| /* |
| * QEMU e1000 emulation |
| * |
| * Software developer's manual: |
| * http://download.intel.com/design/network/manuals/8254x_GBe_SDM.pdf |
| * |
| * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc. |
| * Copyright (c) 2008 Qumranet |
| * Based on work done by: |
| * Copyright (c) 2007 Dan Aloni |
| * Copyright (c) 2004 Antony T Curtis |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| |
| #include "qemu/osdep.h" |
| #include "hw/pci/pci.h" |
| #include "hw/qdev-properties.h" |
| #include "migration/vmstate.h" |
| #include "net/net.h" |
| #include "net/checksum.h" |
| #include "sysemu/sysemu.h" |
| #include "sysemu/dma.h" |
| #include "qemu/iov.h" |
| #include "qemu/module.h" |
| #include "qemu/range.h" |
| |
| #include "e1000x_common.h" |
| #include "trace.h" |
| |
| static const uint8_t bcast[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; |
| |
| /* #define E1000_DEBUG */ |
| |
| #ifdef E1000_DEBUG |
| enum { |
| DEBUG_GENERAL, DEBUG_IO, DEBUG_MMIO, DEBUG_INTERRUPT, |
| DEBUG_RX, DEBUG_TX, DEBUG_MDIC, DEBUG_EEPROM, |
| DEBUG_UNKNOWN, DEBUG_TXSUM, DEBUG_TXERR, DEBUG_RXERR, |
| DEBUG_RXFILTER, DEBUG_PHY, DEBUG_NOTYET, |
| }; |
| #define DBGBIT(x) (1<<DEBUG_##x) |
| static int debugflags = DBGBIT(TXERR) | DBGBIT(GENERAL); |
| |
| #define DBGOUT(what, fmt, ...) do { \ |
| if (debugflags & DBGBIT(what)) \ |
| fprintf(stderr, "e1000: " fmt, ## __VA_ARGS__); \ |
| } while (0) |
| #else |
| #define DBGOUT(what, fmt, ...) do {} while (0) |
| #endif |
| |
| #define IOPORT_SIZE 0x40 |
| #define PNPMMIO_SIZE 0x20000 |
| #define MIN_BUF_SIZE 60 /* Min. octets in an ethernet frame sans FCS */ |
| |
| #define MAXIMUM_ETHERNET_HDR_LEN (14+4) |
| |
| /* |
| * HW models: |
| * E1000_DEV_ID_82540EM works with Windows, Linux, and OS X <= 10.8 |
| * E1000_DEV_ID_82544GC_COPPER appears to work; not well tested |
| * E1000_DEV_ID_82545EM_COPPER works with Linux and OS X >= 10.6 |
| * Others never tested |
| */ |
| |
| typedef struct E1000State_st { |
| /*< private >*/ |
| PCIDevice parent_obj; |
| /*< public >*/ |
| |
| NICState *nic; |
| NICConf conf; |
| MemoryRegion mmio; |
| MemoryRegion io; |
| |
| uint32_t mac_reg[0x8000]; |
| uint16_t phy_reg[0x20]; |
| uint16_t eeprom_data[64]; |
| |
| uint32_t rxbuf_size; |
| uint32_t rxbuf_min_shift; |
| struct e1000_tx { |
| unsigned char header[256]; |
| unsigned char vlan_header[4]; |
| /* Fields vlan and data must not be reordered or separated. */ |
| unsigned char vlan[4]; |
| unsigned char data[0x10000]; |
| uint16_t size; |
| unsigned char vlan_needed; |
| unsigned char sum_needed; |
| bool cptse; |
| e1000x_txd_props props; |
| e1000x_txd_props tso_props; |
| uint16_t tso_frames; |
| } tx; |
| |
| struct { |
| uint32_t val_in; /* shifted in from guest driver */ |
| uint16_t bitnum_in; |
| uint16_t bitnum_out; |
| uint16_t reading; |
| uint32_t old_eecd; |
| } eecd_state; |
| |
| QEMUTimer *autoneg_timer; |
| |
| QEMUTimer *mit_timer; /* Mitigation timer. */ |
| bool mit_timer_on; /* Mitigation timer is running. */ |
| bool mit_irq_level; /* Tracks interrupt pin level. */ |
| uint32_t mit_ide; /* Tracks E1000_TXD_CMD_IDE bit. */ |
| |
| QEMUTimer *flush_queue_timer; |
| |
| /* Compatibility flags for migration to/from qemu 1.3.0 and older */ |
| #define E1000_FLAG_AUTONEG_BIT 0 |
| #define E1000_FLAG_MIT_BIT 1 |
| #define E1000_FLAG_MAC_BIT 2 |
| #define E1000_FLAG_TSO_BIT 3 |
| #define E1000_FLAG_AUTONEG (1 << E1000_FLAG_AUTONEG_BIT) |
| #define E1000_FLAG_MIT (1 << E1000_FLAG_MIT_BIT) |
| #define E1000_FLAG_MAC (1 << E1000_FLAG_MAC_BIT) |
| #define E1000_FLAG_TSO (1 << E1000_FLAG_TSO_BIT) |
| uint32_t compat_flags; |
| bool received_tx_tso; |
| bool use_tso_for_migration; |
| e1000x_txd_props mig_props; |
| } E1000State; |
| |
| #define chkflag(x) (s->compat_flags & E1000_FLAG_##x) |
| |
| typedef struct E1000BaseClass { |
| PCIDeviceClass parent_class; |
| uint16_t phy_id2; |
| } E1000BaseClass; |
| |
| #define TYPE_E1000_BASE "e1000-base" |
| |
| #define E1000(obj) \ |
| OBJECT_CHECK(E1000State, (obj), TYPE_E1000_BASE) |
| |
| #define E1000_DEVICE_CLASS(klass) \ |
| OBJECT_CLASS_CHECK(E1000BaseClass, (klass), TYPE_E1000_BASE) |
| #define E1000_DEVICE_GET_CLASS(obj) \ |
| OBJECT_GET_CLASS(E1000BaseClass, (obj), TYPE_E1000_BASE) |
| |
| static void |
| e1000_link_up(E1000State *s) |
| { |
| e1000x_update_regs_on_link_up(s->mac_reg, s->phy_reg); |
| |
| /* E1000_STATUS_LU is tested by e1000_can_receive() */ |
| qemu_flush_queued_packets(qemu_get_queue(s->nic)); |
| } |
| |
| static void |
| e1000_autoneg_done(E1000State *s) |
| { |
| e1000x_update_regs_on_autoneg_done(s->mac_reg, s->phy_reg); |
| |
| /* E1000_STATUS_LU is tested by e1000_can_receive() */ |
| qemu_flush_queued_packets(qemu_get_queue(s->nic)); |
| } |
| |
| static bool |
| have_autoneg(E1000State *s) |
| { |
| return chkflag(AUTONEG) && (s->phy_reg[PHY_CTRL] & MII_CR_AUTO_NEG_EN); |
| } |
| |
| static void |
| set_phy_ctrl(E1000State *s, int index, uint16_t val) |
| { |
| /* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing */ |
| s->phy_reg[PHY_CTRL] = val & ~(0x3f | |
| MII_CR_RESET | |
| MII_CR_RESTART_AUTO_NEG); |
| |
| /* |
| * QEMU 1.3 does not support link auto-negotiation emulation, so if we |
| * migrate during auto negotiation, after migration the link will be |
| * down. |
| */ |
| if (have_autoneg(s) && (val & MII_CR_RESTART_AUTO_NEG)) { |
| e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer); |
| } |
| } |
| |
| static void (*phyreg_writeops[])(E1000State *, int, uint16_t) = { |
| [PHY_CTRL] = set_phy_ctrl, |
| }; |
| |
| enum { NPHYWRITEOPS = ARRAY_SIZE(phyreg_writeops) }; |
| |
| enum { PHY_R = 1, PHY_W = 2, PHY_RW = PHY_R | PHY_W }; |
| static const char phy_regcap[0x20] = { |
| [PHY_STATUS] = PHY_R, [M88E1000_EXT_PHY_SPEC_CTRL] = PHY_RW, |
| [PHY_ID1] = PHY_R, [M88E1000_PHY_SPEC_CTRL] = PHY_RW, |
| [PHY_CTRL] = PHY_RW, [PHY_1000T_CTRL] = PHY_RW, |
| [PHY_LP_ABILITY] = PHY_R, [PHY_1000T_STATUS] = PHY_R, |
| [PHY_AUTONEG_ADV] = PHY_RW, [M88E1000_RX_ERR_CNTR] = PHY_R, |
| [PHY_ID2] = PHY_R, [M88E1000_PHY_SPEC_STATUS] = PHY_R, |
| [PHY_AUTONEG_EXP] = PHY_R, |
| }; |
| |
| /* PHY_ID2 documented in 8254x_GBe_SDM.pdf, pp. 250 */ |
| static const uint16_t phy_reg_init[] = { |
| [PHY_CTRL] = MII_CR_SPEED_SELECT_MSB | |
| MII_CR_FULL_DUPLEX | |
| MII_CR_AUTO_NEG_EN, |
| |
| [PHY_STATUS] = MII_SR_EXTENDED_CAPS | |
| MII_SR_LINK_STATUS | /* link initially up */ |
| MII_SR_AUTONEG_CAPS | |
| /* MII_SR_AUTONEG_COMPLETE: initially NOT completed */ |
| MII_SR_PREAMBLE_SUPPRESS | |
| MII_SR_EXTENDED_STATUS | |
| MII_SR_10T_HD_CAPS | |
| MII_SR_10T_FD_CAPS | |
| MII_SR_100X_HD_CAPS | |
| MII_SR_100X_FD_CAPS, |
| |
| [PHY_ID1] = 0x141, |
| /* [PHY_ID2] configured per DevId, from e1000_reset() */ |
| [PHY_AUTONEG_ADV] = 0xde1, |
| [PHY_LP_ABILITY] = 0x1e0, |
| [PHY_1000T_CTRL] = 0x0e00, |
| [PHY_1000T_STATUS] = 0x3c00, |
| [M88E1000_PHY_SPEC_CTRL] = 0x360, |
| [M88E1000_PHY_SPEC_STATUS] = 0xac00, |
| [M88E1000_EXT_PHY_SPEC_CTRL] = 0x0d60, |
| }; |
| |
| static const uint32_t mac_reg_init[] = { |
| [PBA] = 0x00100030, |
| [LEDCTL] = 0x602, |
| [CTRL] = E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 | |
| E1000_CTRL_SPD_1000 | E1000_CTRL_SLU, |
