY 0x00010000 |
| |
| static int ssys_board_class(const ssys_state *s) |
| { |
| uint32_t did0 = s->did0; |
| switch (did0 & DID0_VER_MASK) { |
| case DID0_VER_0: |
| return DID0_CLASS_SANDSTORM; |
| case DID0_VER_1: |
| switch (did0 & DID0_CLASS_MASK) { |
| case DID0_CLASS_SANDSTORM: |
| case DID0_CLASS_FURY: |
| return did0 & DID0_CLASS_MASK; |
| } |
| /* for unknown classes, fall through */ |
| default: |
| /* This can only happen if the hardwired constant did0 value |
| * in this board's stellaris_board_info struct is wrong. |
| */ |
| g_assert_not_reached(); |
| } |
| } |
| |
| static uint64_t ssys_read(void *opaque, hwaddr offset, |
| unsigned size) |
| { |
| ssys_state *s = (ssys_state *)opaque; |
| |
| switch (offset) { |
| case 0x000: /* DID0 */ |
| return s->did0; |
| case 0x004: /* DID1 */ |
| return s->did1; |
| case 0x008: /* DC0 */ |
| return s->dc0; |
| case 0x010: /* DC1 */ |
| return s->dc1; |
| case 0x014: /* DC2 */ |
| return s->dc2; |
| case 0x018: /* DC3 */ |
| return s->dc3; |
| case 0x01c: /* DC4 */ |
| return s->dc4; |
| case 0x030: /* PBORCTL */ |
| return s->pborctl; |
| case 0x034: /* LDOPCTL */ |
| return s->ldopctl; |
| case 0x040: /* SRCR0 */ |
| return 0; |
| case 0x044: /* SRCR1 */ |
| return 0; |
| case 0x048: /* SRCR2 */ |
| return 0; |
| case 0x050: /* RIS */ |
| return s->int_status; |
| case 0x054: /* IMC */ |
| return s->int_mask; |
| case 0x058: /* MISC */ |
| return s->int_status & s->int_mask; |
| case 0x05c: /* RESC */ |
| return s->resc; |
| case 0x060: /* RCC */ |
| return s->rcc; |
| case 0x064: /* PLLCFG */ |
| { |
| int xtal; |
| xtal = (s->rcc >> 6) & 0xf; |
| switch (ssys_board_class(s)) { |
| case DID0_CLASS_FURY: |
| return pllcfg_fury[xtal]; |
| case DID0_CLASS_SANDSTORM: |
| return pllcfg_sandstorm[xtal]; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| case 0x070: /* RCC2 */ |
| return s->rcc2; |
| case 0x100: /* RCGC0 */ |
| return s->rcgc[0]; |
| case 0x104: /* RCGC1 */ |
| return s->rcgc[1]; |
| case 0x108: /* RCGC2 */ |
| return s->rcgc[2]; |
| case 0x110: /* SCGC0 */ |
| return s->scgc[0]; |
| case 0x114: /* SCGC1 */ |
| return s->scgc[1]; |
| case 0x118: /* SCGC2 */ |
| return s->scgc[2]; |
| case 0x120: /* DCGC0 */ |
| return s->dcgc[0]; |
| case 0x124: /* DCGC1 */ |
| return s->dcgc[1]; |
| case 0x128: /* DCGC2 */ |
| return s->dcgc[2]; |
| case 0x150: /* CLKVCLR */ |
| return s->clkvclr; |
| case 0x160: /* LDOARST */ |
| return s->ldoarst; |
| case 0x1e0: /* USER0 */ |
| return s->user0; |
| case 0x1e4: /* USER1 */ |
| return s->user1; |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "SSYS: read at bad offset 0x%x\n", (int)offset); |
| return 0; |
| } |
| } |
| |
| static bool ssys_use_rcc2(ssys_state *s) |
| { |
| return (s->rcc2 >> 31) & 0x1; |
| } |
| |
| /* |
| * Calculate the system clock period. We only want to propagate |
| * this change to the rest of the system if we're not being called |
| * from migration post-load. |
| */ |
| static void ssys_calculate_system_clock(ssys_state *s, bool propagate_clock) |
| { |
| int period_ns; |
| /* |
| * SYSDIV field specifies divisor: 0 == /1, 1 == /2, etc. Input |
| * clock is 200MHz, which is a period of 5 ns. Dividing the clock |
| * frequency by X is the same as multiplying the period by X. |
| */ |
| if (ssys_use_rcc2(s)) { |
| period_ns = 5 * (((s->rcc2 >> 23) & 0x3f) + 1); |
| } else { |
| period_ns = 5 * (((s->rcc >> 23) & 0xf) + 1); |
| } |
| clock_set_ns(s->sysclk, period_ns); |
| if (propagate_clock) { |
| clock_propagate(s->sysclk); |
| } |
| } |
| |
| static void ssys_write(void *opaque, hwaddr offset, |
| uint64_t value, unsigned size) |
| { |
| ssys_state *s = (ssys_state *)opaque; |
| |
| switch (offset) { |
| case 0x030: /* PBORCTL */ |
| s->pborctl = value & 0xffff; |
| break; |
| case 0x034: /* LDOPCTL */ |
| s->ldopctl = value & 0x1f; |
| break; |
| case 0x040: /* SRCR0 */ |
| case 0x044: /* SRCR1 */ |
| case 0x048: /* SRCR2 */ |
| qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n"); |
| break; |
| case 0x054: /* IMC */ |
| s->int_mask = value & 0x7f; |
| break; |
| case 0x058: /* MISC */ |
| s->int_status &= ~value; |
| break; |
| case 0x05c: /* RESC */ |
| s->resc = value & 0x3f; |
| break; |
| case 0x060: /* RCC */ |
| if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) { |
| /* PLL enable. */ |
| s->int_status |= (1 << 6); |
| } |
| s->rcc = value; |
| ssys_calculate_system_clock(s, true); |
| break; |
| case 0x070: /* RCC2 */ |
| if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) { |
| break; |
| } |
| |
| if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) { |
| /* PLL enable. */ |
| s->int_status |= (1 << 6); |
| } |