| [STATUS] = 0x80000000 | E1000_STATUS_GIO_MASTER_ENABLE | |
| E1000_STATUS_ASDV | E1000_STATUS_MTXCKOK | |
| E1000_STATUS_SPEED_1000 | E1000_STATUS_FD | |
| E1000_STATUS_LU, |
| [MANC] = E1000_MANC_EN_MNG2HOST | E1000_MANC_RCV_TCO_EN | |
| E1000_MANC_ARP_EN | E1000_MANC_0298_EN | |
| E1000_MANC_RMCP_EN, |
| }; |
| |
| /* Helper function, *curr == 0 means the value is not set */ |
| static inline void |
| mit_update_delay(uint32_t *curr, uint32_t value) |
| { |
| if (value && (*curr == 0 || value < *curr)) { |
| *curr = value; |
| } |
| } |
| |
| static void |
| set_interrupt_cause(E1000State *s, int index, uint32_t val) |
| { |
| PCIDevice *d = PCI_DEVICE(s); |
| uint32_t pending_ints; |
| uint32_t mit_delay; |
| |
| s->mac_reg[ICR] = val; |
| |
| /* |
| * Make sure ICR and ICS registers have the same value. |
| * The spec says that the ICS register is write-only. However in practice, |
| * on real hardware ICS is readable, and for reads it has the same value as |
| * ICR (except that ICS does not have the clear on read behaviour of ICR). |
| * |
| * The VxWorks PRO/1000 driver uses this behaviour. |
| */ |
| s->mac_reg[ICS] = val; |
| |
| pending_ints = (s->mac_reg[IMS] & s->mac_reg[ICR]); |
| if (!s->mit_irq_level && pending_ints) { |
| /* |
| * Here we detect a potential raising edge. We postpone raising the |
| * interrupt line if we are inside the mitigation delay window |
| * (s->mit_timer_on == 1). |
| * We provide a partial implementation of interrupt mitigation, |
| * emulating only RADV, TADV and ITR (lower 16 bits, 1024ns units for |
| * RADV and TADV, 256ns units for ITR). RDTR is only used to enable |
| * RADV; relative timers based on TIDV and RDTR are not implemented. |
| */ |
| if (s->mit_timer_on) { |
| return; |
| } |
| if (chkflag(MIT)) { |
| /* Compute the next mitigation delay according to pending |
| * interrupts and the current values of RADV (provided |
| * RDTR!=0), TADV and ITR. |
| * Then rearm the timer. |
| */ |
| mit_delay = 0; |
| if (s->mit_ide && |
| (pending_ints & (E1000_ICR_TXQE | E1000_ICR_TXDW))) { |
| mit_update_delay(&mit_delay, s->mac_reg[TADV] * 4); |
| } |
| if (s->mac_reg[RDTR] && (pending_ints & E1000_ICS_RXT0)) { |
| mit_update_delay(&mit_delay, s->mac_reg[RADV] * 4); |
| } |
| mit_update_delay(&mit_delay, s->mac_reg[ITR]); |
| |
| /* |
| * According to e1000 SPEC, the Ethernet controller guarantees |
| * a maximum observable interrupt rate of 7813 interrupts/sec. |
| * Thus if mit_delay < 500 then the delay should be set to the |
| * minimum delay possible which is 500. |
| */ |
| mit_delay = (mit_delay < 500) ? 500 : mit_delay; |
| |
| s->mit_timer_on = 1; |
| timer_mod(s->mit_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + |
| mit_delay * 256); |
| s->mit_ide = 0; |
| } |
| } |
| |
| s->mit_irq_level = (pending_ints != 0); |
| pci_set_irq(d, s->mit_irq_level); |
| } |
| |
| static void |
| e1000_mit_timer(void *opaque) |
| { |
| E1000State *s = opaque; |
| |
| s->mit_timer_on = 0; |
| /* Call set_interrupt_cause to update the irq level (if necessary). */ |
| set_interrupt_cause(s, 0, s->mac_reg[ICR]); |
| } |
| |
| static void |
| set_ics(E1000State *s, int index, uint32_t val) |
| { |
| DBGOUT(INTERRUPT, "set_ics %x, ICR %x, IMR %x\n", val, s->mac_reg[ICR], |
| s->mac_reg[IMS]); |
| set_interrupt_cause(s, 0, val | s->mac_reg[ICR]); |
| } |
| |
| static void |
| e1000_autoneg_timer(void *opaque) |
| { |
| E1000State *s = opaque; |
| if (!qemu_get_queue(s->nic)->link_down) { |
| e1000_autoneg_done(s); |
| set_ics(s, 0, E1000_ICS_LSC); /* signal link status change to guest */ |
| } |
| } |
| |
| static void e1000_reset(void *opaque) |
| { |
| E1000State *d = opaque; |
| E1000BaseClass *edc = E1000_DEVICE_GET_CLASS(d); |
| uint8_t *macaddr = d->conf.macaddr.a; |
| |
| timer_del(d->autoneg_timer); |
| timer_del(d->mit_timer); |
| timer_del(d->flush_queue_timer); |
| d->mit_timer_on = 0; |
| d->mit_irq_level = 0; |
| d->mit_ide = 0; |
| memset(d->phy_reg, 0, sizeof d->phy_reg); |
| memmove(d->phy_reg, phy_reg_init, sizeof phy_reg_init); |
| d->phy_reg[PHY_ID2] = edc->phy_id2; |
| memset(d->mac_reg, 0, sizeof d->mac_reg); |
| memmove(d->mac_reg, mac_reg_init, sizeof mac_reg_init); |
| d->rxbuf_min_shift = 1; |
| memset(&d->tx, 0, sizeof d->tx); |
| |
| if (qemu_get_queue(d->nic)->link_down) { |
| e1000x_update_regs_on_link_down(d->mac_reg, d->phy_reg); |
| } |
| |
| e1000x_reset_mac_addr(d->nic, d->mac_reg, macaddr); |
| } |
| |
| static void |
| set_ctrl(E1000State *s, int index, uint32_t val) |
| { |
| /* RST is self clearing */ |
| s->mac_reg[CTRL] = val & ~E1000_CTRL_RST; |
| } |
| |
| static void |
| e1000_flush_queue_timer(void *opaque) |
| { |
| E1000State *s = opaque; |
| |
| qemu_flush_queued_packets(qemu_get_queue(s->nic)); |
| } |
| |
| static void |
| set_rx_control(E1000State *s, int index, uint32_t val) |
| { |
| s->mac_reg[RCTL] = val; |
| s->rxbuf_size = e1000x_rxbufsize(val); |
| s->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1; |
| DBGOUT(RX, "RCTL: %d, mac_reg[RCTL] = 0x%x\n", s->mac_reg[RDT], |
| s->mac_reg[RCTL]); |
| timer_mod(s->flush_queue_timer, |
| qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 1000); |
| } |
| |
| static void |
| set_mdic(E1000State *s, int index, uint32_t val) |
| { |
| uint32_t data = val & E1000_MDIC_DATA_MASK; |
| uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); |
| |
| if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) // phy # |
| val = s->mac_reg[MDIC] | E1000_MDIC_ERROR; |
| else if (val & E1000_MDIC_OP_READ) { |
| DBGOUT(MDIC, "MDIC read reg 0x%x\n", addr); |
| if (!(phy_regcap[addr] & PHY_R)) { |
| DBGOUT(MDIC, "MDIC read reg %x unhandled\n", addr); |
| val |= E1000_MDIC_ERROR; |
| } else |
| val = (val ^ data) | s->phy_reg[addr]; |
| } else if (val & E1000_MDIC_OP_WRITE) { |
| DBGOUT(MDIC, "MDIC write reg 0x%x, value 0x%x\n", addr, data); |
| if (!(phy_regcap[addr] & PHY_W)) { |
| DBGOUT(MDIC, "MDIC write reg %x unhandled\n", addr); |
| val |= E1000_MDIC_ERROR; |
| } else { |
| if (addr < NPHYWRITEOPS && phyreg_writeops[addr]) { |
| phyreg_writeops[addr](s, index, data); |
| } else { |
| s->phy_reg[addr] = data; |
| } |
| } |
| } |
| s->mac_reg[MDIC] = val | E1000_MDIC_READY; |
| |
| if (val & E1000_MDIC_INT_EN) { |
| set_ics(s, 0, E1000_ICR_MDAC); |
| } |
| } |
| |
| static uint32_t |
| get_eecd(E1000State *s, int index) |
| { |
| uint32_t ret = E1000_EECD_PRES|E1000_EECD_GNT | s->eecd_state.old_eecd; |
| |
| DBGOUT(EEPROM, "reading eeprom bit %d (reading %d)\n", |
| s->eecd_state.bitnum_out, s->eecd_state.reading); |
| if (!s->eecd_state.reading || |
| ((s->eeprom_data[(s->eecd_state.bitnum_out >> 4) & 0x3f] >> |
| ((s->eecd_state.bitnum_out & 0xf) ^ 0xf))) & 1) |
| ret |= E1000_EECD_DO; |
| return ret; |
| } |
| |
| static void |
| set_eecd(E1000State *s, int index, uint32_t val) |
| { |
| uint32_t oldval = s->eecd_state.old_eecd; |
| |
| s->eecd_state.old_eecd = val & (E1000_EECD_SK | E1000_EECD_CS | |
| E1000_EECD_DI|E1000_EECD_FWE_MASK|E1000_EECD_REQ); |
| if (!(E1000_EECD_CS & val)) { /* CS inactive; nothing to do */ |
| return; |
| } |
| if (E1000_EECD_CS & (val ^ oldval)) { /* CS rise edge; reset state */ |
| s->eecd_state.val_in = 0; |