| s->rcc2 = value; |
| ssys_calculate_system_clock(s, true); |
| break; |
| case 0x100: /* RCGC0 */ |
| s->rcgc[0] = value; |
| break; |
| case 0x104: /* RCGC1 */ |
| s->rcgc[1] = value; |
| break; |
| case 0x108: /* RCGC2 */ |
| s->rcgc[2] = value; |
| break; |
| case 0x110: /* SCGC0 */ |
| s->scgc[0] = value; |
| break; |
| case 0x114: /* SCGC1 */ |
| s->scgc[1] = value; |
| break; |
| case 0x118: /* SCGC2 */ |
| s->scgc[2] = value; |
| break; |
| case 0x120: /* DCGC0 */ |
| s->dcgc[0] = value; |
| break; |
| case 0x124: /* DCGC1 */ |
| s->dcgc[1] = value; |
| break; |
| case 0x128: /* DCGC2 */ |
| s->dcgc[2] = value; |
| break; |
| case 0x150: /* CLKVCLR */ |
| s->clkvclr = value; |
| break; |
| case 0x160: /* LDOARST */ |
| s->ldoarst = value; |
| break; |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "SSYS: write at bad offset 0x%x\n", (int)offset); |
| } |
| ssys_update(s); |
| } |
| |
| static const MemoryRegionOps ssys_ops = { |
| .read = ssys_read, |
| .write = ssys_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| }; |
| |
| static void stellaris_sys_reset_enter(Object *obj, ResetType type) |
| { |
| ssys_state *s = STELLARIS_SYS(obj); |
| |
| s->pborctl = 0x7ffd; |
| s->rcc = 0x078e3ac0; |
| |
| if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) { |
| s->rcc2 = 0; |
| } else { |
| s->rcc2 = 0x07802810; |
| } |
| s->rcgc[0] = 1; |
| s->scgc[0] = 1; |
| s->dcgc[0] = 1; |
| } |
| |
| static void stellaris_sys_reset_hold(Object *obj) |
| { |
| ssys_state *s = STELLARIS_SYS(obj); |
| |
| /* OK to propagate clocks from the hold phase */ |
| ssys_calculate_system_clock(s, true); |
| } |
| |
| static void stellaris_sys_reset_exit(Object *obj) |
| { |
| } |
| |
| static int stellaris_sys_post_load(void *opaque, int version_id) |
| { |
| ssys_state *s = opaque; |
| |
| ssys_calculate_system_clock(s, false); |
| |
| return 0; |
| } |
| |
| static const VMStateDescription vmstate_stellaris_sys = { |
| .name = "stellaris_sys", |
| .version_id = 2, |
| .minimum_version_id = 1, |
| .post_load = stellaris_sys_post_load, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT32(pborctl, ssys_state), |
| VMSTATE_UINT32(ldopctl, ssys_state), |
| VMSTATE_UINT32(int_mask, ssys_state), |
| VMSTATE_UINT32(int_status, ssys_state), |
| VMSTATE_UINT32(resc, ssys_state), |
| VMSTATE_UINT32(rcc, ssys_state), |
| VMSTATE_UINT32_V(rcc2, ssys_state, 2), |
| VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3), |
| VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3), |
| VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3), |
| VMSTATE_UINT32(clkvclr, ssys_state), |
| VMSTATE_UINT32(ldoarst, ssys_state), |
| /* No field for sysclk -- handled in post-load instead */ |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static Property stellaris_sys_properties[] = { |
| DEFINE_PROP_UINT32("user0", ssys_state, user0, 0), |
| DEFINE_PROP_UINT32("user1", ssys_state, user1, 0), |
| DEFINE_PROP_UINT32("did0", ssys_state, did0, 0), |
| DEFINE_PROP_UINT32("did1", ssys_state, did1, 0), |
| DEFINE_PROP_UINT32("dc0", ssys_state, dc0, 0), |
| DEFINE_PROP_UINT32("dc1", ssys_state, dc1, 0), |
| DEFINE_PROP_UINT32("dc2", ssys_state, dc2, 0), |
| DEFINE_PROP_UINT32("dc3", ssys_state, dc3, 0), |
| DEFINE_PROP_UINT32("dc4", ssys_state, dc4, 0), |
| DEFINE_PROP_END_OF_LIST() |
| }; |
| |
| static void stellaris_sys_instance_init(Object *obj) |
| { |
| ssys_state *s = STELLARIS_SYS(obj); |
| SysBusDevice *sbd = SYS_BUS_DEVICE(s); |
| |
| memory_region_init_io(&s->iomem, obj, &ssys_ops, s, "ssys", 0x00001000); |
| sysbus_init_mmio(sbd, &s->iomem); |
| sysbus_init_irq(sbd, &s->irq); |
| s->sysclk = qdev_init_clock_out(DEVICE(s), "SYSCLK"); |
| } |
| |
| /* I2C controller. */ |
| |
| #define TYPE_STELLARIS_I2C "stellaris-i2c" |
| OBJECT_DECLARE_SIMPLE_TYPE(stellaris_i2c_state, STELLARIS_I2C) |
| |
| struct stellaris_i2c_state { |
| SysBusDevice parent_obj; |
| |
| I2CBus *bus; |
| qemu_irq irq; |
| MemoryRegion iomem; |
| uint32_t msa; |
| uint32_t mcs; |
| uint32_t mdr; |
| uint32_t mtpr; |
| uint32_t mimr; |
| uint32_t mris; |
| uint32_t mcr; |
| }; |
| |
| #define STELLARIS_I2C_MCS_BUSY 0x01 |
| #define STELLARIS_I2C_MCS_ERROR 0x02 |
| #define STELLARIS_I2C_MCS_ADRACK 0x04 |
| #define STELLARIS_I2C_MCS_DATACK 0x08 |
| #define STELLARIS_I2C_MCS_ARBLST 0x10 |
| #define STELLARIS_I2C_MCS_IDLE 0x20 |
| #define STELLARIS_I2C_MCS_BUSBSY 0x40 |
| |
| static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset, |
| unsigned size) |
| { |
| stellaris_i2c_state *s = (stellaris_i2c_state *)opaque; |
| |
| switch (offset) { |
| case 0x00: /* MSA */ |
| return s->msa; |
| case 0x04: /* MCS */ |