| s->eecd_state.bitnum_in = 0; |
| s->eecd_state.bitnum_out = 0; |
| s->eecd_state.reading = 0; |
| } |
| if (!(E1000_EECD_SK & (val ^ oldval))) { /* no clock edge */ |
| return; |
| } |
| if (!(E1000_EECD_SK & val)) { /* falling edge */ |
| s->eecd_state.bitnum_out++; |
| return; |
| } |
| s->eecd_state.val_in <<= 1; |
| if (val & E1000_EECD_DI) |
| s->eecd_state.val_in |= 1; |
| if (++s->eecd_state.bitnum_in == 9 && !s->eecd_state.reading) { |
| s->eecd_state.bitnum_out = ((s->eecd_state.val_in & 0x3f)<<4)-1; |
| s->eecd_state.reading = (((s->eecd_state.val_in >> 6) & 7) == |
| EEPROM_READ_OPCODE_MICROWIRE); |
| } |
| DBGOUT(EEPROM, "eeprom bitnum in %d out %d, reading %d\n", |
| s->eecd_state.bitnum_in, s->eecd_state.bitnum_out, |
| s->eecd_state.reading); |
| } |
| |
| static uint32_t |
| flash_eerd_read(E1000State *s, int x) |
| { |
| unsigned int index, r = s->mac_reg[EERD] & ~E1000_EEPROM_RW_REG_START; |
| |
| if ((s->mac_reg[EERD] & E1000_EEPROM_RW_REG_START) == 0) |
| return (s->mac_reg[EERD]); |
| |
| if ((index = r >> E1000_EEPROM_RW_ADDR_SHIFT) > EEPROM_CHECKSUM_REG) |
| return (E1000_EEPROM_RW_REG_DONE | r); |
| |
| return ((s->eeprom_data[index] << E1000_EEPROM_RW_REG_DATA) | |
| E1000_EEPROM_RW_REG_DONE | r); |
| } |
| |
| static void |
| putsum(uint8_t *data, uint32_t n, uint32_t sloc, uint32_t css, uint32_t cse) |
| { |
| uint32_t sum; |
| |
| if (cse && cse < n) |
| n = cse + 1; |
| if (sloc < n-1) { |
| sum = net_checksum_add(n-css, data+css); |
| stw_be_p(data + sloc, net_checksum_finish_nozero(sum)); |
| } |
| } |
| |
| static inline void |
| inc_tx_bcast_or_mcast_count(E1000State *s, const unsigned char *arr) |
| { |
| if (!memcmp(arr, bcast, sizeof bcast)) { |
| e1000x_inc_reg_if_not_full(s->mac_reg, BPTC); |
| } else if (arr[0] & 1) { |
| e1000x_inc_reg_if_not_full(s->mac_reg, MPTC); |
| } |
| } |
| |
| static void |
| e1000_send_packet(E1000State *s, const uint8_t *buf, int size) |
| { |
| static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511, |
| PTC1023, PTC1522 }; |
| |
| NetClientState *nc = qemu_get_queue(s->nic); |
| if (s->phy_reg[PHY_CTRL] & MII_CR_LOOPBACK) { |
| nc->info->receive(nc, buf, size); |
| } else { |
| qemu_send_packet(nc, buf, size); |
| } |
| inc_tx_bcast_or_mcast_count(s, buf); |
| e1000x_increase_size_stats(s->mac_reg, PTCregs, size); |
| } |
| |
| static void |
| xmit_seg(E1000State *s) |
| { |
| uint16_t len; |
| unsigned int frames = s->tx.tso_frames, css, sofar; |
| struct e1000_tx *tp = &s->tx; |
| struct e1000x_txd_props *props = tp->cptse ? &tp->tso_props : &tp->props; |
| |
| if (tp->cptse) { |
| css = props->ipcss; |
| DBGOUT(TXSUM, "frames %d size %d ipcss %d\n", |
| frames, tp->size, css); |
| if (props->ip) { /* IPv4 */ |
| stw_be_p(tp->data+css+2, tp->size - css); |
| stw_be_p(tp->data+css+4, |
| lduw_be_p(tp->data + css + 4) + frames); |
| } else { /* IPv6 */ |
| stw_be_p(tp->data+css+4, tp->size - css); |
| } |
| css = props->tucss; |
| len = tp->size - css; |
| DBGOUT(TXSUM, "tcp %d tucss %d len %d\n", props->tcp, css, len); |
| if (props->tcp) { |
| sofar = frames * props->mss; |
| stl_be_p(tp->data+css+4, ldl_be_p(tp->data+css+4)+sofar); /* seq */ |
| if (props->paylen - sofar > props->mss) { |
| tp->data[css + 13] &= ~9; /* PSH, FIN */ |
| } else if (frames) { |
| e1000x_inc_reg_if_not_full(s->mac_reg, TSCTC); |
| } |
| } else { /* UDP */ |
| stw_be_p(tp->data+css+4, len); |
| } |
| if (tp->sum_needed & E1000_TXD_POPTS_TXSM) { |
| unsigned int phsum; |
| // add pseudo-header length before checksum calculation |
| void *sp = tp->data + props->tucso; |
| |
| phsum = lduw_be_p(sp) + len; |
| phsum = (phsum >> 16) + (phsum & 0xffff); |
| stw_be_p(sp, phsum); |
| } |
| tp->tso_frames++; |
| } |
| |
| if (tp->sum_needed & E1000_TXD_POPTS_TXSM) { |
| putsum(tp->data, tp->size, props->tucso, props->tucss, props->tucse); |
| } |
| if (tp->sum_needed & E1000_TXD_POPTS_IXSM) { |
| putsum(tp->data, tp->size, props->ipcso, props->ipcss, props->ipcse); |
| } |
| if (tp->vlan_needed) { |
| memmove(tp->vlan, tp->data, 4); |
| memmove(tp->data, tp->data + 4, 8); |
| memcpy(tp->data + 8, tp->vlan_header, 4); |
| e1000_send_packet(s, tp->vlan, tp->size + 4); |
| } else { |
| e1000_send_packet(s, tp->data, tp->size); |
| } |
| |
| e1000x_inc_reg_if_not_full(s->mac_reg, TPT); |
| e1000x_grow_8reg_if_not_full(s->mac_reg, TOTL, s->tx.size); |
| s->mac_reg[GPTC] = s->mac_reg[TPT]; |
| s->mac_reg[GOTCL] = s->mac_reg[TOTL]; |
| s->mac_reg[GOTCH] = s->mac_reg[TOTH]; |
| } |
| |
| static void |
| process_tx_desc(E1000State *s, struct e1000_tx_desc *dp) |
| { |
| PCIDevice *d = PCI_DEVICE(s); |
| uint32_t txd_lower = le32_to_cpu(dp->lower.data); |
| uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D); |
| unsigned int split_size = txd_lower & 0xffff, bytes, sz; |
| unsigned int msh = 0xfffff; |
| uint64_t addr; |
| struct e1000_context_desc *xp = (struct e1000_context_desc *)dp; |
| struct e1000_tx *tp = &s->tx; |
| |
| s->mit_ide |= (txd_lower & E1000_TXD_CMD_IDE); |
| if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */ |
| if (le32_to_cpu(xp->cmd_and_length) & E1000_TXD_CMD_TSE) { |
| e1000x_read_tx_ctx_descr(xp, &tp->tso_props); |
| s->use_tso_for_migration = 1; |
| tp->tso_frames = 0; |
| } else { |
| e1000x_read_tx_ctx_descr(xp, &tp->props); |
| s->use_tso_for_migration = 0; |
| } |
| return; |
| } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) { |
| // data descriptor |
| if (tp->size == 0) { |
| tp->sum_needed = le32_to_cpu(dp->upper.data) >> 8; |
| } |
| tp->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0; |
| } else { |
| // legacy descriptor |
| tp->cptse = 0; |
| } |
| |
| if (e1000x_vlan_enabled(s->mac_reg) && |
| e1000x_is_vlan_txd(txd_lower) && |
| (tp->cptse || txd_lower & E1000_TXD_CMD_EOP)) { |
| tp->vlan_needed = 1; |
| stw_be_p(tp->vlan_header, |
| le16_to_cpu(s->mac_reg[VET])); |
| stw_be_p(tp->vlan_header + 2, |
| le16_to_cpu(dp->upper.fields.special)); |
| } |
| |
| addr = le64_to_cpu(dp->buffer_addr); |
| if (tp->cptse) { |
| msh = tp->tso_props.hdr_len + tp->tso_props.mss; |
| do { |
| bytes = split_size; |
| if (tp->size + bytes > msh) |
| bytes = msh - tp->size; |
| |
| bytes = MIN(sizeof(tp->data) - tp->size, bytes); |
| pci_dma_read(d, addr, tp->data + tp->size, bytes); |
| sz = tp->size + bytes; |
| if (sz >= tp->tso_props.hdr_len |
| && tp->size < tp->tso_props.hdr_len) { |
| memmove(tp->header, tp->data, tp->tso_props.hdr_len); |
| } |
| tp->size = sz; |
| addr += bytes; |
| if (sz == msh) { |
| xmit_seg(s); |
| memmove(tp->data, tp->header, tp->tso_props.hdr_len); |
| tp->size = tp->tso_props.hdr_len; |
| } |
| split_size -= bytes; |
| } while (bytes && split_size); |
| } else { |
| split_size = MIN(sizeof(tp->data) - tp->size, split_size); |
| pci_dma_read(d, addr, tp->data + tp->size, split_size); |
| tp->size += split_size; |
| } |
| |
| if (!(txd_lower & E1000_TXD_CMD_EOP)) |
| return; |
| if (!(tp->cptse && tp->size < tp->tso_props.hdr_len)) { |
| xmit_seg(s); |
| } |
| tp->tso_frames = 0; |
| tp->sum_needed = 0; |
| tp->vlan_needed = 0; |
| tp->size = 0; |
| tp->cptse = 0; |
| } |
| |
| static uint32_t |
| txdesc_writeback(E1000State *s, dma_addr_t base, struct e1000_tx_desc *dp) |