| /* We don't emulate timing, so the controller is never busy. */ |
| return s->mcs | STELLARIS_I2C_MCS_IDLE; |
| case 0x08: /* MDR */ |
| return s->mdr; |
| case 0x0c: /* MTPR */ |
| return s->mtpr; |
| case 0x10: /* MIMR */ |
| return s->mimr; |
| case 0x14: /* MRIS */ |
| return s->mris; |
| case 0x18: /* MMIS */ |
| return s->mris & s->mimr; |
| case 0x20: /* MCR */ |
| return s->mcr; |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "stellaris_i2c: read at bad offset 0x%x\n", (int)offset); |
| return 0; |
| } |
| } |
| |
| static void stellaris_i2c_update(stellaris_i2c_state *s) |
| { |
| int level; |
| |
| level = (s->mris & s->mimr) != 0; |
| qemu_set_irq(s->irq, level); |
| } |
| |
| static void stellaris_i2c_write(void *opaque, hwaddr offset, |
| uint64_t value, unsigned size) |
| { |
| stellaris_i2c_state *s = (stellaris_i2c_state *)opaque; |
| |
| switch (offset) { |
| case 0x00: /* MSA */ |
| s->msa = value & 0xff; |
| break; |
| case 0x04: /* MCS */ |
| if ((s->mcr & 0x10) == 0) { |
| /* Disabled. Do nothing. */ |
| break; |
| } |
| /* Grab the bus if this is starting a transfer. */ |
| if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) { |
| if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) { |
| s->mcs |= STELLARIS_I2C_MCS_ARBLST; |
| } else { |
| s->mcs &= ~STELLARIS_I2C_MCS_ARBLST; |
| s->mcs |= STELLARIS_I2C_MCS_BUSBSY; |
| } |
| } |
| /* If we don't have the bus then indicate an error. */ |
| if (!i2c_bus_busy(s->bus) |
| || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) { |
| s->mcs |= STELLARIS_I2C_MCS_ERROR; |
| break; |
| } |
| s->mcs &= ~STELLARIS_I2C_MCS_ERROR; |
| if (value & 1) { |
| /* Transfer a byte. */ |
| /* TODO: Handle errors. */ |
| if (s->msa & 1) { |
| /* Recv */ |
| s->mdr = i2c_recv(s->bus); |
| } else { |
| /* Send */ |
| i2c_send(s->bus, s->mdr); |
| } |
| /* Raise an interrupt. */ |
| s->mris |= 1; |
| } |
| if (value & 4) { |
| /* Finish transfer. */ |
| i2c_end_transfer(s->bus); |
| s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY; |
| } |
| break; |
| case 0x08: /* MDR */ |
| s->mdr = value & 0xff; |
| break; |
| case 0x0c: /* MTPR */ |
| s->mtpr = value & 0xff; |
| break; |
| case 0x10: /* MIMR */ |
| s->mimr = 1; |
| break; |
| case 0x1c: /* MICR */ |
| s->mris &= ~value; |
| break; |
| case 0x20: /* MCR */ |
| if (value & 1) { |
| qemu_log_mask(LOG_UNIMP, |
| "stellaris_i2c: Loopback not implemented\n"); |
| } |
| if (value & 0x20) { |
| qemu_log_mask(LOG_UNIMP, |
| "stellaris_i2c: Slave mode not implemented\n"); |
| } |
| s->mcr = value & 0x31; |
| break; |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "stellaris_i2c: write at bad offset 0x%x\n", (int)offset); |
| } |
| stellaris_i2c_update(s); |
| } |
| |
| static void stellaris_i2c_reset(stellaris_i2c_state *s) |
| { |
| if (s->mcs & STELLARIS_I2C_MCS_BUSBSY) |
| i2c_end_transfer(s->bus); |
| |
| s->msa = 0; |
| s->mcs = 0; |
| s->mdr = 0; |
| s->mtpr = 1; |
| s->mimr = 0; |
| s->mris = 0; |
| s->mcr = 0; |
| stellaris_i2c_update(s); |
| } |
| |
| static const MemoryRegionOps stellaris_i2c_ops = { |
| .read = stellaris_i2c_read, |
| .write = stellaris_i2c_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| }; |
| |
| static const VMStateDescription vmstate_stellaris_i2c = { |
| .name = "stellaris_i2c", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT32(msa, stellaris_i2c_state), |
| VMSTATE_UINT32(mcs, stellaris_i2c_state), |
| VMSTATE_UINT32(mdr, stellaris_i2c_state), |
| VMSTATE_UINT32(mtpr, stellaris_i2c_state), |
| VMSTATE_UINT32(mimr, stellaris_i2c_state), |
| VMSTATE_UINT32(mris, stellaris_i2c_state), |
| VMSTATE_UINT32(mcr, stellaris_i2c_state), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static void stellaris_i2c_init(Object *obj) |
| { |
| DeviceState *dev = DEVICE(obj); |
| stellaris_i2c_state *s = STELLARIS_I2C(obj); |
| SysBusDevice *sbd = SYS_BUS_DEVICE(obj); |
| I2CBus *bus; |
| |
| sysbus_init_irq(sbd, &s->irq); |
| bus = i2c_init_bus(dev, "i2c"); |
| s->bus = bus; |
| |
| memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s, |
| "i2c", 0x1000); |
| sysbus_init_mmio(sbd, &s->iomem); |
| /* ??? For now we only implement the master interface. */ |
| stellaris_i2c_reset(s); |
| } |
| |
| /* Analogue to Digital Converter. This is only partially implemented, |
| enough for applications that use a combined ADC and timer tick. */ |
| |
| #define STELLARIS_ADC_EM_CONTROLLER 0 |
| #define STELLARIS_ADC_EM_COMP 1 |
| #define STELLARIS_ADC_EM_EXTERNAL 4 |
| #define STELLARIS_ADC_EM_TIMER 5 |
| #define STELLARIS_ADC_EM_PWM0 6 |
| #define STELLARIS_ADC_EM_PWM1 7 |
| #define STELLARIS_ADC_EM_PWM2 8 |
| |
| #define STELLARIS_ADC_FIFO_EMPTY 0x0100 |