| { |
| PCIDevice *d = PCI_DEVICE(s); |
| uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data); |
| |
| if (!(txd_lower & (E1000_TXD_CMD_RS|E1000_TXD_CMD_RPS))) |
| return 0; |
| txd_upper = (le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD) & |
| ~(E1000_TXD_STAT_EC | E1000_TXD_STAT_LC | E1000_TXD_STAT_TU); |
| dp->upper.data = cpu_to_le32(txd_upper); |
| pci_dma_write(d, base + ((char *)&dp->upper - (char *)dp), |
| &dp->upper, sizeof(dp->upper)); |
| return E1000_ICR_TXDW; |
| } |
| |
| static uint64_t tx_desc_base(E1000State *s) |
| { |
| uint64_t bah = s->mac_reg[TDBAH]; |
| uint64_t bal = s->mac_reg[TDBAL] & ~0xf; |
| |
| return (bah << 32) + bal; |
| } |
| |
| static void |
| start_xmit(E1000State *s) |
| { |
| PCIDevice *d = PCI_DEVICE(s); |
| dma_addr_t base; |
| struct e1000_tx_desc desc; |
| uint32_t tdh_start = s->mac_reg[TDH], cause = E1000_ICS_TXQE; |
| |
| if (!(s->mac_reg[TCTL] & E1000_TCTL_EN)) { |
| DBGOUT(TX, "tx disabled\n"); |
| return; |
| } |
| |
| while (s->mac_reg[TDH] != s->mac_reg[TDT]) { |
| base = tx_desc_base(s) + |
| sizeof(struct e1000_tx_desc) * s->mac_reg[TDH]; |
| pci_dma_read(d, base, &desc, sizeof(desc)); |
| |
| DBGOUT(TX, "index %d: %p : %x %x\n", s->mac_reg[TDH], |
| (void *)(intptr_t)desc.buffer_addr, desc.lower.data, |
| desc.upper.data); |
| |
| process_tx_desc(s, &desc); |
| cause |= txdesc_writeback(s, base, &desc); |
| |
| if (++s->mac_reg[TDH] * sizeof(desc) >= s->mac_reg[TDLEN]) |
| s->mac_reg[TDH] = 0; |
| /* |
| * the following could happen only if guest sw assigns |
| * bogus values to TDT/TDLEN. |
| * there's nothing too intelligent we could do about this. |
| */ |
| if (s->mac_reg[TDH] == tdh_start || |
| tdh_start >= s->mac_reg[TDLEN] / sizeof(desc)) { |
| DBGOUT(TXERR, "TDH wraparound @%x, TDT %x, TDLEN %x\n", |
| tdh_start, s->mac_reg[TDT], s->mac_reg[TDLEN]); |
| break; |
| } |
| } |
| set_ics(s, 0, cause); |
| } |
| |
| static int |
| receive_filter(E1000State *s, const uint8_t *buf, int size) |
| { |
| uint32_t rctl = s->mac_reg[RCTL]; |
| int isbcast = !memcmp(buf, bcast, sizeof bcast), ismcast = (buf[0] & 1); |
| |
| if (e1000x_is_vlan_packet(buf, le16_to_cpu(s->mac_reg[VET])) && |
| e1000x_vlan_rx_filter_enabled(s->mac_reg)) { |
| uint16_t vid = lduw_be_p(buf + 14); |
| uint32_t vfta = ldl_le_p((uint32_t*)(s->mac_reg + VFTA) + |
| ((vid >> 5) & 0x7f)); |
| if ((vfta & (1 << (vid & 0x1f))) == 0) |
| return 0; |
| } |
| |
| if (!isbcast && !ismcast && (rctl & E1000_RCTL_UPE)) { /* promiscuous ucast */ |
| return 1; |
| } |
| |
| if (ismcast && (rctl & E1000_RCTL_MPE)) { /* promiscuous mcast */ |
| e1000x_inc_reg_if_not_full(s->mac_reg, MPRC); |
| return 1; |
| } |
| |
| if (isbcast && (rctl & E1000_RCTL_BAM)) { /* broadcast enabled */ |
| e1000x_inc_reg_if_not_full(s->mac_reg, BPRC); |
| return 1; |
| } |
| |
| return e1000x_rx_group_filter(s->mac_reg, buf); |
| } |
| |
| static void |
| e1000_set_link_status(NetClientState *nc) |
| { |
| E1000State *s = qemu_get_nic_opaque(nc); |
| uint32_t old_status = s->mac_reg[STATUS]; |
| |
| if (nc->link_down) { |
| e1000x_update_regs_on_link_down(s->mac_reg, s->phy_reg); |
| } else { |
| if (have_autoneg(s) && |
| !(s->phy_reg[PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) { |
| e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer); |
| } else { |
| e1000_link_up(s); |
| } |
| } |
| |
| if (s->mac_reg[STATUS] != old_status) |
| set_ics(s, 0, E1000_ICR_LSC); |
| } |
| |
| static bool e1000_has_rxbufs(E1000State *s, size_t total_size) |
| { |
| int bufs; |
| /* Fast-path short packets */ |
| if (total_size <= s->rxbuf_size) { |
| return s->mac_reg[RDH] != s->mac_reg[RDT]; |
| } |
| if (s->mac_reg[RDH] < s->mac_reg[RDT]) { |
| bufs = s->mac_reg[RDT] - s->mac_reg[RDH]; |
| } else if (s->mac_reg[RDH] > s->mac_reg[RDT]) { |
| bufs = s->mac_reg[RDLEN] / sizeof(struct e1000_rx_desc) + |
| s->mac_reg[RDT] - s->mac_reg[RDH]; |
| } else { |
| return false; |
| } |
| return total_size <= bufs * s->rxbuf_size; |
| } |
| |
| static bool |
| e1000_can_receive(NetClientState *nc) |
| { |
| E1000State *s = qemu_get_nic_opaque(nc); |
| |
| return e1000x_rx_ready(&s->parent_obj, s->mac_reg) && |
| e1000_has_rxbufs(s, 1) && !timer_pending(s->flush_queue_timer); |
| } |
| |
| static uint64_t rx_desc_base(E1000State *s) |
| { |
| uint64_t bah = s->mac_reg[RDBAH]; |
| uint64_t bal = s->mac_reg[RDBAL] & ~0xf; |
| |
| return (bah << 32) + bal; |
| } |
| |
| static void |
| e1000_receiver_overrun(E1000State *s, size_t size) |
| { |
| trace_e1000_receiver_overrun(size, s->mac_reg[RDH], s->mac_reg[RDT]); |
| e1000x_inc_reg_if_not_full(s->mac_reg, RNBC); |
| e1000x_inc_reg_if_not_full(s->mac_reg, MPC); |
| set_ics(s, 0, E1000_ICS_RXO); |
| } |
| |
| static ssize_t |
| e1000_receive_iov(NetClientState *nc, const struct iovec *iov, int iovcnt) |
| { |
| E1000State *s = qemu_get_nic_opaque(nc); |
| PCIDevice *d = PCI_DEVICE(s); |
| struct e1000_rx_desc desc; |
| dma_addr_t base; |
| unsigned int n, rdt; |
| uint32_t rdh_start; |
| uint16_t vlan_special = 0; |
| uint8_t vlan_status = 0; |
| uint8_t min_buf[MIN_BUF_SIZE]; |
| struct iovec min_iov; |
| uint8_t *filter_buf = iov->iov_base; |
| size_t size = iov_size(iov, iovcnt); |
| size_t iov_ofs = 0; |
| size_t desc_offset; |
| size_t desc_size; |
| size_t total_size; |
| |
| if (!e1000x_hw_rx_enabled(s->mac_reg)) { |
| return -1; |
| } |
| |
| if (timer_pending(s->flush_queue_timer)) { |
| return 0; |
| } |
| |
| /* Pad to minimum Ethernet frame length */ |
| if (size < sizeof(min_buf)) { |
| iov_to_buf(iov, iovcnt, 0, min_buf, size); |
| memset(&min_buf[size], 0, sizeof(min_buf) - size); |
| min_iov.iov_base = filter_buf = min_buf; |
| min_iov.iov_len = size = sizeof(min_buf); |
| iovcnt = 1; |
| iov = &min_iov; |
| } else if (iov->iov_len < MAXIMUM_ETHERNET_HDR_LEN) { |
| /* This is very unlikely, but may happen. */ |
| iov_to_buf(iov, iovcnt, 0, min_buf, MAXIMUM_ETHERNET_HDR_LEN); |
| filter_buf = min_buf; |
| } |
| |
| /* Discard oversized packets if !LPE and !SBP. */ |
| if (e1000x_is_oversized(s->mac_reg, size)) { |
| return size; |
| } |
| |
| if (!receive_filter(s, filter_buf, size)) { |
| return size; |
| } |
| |
| if (e1000x_vlan_enabled(s->mac_reg) && |
| e1000x_is_vlan_packet(filter_buf, le16_to_cpu(s->mac_reg[VET]))) { |
| vlan_special = cpu_to_le16(lduw_be_p(filter_buf + 14)); |
| iov_ofs = 4; |
| if (filter_buf == iov->iov_base) { |
| memmove(filter_buf + 4, filter_buf, 12); |
| } else { |
| iov_from_buf(iov, iovcnt, 4, filter_buf, 12); |
| while (iov->iov_len <= iov_ofs) { |
| iov_ofs -= iov->iov_len; |
| iov++; |
| } |
| } |
| vlan_status = E1000_RXD_STAT_VP; |
| size -= 4; |
| } |
| |
| rdh_start = s->mac_reg[RDH]; |
| desc_offset = 0; |
| total_size = size + e1000x_fcs_len(s->mac_reg); |
| if (!e1000_has_rxbufs(s, total_size)) { |
| e1000_receiver_overrun(s, total_size); |
| return -1; |
| } |
| do { |
| desc_size = total_size - desc_offset; |
| if (desc_size > s->rxbuf_size) { |
| desc_size = s->rxbuf_size; |
| } |
| base = rx_desc_base(s) + sizeof(desc) * s->mac_reg[RDH]; |
| pci_dma_read(d, base, &desc, sizeof(desc)); |
| desc.special = vlan_special; |
| desc.status |= (vlan_status | E1000_RXD_STAT_DD); |