| #define STELLARIS_ADC_FIFO_FULL 0x1000 |
| |
| #define TYPE_STELLARIS_ADC "stellaris-adc" |
| typedef struct StellarisADCState stellaris_adc_state; |
| DECLARE_INSTANCE_CHECKER(stellaris_adc_state, STELLARIS_ADC, |
| TYPE_STELLARIS_ADC) |
| |
| struct StellarisADCState { |
| SysBusDevice parent_obj; |
| |
| MemoryRegion iomem; |
| uint32_t actss; |
| uint32_t ris; |
| uint32_t im; |
| uint32_t emux; |
| uint32_t ostat; |
| uint32_t ustat; |
| uint32_t sspri; |
| uint32_t sac; |
| struct { |
| uint32_t state; |
| uint32_t data[16]; |
| } fifo[4]; |
| uint32_t ssmux[4]; |
| uint32_t ssctl[4]; |
| uint32_t noise; |
| qemu_irq irq[4]; |
| }; |
| |
| static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n) |
| { |
| int tail; |
| |
| tail = s->fifo[n].state & 0xf; |
| if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) { |
| s->ustat |= 1 << n; |
| } else { |
| s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf); |
| s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL; |
| if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf)) |
| s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY; |
| } |
| return s->fifo[n].data[tail]; |
| } |
| |
| static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n, |
| uint32_t value) |
| { |
| int head; |
| |
| /* TODO: Real hardware has limited size FIFOs. We have a full 16 entry |
| FIFO fir each sequencer. */ |
| head = (s->fifo[n].state >> 4) & 0xf; |
| if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) { |
| s->ostat |= 1 << n; |
| return; |
| } |
| s->fifo[n].data[head] = value; |
| head = (head + 1) & 0xf; |
| s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY; |
| s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4); |
| if ((s->fifo[n].state & 0xf) == head) |
| s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL; |
| } |
| |
| static void stellaris_adc_update(stellaris_adc_state *s) |
| { |
| int level; |
| int n; |
| |
| for (n = 0; n < 4; n++) { |
| level = (s->ris & s->im & (1 << n)) != 0; |
| qemu_set_irq(s->irq[n], level); |
| } |
| } |
| |
| static void stellaris_adc_trigger(void *opaque, int irq, int level) |
| { |
| stellaris_adc_state *s = (stellaris_adc_state *)opaque; |
| int n; |
| |
| for (n = 0; n < 4; n++) { |
| if ((s->actss & (1 << n)) == 0) { |
| continue; |
| } |
| |
| if (((s->emux >> (n * 4)) & 0xff) != 5) { |
| continue; |
| } |
| |
| /* Some applications use the ADC as a random number source, so introduce |
| some variation into the signal. */ |
| s->noise = s->noise * 314159 + 1; |
| /* ??? actual inputs not implemented. Return an arbitrary value. */ |
| stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7)); |
| s->ris |= (1 << n); |
| stellaris_adc_update(s); |
| } |
| } |
| |
| static void stellaris_adc_reset(stellaris_adc_state *s) |
| { |
| int n; |
| |
| for (n = 0; n < 4; n++) { |
| s->ssmux[n] = 0; |
| s->ssctl[n] = 0; |
| s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY; |
| } |
| } |
| |
| static uint64_t stellaris_adc_read(void *opaque, hwaddr offset, |
| unsigned size) |
| { |
| stellaris_adc_state *s = (stellaris_adc_state *)opaque; |
| |
| /* TODO: Implement this. */ |
| if (offset >= 0x40 && offset < 0xc0) { |
| int n; |
| n = (offset - 0x40) >> 5; |
| switch (offset & 0x1f) { |
| case 0x00: /* SSMUX */ |
| return s->ssmux[n]; |
| case 0x04: /* SSCTL */ |
| return s->ssctl[n]; |
| case 0x08: /* SSFIFO */ |
| return stellaris_adc_fifo_read(s, n); |
| case 0x0c: /* SSFSTAT */ |
| return s->fifo[n].state; |
| default: |
| break; |
| } |
| } |
| switch (offset) { |
| case 0x00: /* ACTSS */ |
| return s->actss; |
| case 0x04: /* RIS */ |
| return s->ris; |
| case 0x08: /* IM */ |
| return s->im; |
| case 0x0c: /* ISC */ |
| return s->ris & s->im; |
| case 0x10: /* OSTAT */ |
| return s->ostat; |
| case 0x14: /* EMUX */ |
| return s->emux; |
| case 0x18: /* USTAT */ |
| return s->ustat; |
| case 0x20: /* SSPRI */ |
| return s->sspri; |
| case 0x30: /* SAC */ |
| return s->sac; |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "stellaris_adc: read at bad offset 0x%x\n", (int)offset); |
| return 0; |
| } |
| } |
| |
| static void stellaris_adc_write(void *opaque, hwaddr offset, |
| uint64_t value, unsigned size) |
| { |
| stellaris_adc_state *s = (stellaris_adc_state *)opaque; |
| |
| /* TODO: Implement this. */ |
| if (offset >= 0x40 && offset < 0xc0) { |
| int n; |
| n = (offset - 0x40) >> 5; |
| switch (offset & 0x1f) { |
| case 0x00: /* SSMUX */ |
| s->ssmux[n] = value & 0x33333333; |
| return; |
| case 0x04: /* SSCTL */ |
| if (value != 6) { |
| qemu_log_mask(LOG_UNIMP, |
| "ADC: Unimplemented sequence %" PRIx64 "\n", |
| value); |
| } |
| s->ssctl[n] = value; |
| return; |
| default: |
| break; |
| } |
| } |
| switch (offset) { |
| case 0x00: /* ACTSS */ |
| s->actss = value & 0xf; |
| break; |
| case 0x08: /* IM */ |
| s->im = value; |
| break; |
| case 0x0c: /* ISC */ |
| s->ris &= ~value; |
| break; |
| case 0x10: /* OSTAT */ |
| s->ostat &= ~value; |
| break; |
| case 0x14: /* EMUX */ |
| s->emux = value; |
| break; |
| case 0x18: /* USTAT */ |
| s->ustat &= ~value; |
| break; |
| case 0x20: /* SSPRI */ |
| s->sspri = value; |
| break; |
| case 0x28: /* PSSI */ |
| qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n"); |
| break; |
| case 0x30: /* SAC */ |
| s->sac = value; |
| break; |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "stellaris_adc: write at bad offset 0x%x\n", (int)offset); |
| } |
| stellaris_adc_update(s); |
| } |
| |
| static const MemoryRegionOps stellaris_adc_ops = { |
| .read = stellaris_adc_read, |
| .write = stellaris_adc_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| }; |
| |
| static const VMStateDescription vmstate_stellaris_adc = { |
| .name = "stellaris_adc", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT32(actss, stellaris_adc_state), |
| VMSTATE_UINT32(ris, stellaris_adc_state), |
| VMSTATE_UINT32(im, stellaris_adc_state), |
| VMSTATE_UINT32(emux, stellaris_adc_state), |
| VMSTATE_UINT32(ostat, stellaris_adc_state), |
| VMSTATE_UINT32(ustat, stellaris_adc_state), |
| VMSTATE_UINT32(sspri, stellaris_adc_state), |
| VMSTATE_UINT32(sac, stellaris_adc_state), |
| VMSTATE_UINT32(fifo[0].state, stellaris_adc_state), |
| VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16), |
| VMSTATE_UINT32(ssmux[0], stellaris_adc_state), |
| VMSTATE_UINT32(ssctl[0], stellaris_adc_state), |
| VMSTATE_UINT32(fifo[1].state, stellaris_adc_state), |
| VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16), |
| VMSTATE_UINT32(ssmux[1], stellaris_adc_state), |
| VMSTATE_UINT32(ssctl[1], stellaris_adc_state), |
| VMSTATE_UINT32(fifo[2].state, stellaris_adc_state), |
| VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16), |
| VMSTATE_UINT32(ssmux[2], stellaris_adc_state), |
| VMSTATE_UINT32(ssctl[2], stellaris_adc_state), |
| VMSTATE_UINT32(fifo[3].state, stellaris_adc_state), |
| VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16), |
| VMSTATE_UINT32(ssmux[3], stellaris_adc_state), |
| VMSTATE_UINT32(ssctl[3], stellaris_adc_state), |
| VMSTATE_UINT32(noise, stellaris_adc_state), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static void stellaris_adc_init(Object *obj) |
| { |
| DeviceState *dev = DEVICE(obj); |
| stellaris_adc_state *s = STELLARIS_ADC(obj); |
| SysBusDevice *sbd = SYS_BUS_DEVICE(obj); |
| int n; |
| |
| for (n = 0; n < 4; n++) { |
| sysbus_init_irq(sbd, &s->irq[n]); |
| } |
| |
| memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s, |
| "adc", 0x1000); |
| sysbus_init_mmio(sbd, &s->iomem); |
| stellaris_adc_reset(s); |
| qdev_init_gpio_in(dev, stellaris_adc_trigger, 1); |
| } |
| |
| /* Board init. */ |
| static stellaris_board_info stellaris_boards[] = { |
| { "LM3S811EVB", |
| 0, |
| 0x0032000e, |
| 0x001f001f, /* dc0 */ |
| 0x001132bf, |
| 0x01071013, |
| 0x3f0f01ff, |
| 0x0000001f, |
| BP_OLED_I2C |
| }, |
| { "LM3S6965EVB", |
| 0x10010002, |
| 0x1073402e, |
| 0x00ff007f, /* dc0 */ |
| 0x001133ff, |
| 0x030f5317, |
| 0x0f0f87ff, |
| 0x5000007f, |
| BP_OLED_SSI | BP_GAMEPAD |
| } |
| }; |
| |
| static void stellaris_init(MachineState *ms, stellaris_board_info *board) |
| { |
| static const int uart_irq[] = {5, 6, 33, 34}; |
| static const int timer_irq[] = {19, 21, 23, 35}; |
| static const uint32_t gpio_addr[7] = |
| { 0x40004000, 0x40005000, 0x40006000, 0x40007000, |
| 0x40024000, 0x40025000, 0x40026000}; |
| static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31}; |
| |
| /* Memory map of SoC devices, from |
| * Stellaris LM3S6965 Microcontroller Data Sheet (rev I) |
| * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf |
| * |
| * 40000000 wdtimer |
| * 40002000 i2c (unimplemented) |
| * 40004000 GPIO |
| * 40005000 GPIO |
| * 40006000 GPIO |
| * 40007000 GPIO |
| * 40008000 SSI |
| * 4000c000 UART |
| * 4000d000 UART |
| * 4000e000 UART |
| * 40020000 i2c |
| * 40021000 i2c (unimplemented) |
| * 40024000 GPIO |
| * 40025000 GPIO |
| * 40026000 GPIO |
| * 40028000 PWM (unimplemented) |
| * 4002c000 QEI (unimplemented) |
| * 4002d000 QEI (unimplemented) |
| * 40030000 gptimer |
| * 40031000 gptimer |
| * 40032000 gptimer |
| * 40033000 gptimer |
| * 40038000 ADC |
| * 4003c000 analogue comparator (unimplemented) |
| * 40048000 ethernet |
| * 400fc000 hibernation module (unimplemented) |
| * 400fd000 flash memory control (unimplemented) |
| * 400fe000 system control |