| if (desc.buffer_addr) { |
| if (desc_offset < size) { |
| size_t iov_copy; |
| hwaddr ba = le64_to_cpu(desc.buffer_addr); |
| size_t copy_size = size - desc_offset; |
| if (copy_size > s->rxbuf_size) { |
| copy_size = s->rxbuf_size; |
| } |
| do { |
| iov_copy = MIN(copy_size, iov->iov_len - iov_ofs); |
| pci_dma_write(d, ba, iov->iov_base + iov_ofs, iov_copy); |
| copy_size -= iov_copy; |
| ba += iov_copy; |
| iov_ofs += iov_copy; |
| if (iov_ofs == iov->iov_len) { |
| iov++; |
| iov_ofs = 0; |
| } |
| } while (copy_size); |
| } |
| desc_offset += desc_size; |
| desc.length = cpu_to_le16(desc_size); |
| if (desc_offset >= total_size) { |
| desc.status |= E1000_RXD_STAT_EOP | E1000_RXD_STAT_IXSM; |
| } else { |
| /* Guest zeroing out status is not a hardware requirement. |
| Clear EOP in case guest didn't do it. */ |
| desc.status &= ~E1000_RXD_STAT_EOP; |
| } |
| } else { // as per intel docs; skip descriptors with null buf addr |
| DBGOUT(RX, "Null RX descriptor!!\n"); |
| } |
| pci_dma_write(d, base, &desc, sizeof(desc)); |
| |
| if (++s->mac_reg[RDH] * sizeof(desc) >= s->mac_reg[RDLEN]) |
| s->mac_reg[RDH] = 0; |
| /* see comment in start_xmit; same here */ |
| if (s->mac_reg[RDH] == rdh_start || |
| rdh_start >= s->mac_reg[RDLEN] / sizeof(desc)) { |
| DBGOUT(RXERR, "RDH wraparound @%x, RDT %x, RDLEN %x\n", |
| rdh_start, s->mac_reg[RDT], s->mac_reg[RDLEN]); |
| e1000_receiver_overrun(s, total_size); |
| return -1; |
| } |
| } while (desc_offset < total_size); |
| |
| e1000x_update_rx_total_stats(s->mac_reg, size, total_size); |
| |
| n = E1000_ICS_RXT0; |
| if ((rdt = s->mac_reg[RDT]) < s->mac_reg[RDH]) |
| rdt += s->mac_reg[RDLEN] / sizeof(desc); |
| if (((rdt - s->mac_reg[RDH]) * sizeof(desc)) <= s->mac_reg[RDLEN] >> |
| s->rxbuf_min_shift) |
| n |= E1000_ICS_RXDMT0; |
| |
| set_ics(s, 0, n); |
| |
| return size; |
| } |
| |
| static ssize_t |
| e1000_receive(NetClientState *nc, const uint8_t *buf, size_t size) |
| { |
| const struct iovec iov = { |
| .iov_base = (uint8_t *)buf, |
| .iov_len = size |
| }; |
| |
| return e1000_receive_iov(nc, &iov, 1); |
| } |
| |
| static uint32_t |
| mac_readreg(E1000State *s, int index) |
| { |
| return s->mac_reg[index]; |
| } |
| |
| static uint32_t |
| mac_low4_read(E1000State *s, int index) |
| { |
| return s->mac_reg[index] & 0xf; |
| } |
| |
| static uint32_t |
| mac_low11_read(E1000State *s, int index) |
| { |
| return s->mac_reg[index] & 0x7ff; |
| } |
| |
| static uint32_t |
| mac_low13_read(E1000State *s, int index) |
| { |
| return s->mac_reg[index] & 0x1fff; |
| } |
| |
| static uint32_t |
| mac_low16_read(E1000State *s, int index) |
| { |
| return s->mac_reg[index] & 0xffff; |
| } |
| |
| static uint32_t |
| mac_icr_read(E1000State *s, int index) |
| { |
| uint32_t ret = s->mac_reg[ICR]; |
| |
| DBGOUT(INTERRUPT, "ICR read: %x\n", ret); |
| set_interrupt_cause(s, 0, 0); |
| return ret; |
| } |
| |
| static uint32_t |
| mac_read_clr4(E1000State *s, int index) |
| { |
| uint32_t ret = s->mac_reg[index]; |
| |
| s->mac_reg[index] = 0; |
| return ret; |
| } |
| |
| static uint32_t |
| mac_read_clr8(E1000State *s, int index) |
| { |
| uint32_t ret = s->mac_reg[index]; |
| |
| s->mac_reg[index] = 0; |
| s->mac_reg[index-1] = 0; |
| return ret; |
| } |
| |
| static void |
| mac_writereg(E1000State *s, int index, uint32_t val) |
| { |
| uint32_t macaddr[2]; |
| |
| s->mac_reg[index] = val; |
| |
| if (index == RA + 1) { |
| macaddr[0] = cpu_to_le32(s->mac_reg[RA]); |
| macaddr[1] = cpu_to_le32(s->mac_reg[RA + 1]); |
| qemu_format_nic_info_str(qemu_get_queue(s->nic), (uint8_t *)macaddr); |
| } |
| } |
| |
| static void |
| set_rdt(E1000State *s, int index, uint32_t val) |
| { |
| s->mac_reg[index] = val & 0xffff; |
| if (e1000_has_rxbufs(s, 1)) { |
| qemu_flush_queued_packets(qemu_get_queue(s->nic)); |
| } |
| } |
| |
| static void |
| set_16bit(E1000State *s, int index, uint32_t val) |
| { |
| s->mac_reg[index] = val & 0xffff; |
| } |
| |
| static void |
| set_dlen(E1000State *s, int index, uint32_t val) |
| { |
| s->mac_reg[index] = val & 0xfff80; |
| } |
| |
| static void |
| set_tctl(E1000State *s, int index, uint32_t val) |
| { |
| s->mac_reg[index] = val; |
| s->mac_reg[TDT] &= 0xffff; |
| start_xmit(s); |
| } |
| |
| static void |
| set_icr(E1000State *s, int index, uint32_t val) |
| { |
| DBGOUT(INTERRUPT, "set_icr %x\n", val); |
| set_interrupt_cause(s, 0, s->mac_reg[ICR] & ~val); |
| } |
| |
| static void |
| set_imc(E1000State *s, int index, uint32_t val) |
| { |
| s->mac_reg[IMS] &= ~val; |
| set_ics(s, 0, 0); |
| } |
| |
| static void |
| set_ims(E1000State *s, int index, uint32_t val) |
| { |
| s->mac_reg[IMS] |= val; |
| set_ics(s, 0, 0); |
| } |
| |
| #define getreg(x) [x] = mac_readreg |
| typedef uint32_t (*readops)(E1000State *, int); |
| static const readops macreg_readops[] = { |
| getreg(PBA), getreg(RCTL), getreg(TDH), getreg(TXDCTL), |
| getreg(WUFC), getreg(TDT), getreg(CTRL), getreg(LEDCTL), |
| getreg(MANC), getreg(MDIC), getreg(SWSM), getreg(STATUS), |
| getreg(TORL), getreg(TOTL), getreg(IMS), getreg(TCTL), |
| getreg(RDH), getreg(RDT), getreg(VET), getreg(ICS), |
| getreg(TDBAL), getreg(TDBAH), getreg(RDBAH), getreg(RDBAL), |
| getreg(TDLEN), getreg(RDLEN), getreg(RDTR), getreg(RADV), |
| getreg(TADV), getreg(ITR), getreg(FCRUC), getreg(IPAV), |
| getreg(WUC), getreg(WUS), getreg(SCC), getreg(ECOL), |
| getreg(MCC), getreg(LATECOL), getreg(COLC), getreg(DC), |
| getreg(TNCRS), getreg(SEQEC), getreg(CEXTERR), getreg(RLEC), |
| getreg(XONRXC), getreg(XONTXC), getreg(XOFFRXC), getreg(XOFFTXC), |
| getreg(RFC), getreg(RJC), getreg(RNBC), getreg(TSCTFC), |
| getreg(MGTPRC), getreg(MGTPDC), getreg(MGTPTC), getreg(GORCL), |
| getreg(GOTCL), |
| |
| [TOTH] = mac_read_clr8, [TORH] = mac_read_clr8, |
| [GOTCH] = mac_read_clr8, [GORCH] = mac_read_clr8, |
| [PRC64] = mac_read_clr4, [PRC127] = mac_read_clr4, |
| [PRC255] = mac_read_clr4, [PRC511] = mac_read_clr4, |
| [PRC1023] = mac_read_clr4, [PRC1522] = mac_read_clr4, |
| [PTC64] = mac_read_clr4, [PTC127] = mac_read_clr4, |
| [PTC255] = mac_read_clr4, [PTC511] = mac_read_clr4, |
| [PTC1023] = mac_read_clr4, [PTC1522] = mac_read_clr4, |
| [GPRC] = mac_read_clr4, [GPTC] = mac_read_clr4, |
| [TPT] = mac_read_clr4, [TPR] = mac_read_clr4, |
| [RUC] = mac_read_clr4, [ROC] = mac_read_clr4, |
| [BPRC] = mac_read_clr4, [MPRC] = mac_read_clr4, |
| [TSCTC] = mac_read_clr4, [BPTC] = mac_read_clr4, |
| [MPTC] = mac_read_clr4, |
| [ICR] = mac_icr_read, [EECD] = get_eecd, |
| [EERD] = flash_eerd_read, |
| [RDFH] = mac_low13_read, [RDFT] = mac_low13_read, |
| [RDFHS] = mac_low13_read, [RDFTS] = mac_low13_read, |
| [RDFPC] = mac_low13_read, |
| [TDFH] = mac_low11_read, [TDFT] = mac_low11_read, |
| [TDFHS] = mac_low13_read, [TDFTS] = mac_low13_read, |
| [TDFPC] = mac_low13_read, |
| [AIT] = mac_low16_read, |
| |
| [CRCERRS ... MPC] = &mac_readreg, |
| [IP6AT ... IP6AT+3] = &mac_readreg, [IP4AT ... IP4AT+6] = &mac_readreg, |
| [FFLT ... FFLT+6] = &mac_low11_read, |
| [RA ... RA+31] = &mac_readreg, |
| [WUPM ... WUPM+31] = &mac_readreg, |
| [MTA ... MTA+127] = &mac_readreg, |
| [VFTA ... VFTA+127] = &mac_readreg, |
| [FFMT ... FFMT+254] = &mac_low4_read, |
| [FFVT ... FFVT+254] = &mac_readreg, |