| */ |
| |
| DeviceState *gpio_dev[7], *nvic; |
| qemu_irq gpio_in[7][8]; |
| qemu_irq gpio_out[7][8]; |
| qemu_irq adc; |
| int sram_size; |
| int flash_size; |
| I2CBus *i2c; |
| DeviceState *dev; |
| DeviceState *ssys_dev; |
| int i; |
| int j; |
| const uint8_t *macaddr; |
| |
| MemoryRegion *sram = g_new(MemoryRegion, 1); |
| MemoryRegion *flash = g_new(MemoryRegion, 1); |
| MemoryRegion *system_memory = get_system_memory(); |
| |
| flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024; |
| sram_size = ((board->dc0 >> 18) + 1) * 1024; |
| |
| /* Flash programming is done via the SCU, so pretend it is ROM. */ |
| memory_region_init_rom(flash, NULL, "stellaris.flash", flash_size, |
| &error_fatal); |
| memory_region_add_subregion(system_memory, 0, flash); |
| |
| memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size, |
| &error_fatal); |
| memory_region_add_subregion(system_memory, 0x20000000, sram); |
| |
| /* |
| * Create the system-registers object early, because we will |
| * need its sysclk output. |
| */ |
| ssys_dev = qdev_new(TYPE_STELLARIS_SYS); |
| /* Most devices come preprogrammed with a MAC address in the user data. */ |
| macaddr = nd_table[0].macaddr.a; |
| qdev_prop_set_uint32(ssys_dev, "user0", |
| macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16)); |
| qdev_prop_set_uint32(ssys_dev, "user1", |
| macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16)); |
| qdev_prop_set_uint32(ssys_dev, "did0", board->did0); |
| qdev_prop_set_uint32(ssys_dev, "did1", board->did1); |
| qdev_prop_set_uint32(ssys_dev, "dc0", board->dc0); |
| qdev_prop_set_uint32(ssys_dev, "dc1", board->dc1); |
| qdev_prop_set_uint32(ssys_dev, "dc2", board->dc2); |
| qdev_prop_set_uint32(ssys_dev, "dc3", board->dc3); |
| qdev_prop_set_uint32(ssys_dev, "dc4", board->dc4); |
| sysbus_realize_and_unref(SYS_BUS_DEVICE(ssys_dev), &error_fatal); |
| |
| nvic = qdev_new(TYPE_ARMV7M); |
| qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES); |
| qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type); |
| qdev_prop_set_bit(nvic, "enable-bitband", true); |
| qdev_connect_clock_in(nvic, "cpuclk", |
| qdev_get_clock_out(ssys_dev, "SYSCLK")); |
| /* This SoC does not connect the systick reference clock */ |
| object_property_set_link(OBJECT(nvic), "memory", |
| OBJECT(get_system_memory()), &error_abort); |
| /* This will exit with an error if the user passed us a bad cpu_type */ |
| sysbus_realize_and_unref(SYS_BUS_DEVICE(nvic), &error_fatal); |
| |
| /* Now we can wire up the IRQ and MMIO of the system registers */ |
| sysbus_mmio_map(SYS_BUS_DEVICE(ssys_dev), 0, 0x400fe000); |
| sysbus_connect_irq(SYS_BUS_DEVICE(ssys_dev), 0, qdev_get_gpio_in(nvic, 28)); |
| |
| if (board->dc1 & (1 << 16)) { |
| dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000, |
| qdev_get_gpio_in(nvic, 14), |
| qdev_get_gpio_in(nvic, 15), |
| qdev_get_gpio_in(nvic, 16), |
| qdev_get_gpio_in(nvic, 17), |
| NULL); |
| adc = qdev_get_gpio_in(dev, 0); |
| } else { |
| adc = NULL; |
| } |
| for (i = 0; i < 4; i++) { |
| if (board->dc2 & (0x10000 << i)) { |
| SysBusDevice *sbd; |
| |
| dev = qdev_new(TYPE_STELLARIS_GPTM); |
| sbd = SYS_BUS_DEVICE(dev); |
| qdev_connect_clock_in(dev, "clk", |
| qdev_get_clock_out(ssys_dev, "SYSCLK")); |
| sysbus_realize_and_unref(sbd, &error_fatal); |
| sysbus_mmio_map(sbd, 0, 0x40030000 + i * 0x1000); |
| sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(nvic, timer_irq[i])); |
| /* TODO: This is incorrect, but we get away with it because |
| the ADC output is only ever pulsed. */ |
| qdev_connect_gpio_out(dev, 0, adc); |
| } |
| } |
| |
| if (board->dc1 & (1 << 3)) { /* watchdog present */ |
| dev = qdev_new(TYPE_LUMINARY_WATCHDOG); |
| |
| qdev_connect_clock_in(dev, "WDOGCLK", |
| qdev_get_clock_out(ssys_dev, "SYSCLK")); |
| |
| sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); |
| sysbus_mmio_map(SYS_BUS_DEVICE(dev), |
| 0, |
| 0x40000000u); |
| sysbus_connect_irq(SYS_BUS_DEVICE(dev), |
| 0, |
| qdev_get_gpio_in(nvic, 18)); |
| } |
| |
| |
| for (i = 0; i < 7; i++) { |
| if (board->dc4 & (1 << i)) { |
| gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i], |
| qdev_get_gpio_in(nvic, |
| gpio_irq[i])); |
| for (j = 0; j < 8; j++) { |
| gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j); |
| gpio_out[i][j] = NULL; |
| } |
| } |
| } |
| |
| if (board->dc2 & (1 << 12)) { |
| dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000, |
| qdev_get_gpio_in(nvic, 8)); |
| i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c"); |
| if (board->peripherals & BP_OLED_I2C) { |
| i2c_slave_create_simple(i2c, "ssd0303", 0x3d); |
| } |
| } |
| |
| for (i = 0; i < 4; i++) { |
| if (board->dc2 & (1 << i)) { |
| pl011_luminary_create(0x4000c000 + i * 0x1000, |
| qdev_get_gpio_in(nvic, uart_irq[i]), |
| serial_hd(i)); |
| } |
| } |
| if (board->dc2 & (1 << 4)) { |
| dev = sysbus_create_simple("pl022", 0x40008000, |
| qdev_get_gpio_in(nvic, 7)); |
| if (board->peripherals & BP_OLED_SSI) { |
| void *bus; |
| DeviceState *sddev; |
| DeviceState *ssddev; |
| |
| /* |
| * Some boards have both an OLED controller and SD card connected to |
| * the same SSI port, with the SD card chip select connected to a |
| * GPIO pin. Technically the OLED chip select is connected to the |
| * SSI Fss pin. We do not bother emulating that as both devices |
| * should never be selected simultaneously, and our OLED controller |
| * ignores stray 0xff commands that occur when deselecting the SD |
| * card. |
| * |
| * The h/w wiring is: |
| * - GPIO pin D0 is wired to the active-low SD card chip select |
| * - GPIO pin A3 is wired to the active-low OLED chip select |
| * - The SoC wiring of the PL061 "auxiliary function" for A3 is |
| * SSI0Fss ("frame signal"), which is an output from the SoC's |
| * SSI controller. The SSI controller takes SSI0Fss low when it |
| * transmits a frame, so it can work as a chip-select signal. |
| * - GPIO A4 is aux-function SSI0Rx, and wired to the SD card Tx |
| * (the OLED never sends data to the CPU, so no wiring needed) |
| * - GPIO A5 is aux-function SSI0Tx, and wired to the SD card Rx |
| * and the OLED display-data-in |
| * - GPIO A2 is aux-function SSI0Clk, wired to SD card and OLED |
| * serial-clock input |
| * So a guest that wants to use the OLED can configure the PL061 |
| * to make pins A2, A3, A5 aux-function, so they are connected |
| * directly to the SSI controller. When the SSI controller sends |
| * data it asserts SSI0Fss which selects the OLED. |
| * A guest that wants to use the SD card configures A2, A4 and A5 |
| * as aux-function, but leaves A3 as a software-controlled GPIO |
| * line. It asserts the SD card chip-select by using the PL061 |
| * to control pin D0, and lets the SSI controller handle Clk, Tx |
| * and Rx. (The SSI controller asserts Fss during tx cycles as |
| * usual, but because A3 is not set to aux-function this is not |
| * forwarded to the OLED, and so the OLED stays unselected.) |
| * |
| * The QEMU implementation instead is: |
| * - GPIO pin D0 is wired to the active-low SD card chip select, |
| * and also to the OLED chip-select which is implemented |
| * as *active-high* |
| * - SSI controller signals go to the devices regardless of |
| * whether the guest programs A2, A4, A5 as aux-function or not |
| * |
| * The problem with this implementation is if the guest doesn't |
| * care about the SD card and only uses the OLED. In that case it |
| * may choose never to do anything with D0 (leaving it in its |
| * default floating state, which reliably leaves the card disabled |
| * because an SD card has a pullup on CS within the card itself), |
| * and only set up A2, A3, A5. This for us would mean the OLED |
| * never gets the chip-select assert it needs. We work around |
| * this with a manual raise of D0 here (despite board creation |
| * code being the wrong place to raise IRQ lines) to put the OLED |
| * into an initially selected state. |
| * |
| * In theory the right way to model this would be: |
| * - Implement aux-function support in the PL061, with an |
| * extra set of AFIN and AFOUT GPIO lines (set up so that |
| * if a GPIO line is in auxfn mode the main GPIO in and out |
| * track the AFIN and AFOUT lines) |
| * - Wire the AFOUT for D0 up to either a line from the |
| * SSI controller that's pulled low around every transmit, |
| * or at least to an always-0 line here on the board |
| * - Make the ssd0323 OLED controller chipselect active-low |
| */ |
| bus = qdev_get_child_bus(dev, "ssi"); |
| |
| sddev = ssi_create_peripheral(bus, "ssi-sd"); |
| ssddev = ssi_create_peripheral(bus, "ssd0323"); |
| gpio_out[GPIO_D][0] = qemu_irq_split( |
| qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0), |
| qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0)); |
| gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0); |
| |
| /* Make sure the select pin is high. */ |
| qemu_irq_raise(gpio_out[GPIO_D][0]); |
| } |
| } |
| if (board->dc4 & (1 << 28)) { |
| DeviceState *enet; |
| |
| qemu_check_nic_model(&nd_table[0], "stellaris"); |
| |
| enet = qdev_new("stellaris_enet"); |
| qdev_set_nic_properties(enet, &nd_table[0]); |
| sysbus_realize_and_unref(SYS_BUS_DEVICE(enet), &error_fatal); |
| sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000); |
| sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42)); |