| [PBM ... PBM+16383] = &mac_readreg, |
| }; |
| enum { NREADOPS = ARRAY_SIZE(macreg_readops) }; |
| |
| #define putreg(x) [x] = mac_writereg |
| typedef void (*writeops)(E1000State *, int, uint32_t); |
| static const writeops macreg_writeops[] = { |
| putreg(PBA), putreg(EERD), putreg(SWSM), putreg(WUFC), |
| putreg(TDBAL), putreg(TDBAH), putreg(TXDCTL), putreg(RDBAH), |
| putreg(RDBAL), putreg(LEDCTL), putreg(VET), putreg(FCRUC), |
| putreg(TDFH), putreg(TDFT), putreg(TDFHS), putreg(TDFTS), |
| putreg(TDFPC), putreg(RDFH), putreg(RDFT), putreg(RDFHS), |
| putreg(RDFTS), putreg(RDFPC), putreg(IPAV), putreg(WUC), |
| putreg(WUS), putreg(AIT), |
| |
| [TDLEN] = set_dlen, [RDLEN] = set_dlen, [TCTL] = set_tctl, |
| [TDT] = set_tctl, [MDIC] = set_mdic, [ICS] = set_ics, |
| [TDH] = set_16bit, [RDH] = set_16bit, [RDT] = set_rdt, |
| [IMC] = set_imc, [IMS] = set_ims, [ICR] = set_icr, |
| [EECD] = set_eecd, [RCTL] = set_rx_control, [CTRL] = set_ctrl, |
| [RDTR] = set_16bit, [RADV] = set_16bit, [TADV] = set_16bit, |
| [ITR] = set_16bit, |
| |
| [IP6AT ... IP6AT+3] = &mac_writereg, [IP4AT ... IP4AT+6] = &mac_writereg, |
| [FFLT ... FFLT+6] = &mac_writereg, |
| [RA ... RA+31] = &mac_writereg, |
| [WUPM ... WUPM+31] = &mac_writereg, |
| [MTA ... MTA+127] = &mac_writereg, |
| [VFTA ... VFTA+127] = &mac_writereg, |
| [FFMT ... FFMT+254] = &mac_writereg, [FFVT ... FFVT+254] = &mac_writereg, |
| [PBM ... PBM+16383] = &mac_writereg, |
| }; |
| |
| enum { NWRITEOPS = ARRAY_SIZE(macreg_writeops) }; |
| |
| enum { MAC_ACCESS_PARTIAL = 1, MAC_ACCESS_FLAG_NEEDED = 2 }; |
| |
| #define markflag(x) ((E1000_FLAG_##x << 2) | MAC_ACCESS_FLAG_NEEDED) |
| /* In the array below the meaning of the bits is: [f|f|f|f|f|f|n|p] |
| * f - flag bits (up to 6 possible flags) |
| * n - flag needed |
| * p - partially implenented */ |
| static const uint8_t mac_reg_access[0x8000] = { |
| [RDTR] = markflag(MIT), [TADV] = markflag(MIT), |
| [RADV] = markflag(MIT), [ITR] = markflag(MIT), |
| |
| [IPAV] = markflag(MAC), [WUC] = markflag(MAC), |
| [IP6AT] = markflag(MAC), [IP4AT] = markflag(MAC), |
| [FFVT] = markflag(MAC), [WUPM] = markflag(MAC), |
| [ECOL] = markflag(MAC), [MCC] = markflag(MAC), |
| [DC] = markflag(MAC), [TNCRS] = markflag(MAC), |
| [RLEC] = markflag(MAC), [XONRXC] = markflag(MAC), |
| [XOFFTXC] = markflag(MAC), [RFC] = markflag(MAC), |
| [TSCTFC] = markflag(MAC), [MGTPRC] = markflag(MAC), |
| [WUS] = markflag(MAC), [AIT] = markflag(MAC), |
| [FFLT] = markflag(MAC), [FFMT] = markflag(MAC), |
| [SCC] = markflag(MAC), [FCRUC] = markflag(MAC), |
| [LATECOL] = markflag(MAC), [COLC] = markflag(MAC), |
| [SEQEC] = markflag(MAC), [CEXTERR] = markflag(MAC), |
| [XONTXC] = markflag(MAC), [XOFFRXC] = markflag(MAC), |
| [RJC] = markflag(MAC), [RNBC] = markflag(MAC), |
| [MGTPDC] = markflag(MAC), [MGTPTC] = markflag(MAC), |
| [RUC] = markflag(MAC), [ROC] = markflag(MAC), |
| [GORCL] = markflag(MAC), [GORCH] = markflag(MAC), |
| [GOTCL] = markflag(MAC), [GOTCH] = markflag(MAC), |
| [BPRC] = markflag(MAC), [MPRC] = markflag(MAC), |
| [TSCTC] = markflag(MAC), [PRC64] = markflag(MAC), |
| [PRC127] = markflag(MAC), [PRC255] = markflag(MAC), |
| [PRC511] = markflag(MAC), [PRC1023] = markflag(MAC), |
| [PRC1522] = markflag(MAC), [PTC64] = markflag(MAC), |
| [PTC127] = markflag(MAC), [PTC255] = markflag(MAC), |
| [PTC511] = markflag(MAC), [PTC1023] = markflag(MAC), |
| [PTC1522] = markflag(MAC), [MPTC] = markflag(MAC), |
| [BPTC] = markflag(MAC), |
| |
| [TDFH] = markflag(MAC) | MAC_ACCESS_PARTIAL, |
| [TDFT] = markflag(MAC) | MAC_ACCESS_PARTIAL, |
| [TDFHS] = markflag(MAC) | MAC_ACCESS_PARTIAL, |
| [TDFTS] = markflag(MAC) | MAC_ACCESS_PARTIAL, |
| [TDFPC] = markflag(MAC) | MAC_ACCESS_PARTIAL, |
| [RDFH] = markflag(MAC) | MAC_ACCESS_PARTIAL, |
| [RDFT] = markflag(MAC) | MAC_ACCESS_PARTIAL, |
| [RDFHS] = markflag(MAC) | MAC_ACCESS_PARTIAL, |
| [RDFTS] = markflag(MAC) | MAC_ACCESS_PARTIAL, |
| [RDFPC] = markflag(MAC) | MAC_ACCESS_PARTIAL, |
| [PBM] = markflag(MAC) | MAC_ACCESS_PARTIAL, |
| }; |
| |
| static void |
| e1000_mmio_write(void *opaque, hwaddr addr, uint64_t val, |
| unsigned size) |
| { |
| E1000State *s = opaque; |
| unsigned int index = (addr & 0x1ffff) >> 2; |
| |
| if (index < NWRITEOPS && macreg_writeops[index]) { |
| if (!(mac_reg_access[index] & MAC_ACCESS_FLAG_NEEDED) |
| || (s->compat_flags & (mac_reg_access[index] >> 2))) { |
| if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) { |
| DBGOUT(GENERAL, "Writing to register at offset: 0x%08x. " |
| "It is not fully implemented.\n", index<<2); |
| } |
| macreg_writeops[index](s, index, val); |
| } else { /* "flag needed" bit is set, but the flag is not active */ |
| DBGOUT(MMIO, "MMIO write attempt to disabled reg. addr=0x%08x\n", |
| index<<2); |
| } |
| } else if (index < NREADOPS && macreg_readops[index]) { |
| DBGOUT(MMIO, "e1000_mmio_writel RO %x: 0x%04"PRIx64"\n", |
| index<<2, val); |
| } else { |
| DBGOUT(UNKNOWN, "MMIO unknown write addr=0x%08x,val=0x%08"PRIx64"\n", |
| index<<2, val); |
| } |
| } |
| |
| static uint64_t |
| e1000_mmio_read(void *opaque, hwaddr addr, unsigned size) |
| { |
| E1000State *s = opaque; |
| unsigned int index = (addr & 0x1ffff) >> 2; |
| |
| if (index < NREADOPS && macreg_readops[index]) { |
| if (!(mac_reg_access[index] & MAC_ACCESS_FLAG_NEEDED) |
| || (s->compat_flags & (mac_reg_access[index] >> 2))) { |
| if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) { |
| DBGOUT(GENERAL, "Reading register at offset: 0x%08x. " |
| "It is not fully implemented.\n", index<<2); |
| } |
| return macreg_readops[index](s, index); |
| } else { /* "flag needed" bit is set, but the flag is not active */ |
| DBGOUT(MMIO, "MMIO read attempt of disabled reg. addr=0x%08x\n", |
| index<<2); |
| } |
| } else { |
| DBGOUT(UNKNOWN, "MMIO unknown read addr=0x%08x\n", index<<2); |
| } |
| return 0; |
| } |
| |
| static const MemoryRegionOps e1000_mmio_ops = { |
| .read = e1000_mmio_read, |
| .write = e1000_mmio_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| .impl = { |
| .min_access_size = 4, |
| .max_access_size = 4, |
| }, |
| }; |
| |
| static uint64_t e1000_io_read(void *opaque, hwaddr addr, |
| unsigned size) |
| { |
| E1000State *s = opaque; |
| |
| (void)s; |
| return 0; |
| } |
| |
| static void e1000_io_write(void *opaque, hwaddr addr, |
| uint64_t val, unsigned size) |
| { |
| E1000State *s = opaque; |
| |
| (void)s; |
| } |
| |
| static const MemoryRegionOps e1000_io_ops = { |
| .read = e1000_io_read, |
| .write = e1000_io_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static bool is_version_1(void *opaque, int version_id) |
| { |
| return version_id == 1; |
| } |
| |
| static int e1000_pre_save(void *opaque) |
| { |
| E1000State *s = opaque; |
| NetClientState *nc = qemu_get_queue(s->nic); |
| |
| /* |
| * If link is down and auto-negotiation is supported and ongoing, |
| * complete auto-negotiation immediately. This allows us to look |
| * at MII_SR_AUTONEG_COMPLETE to infer link status on load. |
| */ |
| if (nc->link_down && have_autoneg(s)) { |
| s->phy_reg[PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE; |
| } |
| |
| /* Decide which set of props to migrate in the main structure */ |