| } |
| if (board->peripherals & BP_GAMEPAD) { |
| qemu_irq gpad_irq[5]; |
| static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d }; |
| |
| gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */ |
| gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */ |
| gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */ |
| gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */ |
| gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */ |
| |
| stellaris_gamepad_init(5, gpad_irq, gpad_keycode); |
| } |
| for (i = 0; i < 7; i++) { |
| if (board->dc4 & (1 << i)) { |
| for (j = 0; j < 8; j++) { |
| if (gpio_out[i][j]) { |
| qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]); |
| } |
| } |
| } |
| } |
| |
| /* Add dummy regions for the devices we don't implement yet, |
| * so guest accesses don't cause unlogged crashes. |
| */ |
| create_unimplemented_device("i2c-0", 0x40002000, 0x1000); |
| create_unimplemented_device("i2c-2", 0x40021000, 0x1000); |
| create_unimplemented_device("PWM", 0x40028000, 0x1000); |
| create_unimplemented_device("QEI-0", 0x4002c000, 0x1000); |
| create_unimplemented_device("QEI-1", 0x4002d000, 0x1000); |
| create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000); |
| create_unimplemented_device("hibernation", 0x400fc000, 0x1000); |
| create_unimplemented_device("flash-control", 0x400fd000, 0x1000); |
| |
| armv7m_load_kernel(ARM_CPU(first_cpu), ms->kernel_filename, flash_size); |
| } |
| |
| /* FIXME: Figure out how to generate these from stellaris_boards. */ |
| static void lm3s811evb_init(MachineState *machine) |
| { |
| stellaris_init(machine, &stellaris_boards[0]); |
| } |
| |
| static void lm3s6965evb_init(MachineState *machine) |
| { |
| stellaris_init(machine, &stellaris_boards[1]); |
| } |
| |
| static void lm3s811evb_class_init(ObjectClass *oc, void *data) |
| { |
| MachineClass *mc = MACHINE_CLASS(oc); |
| |
| mc->desc = "Stellaris LM3S811EVB (Cortex-M3)"; |
| mc->init = lm3s811evb_init; |
| mc->ignore_memory_transaction_failures = true; |
| mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3"); |
| } |
| |
| static const TypeInfo lm3s811evb_type = { |
| .name = MACHINE_TYPE_NAME("lm3s811evb"), |
| .parent = TYPE_MACHINE, |
| .class_init = lm3s811evb_class_init, |
| }; |
| |
| static void lm3s6965evb_class_init(ObjectClass *oc, void *data) |
| { |
| MachineClass *mc = MACHINE_CLASS(oc); |
| |
| mc->desc = "Stellaris LM3S6965EVB (Cortex-M3)"; |
| mc->init = lm3s6965evb_init; |
| mc->ignore_memory_transaction_failures = true; |
| mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3"); |
| } |
| |
| static const TypeInfo lm3s6965evb_type = { |
| .name = MACHINE_TYPE_NAME("lm3s6965evb"), |
| .parent = TYPE_MACHINE, |
| .class_init = lm3s6965evb_class_init, |
| }; |
| |
| static void stellaris_machine_init(void) |
| { |
| type_register_static(&lm3s811evb_type); |
| type_register_static(&lm3s6965evb_type); |
| } |
| |
| type_init(stellaris_machine_init) |
| |
| static void stellaris_i2c_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| |
| dc->vmsd = &vmstate_stellaris_i2c; |
| } |
| |
| static const TypeInfo stellaris_i2c_info = { |
| .name = TYPE_STELLARIS_I2C, |
| .parent = TYPE_SYS_BUS_DEVICE, |
| .instance_size = sizeof(stellaris_i2c_state), |
| .instance_init = stellaris_i2c_init, |
| .class_init = stellaris_i2c_class_init, |
| }; |
| |
| static void stellaris_adc_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| |
| dc->vmsd = &vmstate_stellaris_adc; |
| } |
| |
| static const TypeInfo stellaris_adc_info = { |
| .name = TYPE_STELLARIS_ADC, |
| .parent = TYPE_SYS_BUS_DEVICE, |
| .instance_size = sizeof(stellaris_adc_state), |
| .instance_init = stellaris_adc_init, |
| .class_init = stellaris_adc_class_init, |
| }; |
| |
| static void stellaris_sys_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| ResettableClass *rc = RESETTABLE_CLASS(klass); |
| |
| dc->vmsd = &vmstate_stellaris_sys; |
| rc->phases.enter = stellaris_sys_reset_enter; |
| rc->phases.hold = stellaris_sys_reset_hold; |
| rc->phases.exit = stellaris_sys_reset_exit; |
| device_class_set_props(dc, stellaris_sys_properties); |
| } |
| |
| static const TypeInfo stellaris_sys_info = { |
| .name = TYPE_STELLARIS_SYS, |
| .parent = TYPE_SYS_BUS_DEVICE, |
| .instance_size = sizeof(ssys_state), |
| .instance_init = stellaris_sys_instance_init, |
| .class_init = stellaris_sys_class_init, |
| }; |
| |
| static void stellaris_register_types(void) |
| { |
| type_register_static(&stellaris_i2c_info); |
| type_register_static(&stellaris_adc_info); |
| type_register_static(&stellaris_sys_info); |
| } |
| |
| type_init(stellaris_register_types) |