| if (chkflag(TSO) || !s->use_tso_for_migration) { |
| /* Either we're migrating with the extra subsection, in which |
| * case the mig_props is always 'props' OR |
| * we've not got the subsection, but 'props' was the last |
| * updated. |
| */ |
| s->mig_props = s->tx.props; |
| } else { |
| /* We're not using the subsection, and 'tso_props' was |
| * the last updated. |
| */ |
| s->mig_props = s->tx.tso_props; |
| } |
| return 0; |
| } |
| |
| static int e1000_post_load(void *opaque, int version_id) |
| { |
| E1000State *s = opaque; |
| NetClientState *nc = qemu_get_queue(s->nic); |
| |
| if (!chkflag(MIT)) { |
| s->mac_reg[ITR] = s->mac_reg[RDTR] = s->mac_reg[RADV] = |
| s->mac_reg[TADV] = 0; |
| s->mit_irq_level = false; |
| } |
| s->mit_ide = 0; |
| s->mit_timer_on = true; |
| timer_mod(s->mit_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1); |
| |
| /* nc.link_down can't be migrated, so infer link_down according |
| * to link status bit in mac_reg[STATUS]. |
| * Alternatively, restart link negotiation if it was in progress. */ |
| nc->link_down = (s->mac_reg[STATUS] & E1000_STATUS_LU) == 0; |
| |
| if (have_autoneg(s) && |
| !(s->phy_reg[PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) { |
| nc->link_down = false; |
| timer_mod(s->autoneg_timer, |
| qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500); |
| } |
| |
| s->tx.props = s->mig_props; |
| if (!s->received_tx_tso) { |
| /* We received only one set of offload data (tx.props) |
| * and haven't got tx.tso_props. The best we can do |
| * is dupe the data. |
| */ |
| s->tx.tso_props = s->mig_props; |
| } |
| return 0; |
| } |
| |
| static int e1000_tx_tso_post_load(void *opaque, int version_id) |
| { |
| E1000State *s = opaque; |
| s->received_tx_tso = true; |
| return 0; |
| } |
| |
| static bool e1000_mit_state_needed(void *opaque) |
| { |
| E1000State *s = opaque; |
| |
| return chkflag(MIT); |
| } |
| |
| static bool e1000_full_mac_needed(void *opaque) |
| { |
| E1000State *s = opaque; |
| |
| return chkflag(MAC); |
| } |
| |
| static bool e1000_tso_state_needed(void *opaque) |
| { |
| E1000State *s = opaque; |
| |
| return chkflag(TSO); |
| } |
| |
| static const VMStateDescription vmstate_e1000_mit_state = { |
| .name = "e1000/mit_state", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .needed = e1000_mit_state_needed, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT32(mac_reg[RDTR], E1000State), |
| VMSTATE_UINT32(mac_reg[RADV], E1000State), |
| VMSTATE_UINT32(mac_reg[TADV], E1000State), |
| VMSTATE_UINT32(mac_reg[ITR], E1000State), |
| VMSTATE_BOOL(mit_irq_level, E1000State), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static const VMStateDescription vmstate_e1000_full_mac_state = { |
| .name = "e1000/full_mac_state", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .needed = e1000_full_mac_needed, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT32_ARRAY(mac_reg, E1000State, 0x8000), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static const VMStateDescription vmstate_e1000_tx_tso_state = { |
| .name = "e1000/tx_tso_state", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .needed = e1000_tso_state_needed, |
| .post_load = e1000_tx_tso_post_load, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT8(tx.tso_props.ipcss, E1000State), |
| VMSTATE_UINT8(tx.tso_props.ipcso, E1000State), |
| VMSTATE_UINT16(tx.tso_props.ipcse, E1000State), |
| VMSTATE_UINT8(tx.tso_props.tucss, E1000State), |
| VMSTATE_UINT8(tx.tso_props.tucso, E1000State), |
| VMSTATE_UINT16(tx.tso_props.tucse, E1000State), |
| VMSTATE_UINT32(tx.tso_props.paylen, E1000State), |
| VMSTATE_UINT8(tx.tso_props.hdr_len, E1000State), |
| VMSTATE_UINT16(tx.tso_props.mss, E1000State), |
| VMSTATE_INT8(tx.tso_props.ip, E1000State), |
| VMSTATE_INT8(tx.tso_props.tcp, E1000State), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static const VMStateDescription vmstate_e1000 = { |
| .name = "e1000", |
| .version_id = 2, |
| .minimum_version_id = 1, |
| .pre_save = e1000_pre_save, |
| .post_load = e1000_post_load, |
| .fields = (VMStateField[]) { |
| VMSTATE_PCI_DEVICE(parent_obj, E1000State), |
| VMSTATE_UNUSED_TEST(is_version_1, 4), /* was instance id */ |
| VMSTATE_UNUSED(4), /* Was mmio_base. */ |
| VMSTATE_UINT32(rxbuf_size, E1000State), |
| VMSTATE_UINT32(rxbuf_min_shift, E1000State), |
| VMSTATE_UINT32(eecd_state.val_in, E1000State), |
| VMSTATE_UINT16(eecd_state.bitnum_in, E1000State), |
| VMSTATE_UINT16(eecd_state.bitnum_out, E1000State), |
| VMSTATE_UINT16(eecd_state.reading, E1000State), |
| VMSTATE_UINT32(eecd_state.old_eecd, E1000State), |
| VMSTATE_UINT8(mig_props.ipcss, E1000State), |
| VMSTATE_UINT8(mig_props.ipcso, E1000State), |
| VMSTATE_UINT16(mig_props.ipcse, E1000State), |
| VMSTATE_UINT8(mig_props.tucss, E1000State), |
| VMSTATE_UINT8(mig_props.tucso, E1000State), |
| VMSTATE_UINT16(mig_props.tucse, E1000State), |
| VMSTATE_UINT32(mig_props.paylen, E1000State), |
| VMSTATE_UINT8(mig_props.hdr_len, E1000State), |
| VMSTATE_UINT16(mig_props.mss, E1000State), |
| VMSTATE_UINT16(tx.size, E1000State), |
| VMSTATE_UINT16(tx.tso_frames, E1000State), |
| VMSTATE_UINT8(tx.sum_needed, E1000State), |
| VMSTATE_INT8(mig_props.ip, E1000State), |
| VMSTATE_INT8(mig_props.tcp, E1000State), |
| VMSTATE_BUFFER(tx.header, E1000State), |
| VMSTATE_BUFFER(tx.data, E1000State), |
| VMSTATE_UINT16_ARRAY(eeprom_data, E1000State, 64), |
| VMSTATE_UINT16_ARRAY(phy_reg, E1000State, 0x20), |
| VMSTATE_UINT32(mac_reg[CTRL], E1000State), |
| VMSTATE_UINT32(mac_reg[EECD], E1000State), |
| VMSTATE_UINT32(mac_reg[EERD], E1000State), |
| VMSTATE_UINT32(mac_reg[GPRC], E1000State), |
| VMSTATE_UINT32(mac_reg[GPTC], E1000State), |
| VMSTATE_UINT32(mac_reg[ICR], E1000State), |
| VMSTATE_UINT32(mac_reg[ICS], E1000State), |
| VMSTATE_UINT32(mac_reg[IMC], E1000State), |
| VMSTATE_UINT32(mac_reg[IMS], E1000State), |
| VMSTATE_UINT32(mac_reg[LEDCTL], E1000State), |
| VMSTATE_UINT32(mac_reg[MANC], E1000State), |
| VMSTATE_UINT32(mac_reg[MDIC], E1000State), |
| VMSTATE_UINT32(mac_reg[MPC], E1000State), |
| VMSTATE_UINT32(mac_reg[PBA], E1000State), |
| VMSTATE_UINT32(mac_reg[RCTL], E1000State), |
| VMSTATE_UINT32(mac_reg[RDBAH], E1000State), |
| VMSTATE_UINT32(mac_reg[RDBAL], E1000State), |
| VMSTATE_UINT32(mac_reg[RDH], E1000State), |
| VMSTATE_UINT32(mac_reg[RDLEN], E1000State), |
| VMSTATE_UINT32(mac_reg[RDT], E1000State), |
| VMSTATE_UINT32(mac_reg[STATUS], E1000State), |
| VMSTATE_UINT32(mac_reg[SWSM], E1000State), |
| VMSTATE_UINT32(mac_reg[TCTL], E1000State), |
| VMSTATE_UINT32(mac_reg[TDBAH], E1000State), |
| VMSTATE_UINT32(mac_reg[TDBAL], E1000State), |
| VMSTATE_UINT32(mac_reg[TDH], E1000State), |
| VMSTATE_UINT32(mac_reg[TDLEN], E1000State), |
| VMSTATE_UINT32(mac_reg[TDT], E1000State), |
| VMSTATE_UINT32(mac_reg[TORH], E1000State), |
| VMSTATE_UINT32(mac_reg[TORL], E1000State), |
| VMSTATE_UINT32(mac_reg[TOTH], E1000State), |
| VMSTATE_UINT32(mac_reg[TOTL], E1000State), |
| VMSTATE_UINT32(mac_reg[TPR], E1000State), |
| VMSTATE_UINT32(mac_reg[TPT], E1000State), |
| VMSTATE_UINT32(mac_reg[TXDCTL], E1000State), |
| VMSTATE_UINT32(mac_reg[WUFC], E1000State), |
| VMSTATE_UINT32(mac_reg[VET], E1000State), |
| VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, RA, 32), |
| VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, MTA, 128), |
| VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, VFTA, 128), |
| VMSTATE_END_OF_LIST() |
| }, |
| .subsections = (const VMStateDescription*[]) { |
| &vmstate_e1000_mit_state, |
| &vmstate_e1000_full_mac_state, |
| &vmstate_e1000_tx_tso_state, |
| NULL |
| } |
| }; |
| |
| /* |
| * EEPROM contents documented in Tables 5-2 and 5-3, pp. 98-102. |
| * Note: A valid DevId will be inserted during pci_e1000_realize(). |
| */ |
| static const uint16_t e1000_eeprom_template[64] = { |
| 0x0000, 0x0000, 0x0000, 0x0000, 0xffff, 0x0000, 0x0000, 0x0000, |
| 0x3000, 0x1000, 0x6403, 0 /*DevId*/, 0x8086, 0 /*DevId*/, 0x8086, 0x3040, |
| 0x0008, 0x2000, 0x7e14, 0x0048, 0x1000, 0x00d8, 0x0000, 0x2700, |
| 0x6cc9, 0x3150, 0x0722, 0x040b, 0x0984, 0x0000, 0xc000, 0x0706, |
| 0x1008, 0x0000, 0x0f04, 0x7fff, 0x4d01, 0xffff, 0xffff, 0xffff, |
| 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, |
| 0x0100, 0x4000, 0x121c, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, |
| 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000, |
| }; |
| |
| /* PCI interface */ |
| |
| static void |
| e1000_mmio_setup(E1000State *d) |
| { |
| int i; |
| const uint32_t excluded_regs[] = { |
| E1000_MDIC, E1000_ICR, E1000_ICS, E1000_IMS, |
| E1000_IMC, E1000_TCTL, E1000_TDT, PNPMMIO_SIZE |
| }; |
| |
| memory_region_init_io(&d->mmio, OBJECT(d), &e1000_mmio_ops, d, |
| "e1000-mmio", PNPMMIO_SIZE); |
| memory_region_add_coalescing(&d->mmio, 0, excluded_regs[0]); |
| for (i = 0; excluded_regs[i] != PNPMMIO_SIZE; i++) |
| memory_region_add_coalescing(&d->mmio, excluded_regs[i] + 4, |
| excluded_regs[i+1] - excluded_regs[i] - 4); |
| memory_region_init_io(&d->io, OBJECT(d), &e1000_io_ops, d, "e1000-io", IOPORT_SIZE); |
| } |
| |
| static void |
| pci_e1000_uninit(PCIDevice *dev) |
| { |
| E1000State *d = E1000(dev); |
| |
| timer_del(d->autoneg_timer); |
| timer_free(d->autoneg_timer); |
| timer_del(d->mit_timer); |
| timer_free(d->mit_timer); |
| timer_del(d->flush_queue_timer); |
| timer_free(d->flush_queue_timer); |
| qemu_del_nic(d->nic); |
| } |
| |
| static NetClientInfo net_e1000_info = { |
| .type = NET_CLIENT_DRIVER_NIC, |
| .size = sizeof(NICState), |
| .can_receive = e1000_can_receive, |
| .receive = e1000_receive, |
| .receive_iov = e1000_receive_iov, |
| .link_status_changed = e1000_set_link_status, |
| }; |
| |
| static void e1000_write_config(PCIDevice *pci_dev, uint32_t address, |
| uint32_t val, int len) |
| { |
| E1000State *s = E1000(pci_dev); |
| |
| pci_default_write_config(pci_dev, address, val, len); |
| |
| if (range_covers_byte(address, len, PCI_COMMAND) && |
| (pci_dev->config[PCI_COMMAND] & PCI_COMMAND_MASTER)) { |
| qemu_flush_queued_packets(qemu_get_queue(s->nic)); |
| } |
| } |
| |
| static void pci_e1000_realize(PCIDevice *pci_dev, Error **errp) |
| { |
| DeviceState *dev = DEVICE(pci_dev); |
| E1000State *d = E1000(pci_dev); |
| uint8_t *pci_conf; |
| uint8_t *macaddr; |
| |
| pci_dev->config_write = e1000_write_config; |
| |
| pci_conf = pci_dev->config; |
| |
| /* TODO: RST# value should be 0, PCI spec 6.2.4 */ |
| pci_conf[PCI_CACHE_LINE_SIZE] = 0x10; |
| |
| pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */ |
| |
| e1000_mmio_setup(d); |
| |
| pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &d->mmio); |
| |
| pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &d->io); |
| |
| qemu_macaddr_default_if_unset(&d->conf.macaddr); |
| macaddr = d->conf.macaddr.a; |
| |
| e1000x_core_prepare_eeprom(d->eeprom_data, |
| e1000_eeprom_template, |
| sizeof(e1000_eeprom_template), |
| PCI_DEVICE_GET_CLASS(pci_dev)->device_id, |
| macaddr); |
| |
| d->nic = qemu_new_nic(&net_e1000_info, &d->conf, |
| object_get_typename(OBJECT(d)), dev->id, d); |
| |
| qemu_format_nic_info_str(qemu_get_queue(d->nic), macaddr); |
| |
| d->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, e1000_autoneg_timer, d); |
| d->mit_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000_mit_timer, d); |
| d->flush_queue_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, |
| e1000_flush_queue_timer, d); |
| } |
| |
| static void qdev_e1000_reset(DeviceState *dev) |
| { |
| E1000State *d = E1000(dev); |
| e1000_reset(d); |
| } |
| |
| static Property e1000_properties[] = { |
| DEFINE_NIC_PROPERTIES(E1000State, conf), |
| DEFINE_PROP_BIT("autonegotiation", E1000State, |
| compat_flags, E1000_FLAG_AUTONEG_BIT, true), |
| DEFINE_PROP_BIT("mitigation", E1000State, |
| compat_flags, E1000_FLAG_MIT_BIT, true), |
| DEFINE_PROP_BIT("extra_mac_registers", E1000State, |
| compat_flags, E1000_FLAG_MAC_BIT, true), |
| DEFINE_PROP_BIT("migrate_tso_props", E1000State, |
| compat_flags, E1000_FLAG_TSO_BIT, true), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| typedef struct E1000Info { |
| const char *name; |
| uint16_t device_id; |
| uint8_t revision; |
| uint16_t phy_id2; |
| } E1000Info; |
| |
| static void e1000_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); |
| E1000BaseClass *e = E1000_DEVICE_CLASS(klass); |
| const E1000Info *info = data; |
| |
| k->realize = pci_e1000_realize; |
| k->exit = pci_e1000_uninit; |
| k->romfile = "efi-e1000.rom"; |
| k->vendor_id = PCI_VENDOR_ID_INTEL; |
| k->device_id = info->device_id; |
| k->revision = info->revision; |
| e->phy_id2 = info->phy_id2; |
| k->class_id = PCI_CLASS_NETWORK_ETHERNET; |
| set_bit(DEVICE_CATEGORY_NETWORK, dc->categories); |
| dc->desc = "Intel Gigabit Ethernet"; |
| dc->reset = qdev_e1000_reset; |
| dc->vmsd = &vmstate_e1000; |
| device_class_set_props(dc, e1000_properties); |
| } |
| |
| static void e1000_instance_init(Object *obj) |
| { |
| E1000State *n = E1000(obj); |
| device_add_bootindex_property(obj, &n->conf.bootindex, |
| "bootindex", "/ethernet-phy@0", |
| DEVICE(n), NULL); |
| } |
| |
| static const TypeInfo e1000_base_info = { |
| .name = TYPE_E1000_BASE, |
| .parent = TYPE_PCI_DEVICE, |
| .instance_size = sizeof(E1000State), |
| .instance_init = e1000_instance_init, |
| .class_size = sizeof(E1000BaseClass), |
| .abstract = true, |
| .interfaces = (InterfaceInfo[]) { |
| { INTERFACE_CONVENTIONAL_PCI_DEVICE }, |
| { }, |
| }, |
| }; |
| |
| static const E1000Info e1000_devices[] = { |
| { |
| .name = "e1000", |
| .device_id = E1000_DEV_ID_82540EM, |
| .revision = 0x03, |
| .phy_id2 = E1000_PHY_ID2_8254xx_DEFAULT, |
| }, |
| { |
| .name = "e1000-82544gc", |
| .device_id = E1000_DEV_ID_82544GC_COPPER, |
| .revision = 0x03, |
| .phy_id2 = E1000_PHY_ID2_82544x, |
| }, |
| { |
| .name = "e1000-82545em", |
| .device_id = E1000_DEV_ID_82545EM_COPPER, |
| .revision = 0x03, |
| .phy_id2 = E1000_PHY_ID2_8254xx_DEFAULT, |
| }, |
| }; |
| |
| static void e1000_register_types(void) |
| { |
| int i; |
| |
| type_register_static(&e1000_base_info); |
| for (i = 0; i < ARRAY_SIZE(e1000_devices); i++) { |
| const E1000Info *info = &e1000_devices[i]; |
| TypeInfo type_info = {}; |
| |
| type_info.name = info->name; |
| type_info.parent = TYPE_E1000_BASE; |
| type_info.class_data = (void *)info; |
| type_info.class_init = e1000_class_init; |
| |
| type_register(&type_info); |
| } |
| } |
| |
| type_init(e1000_register_types) |