| /* |
| * CPU thread main loop - common bits for user and system mode emulation |
| * |
| * Copyright (c) 2003-2005 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/main-loop.h" |
| #include "exec/cpu-common.h" |
| #include "hw/core/cpu.h" |
| #include "sysemu/cpus.h" |
| #include "qemu/lockable.h" |
| #include "trace/trace-root.h" |
| |
| QemuMutex qemu_cpu_list_lock; |
| static QemuCond exclusive_cond; |
| static QemuCond exclusive_resume; |
| static QemuCond qemu_work_cond; |
| |
| /* >= 1 if a thread is inside start_exclusive/end_exclusive. Written |
| * under qemu_cpu_list_lock, read with atomic operations. |
| */ |
| static int pending_cpus; |
| |
| void qemu_init_cpu_list(void) |
| { |
| /* This is needed because qemu_init_cpu_list is also called by the |
| * child process in a fork. */ |
| pending_cpus = 0; |
| |
| qemu_mutex_init(&qemu_cpu_list_lock); |
| qemu_cond_init(&exclusive_cond); |
| qemu_cond_init(&exclusive_resume); |
| qemu_cond_init(&qemu_work_cond); |
| } |
| |
| void cpu_list_lock(void) |
| { |
| qemu_mutex_lock(&qemu_cpu_list_lock); |
| } |
| |
| void cpu_list_unlock(void) |
| { |
| qemu_mutex_unlock(&qemu_cpu_list_lock); |
| } |
| |
| static bool cpu_index_auto_assigned; |
| |
| static int cpu_get_free_index(void) |
| { |
| CPUState *some_cpu; |
| int max_cpu_index = 0; |
| |
| cpu_index_auto_assigned = true; |
| CPU_FOREACH(some_cpu) { |
| if (some_cpu->cpu_index >= max_cpu_index) { |
| max_cpu_index = some_cpu->cpu_index + 1; |
| } |
| } |
| return max_cpu_index; |
| } |
| |
| CPUTailQ cpus_queue = QTAILQ_HEAD_INITIALIZER(cpus_queue); |
| static unsigned int cpu_list_generation_id; |
| |
| unsigned int cpu_list_generation_id_get(void) |
| { |
| return cpu_list_generation_id; |
| } |
| |
| void cpu_list_add(CPUState *cpu) |
| { |
| QEMU_LOCK_GUARD(&qemu_cpu_list_lock); |
| if (cpu->cpu_index == UNASSIGNED_CPU_INDEX) { |
| cpu->cpu_index = cpu_get_free_index(); |
| assert(cpu->cpu_index != UNASSIGNED_CPU_INDEX); |
| } else { |
| assert(!cpu_index_auto_assigned); |
| } |
| QTAILQ_INSERT_TAIL_RCU(&cpus_queue, cpu, node); |
| cpu_list_generation_id++; |
| } |
| |
| void cpu_list_remove(CPUState *cpu) |
| { |
| QEMU_LOCK_GUARD(&qemu_cpu_list_lock); |
| if (!QTAILQ_IN_USE(cpu, node)) { |
| /* there is nothing to undo since cpu_exec_init() hasn't been called */ |
| return; |
| } |
| |
| QTAILQ_REMOVE_RCU(&cpus_queue, cpu, node); |
| cpu->cpu_index = UNASSIGNED_CPU_INDEX; |
| cpu_list_generation_id++; |
| } |
| |
| CPUState *qemu_get_cpu(int index) |
| { |
| CPUState *cpu; |
| |
| CPU_FOREACH(cpu) { |
| if (cpu->cpu_index == index) { |
| return cpu; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| /* current CPU in the current thread. It is only valid inside cpu_exec() */ |
| __thread CPUState *current_cpu; |
| |
| struct qemu_work_item { |
| QSIMPLEQ_ENTRY(qemu_work_item) node; |
| run_on_cpu_func func; |
| run_on_cpu_data data; |
| bool free, exclusive, done; |
| }; |
| |
| static void queue_work_on_cpu(CPUState *cpu, struct qemu_work_item *wi) |
| { |
| qemu_mutex_lock(&cpu->work_mutex); |
| QSIMPLEQ_INSERT_TAIL(&cpu->work_list, wi, node); |
| wi->done = false; |
| qemu_mutex_unlock(&cpu->work_mutex); |
| |
| qemu_cpu_kick(cpu); |
| } |
| |
| void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, |
| QemuMutex *mutex) |
| { |
| struct qemu_work_item wi; |
| |
| if (qemu_cpu_is_self(cpu)) { |
| func(cpu, data); |
| return; |
| } |
| |
| wi.func = func; |
| wi.data = data; |
| wi.done = false; |
| wi.free = false; |
| wi.exclusive = false; |
| |
| queue_work_on_cpu(cpu, &wi); |
| while (!qatomic_load_acquire(&wi.done)) { |
| CPUState *self_cpu = current_cpu; |
| |
| qemu_cond_wait(&qemu_work_cond, mutex); |
| current_cpu = self_cpu; |
| } |
| } |
| |
| void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data) |
| { |
| struct qemu_work_item *wi; |
| |
| wi = g_new0(struct qemu_work_item, 1); |
| wi->func = func; |
| wi->data = data; |
| wi->free = true; |
| |
| queue_work_on_cpu(cpu, wi); |
| } |
| |
| /* Wait for pending exclusive operations to complete. The CPU list lock |
| must be held. */ |
| static inline void exclusive_idle(void) |
| { |
| while (pending_cpus) { |
| qemu_cond_wait(&exclusive_resume, &qemu_cpu_list_lock); |
| } |
| } |
| |
| /* Start an exclusive operation. |
| Must only be called from outside cpu_exec. */ |
| void start_exclusive(void) |
| { |
| CPUState *other_cpu; |
| int running_cpus; |
| |
| if (current_cpu->exclusive_context_count) { |
| current_cpu->exclusive_context_count++; |
| return; |
| } |
| |
| qemu_mutex_lock(&qemu_cpu_list_lock); |
| exclusive_idle(); |
| |
| /* Make all other cpus stop executing. */ |
| qatomic_set(&pending_cpus, 1); |
| |
| /* Write pending_cpus before reading other_cpu->running. */ |
| smp_mb(); |
| running_cpus = 0; |
| CPU_FOREACH(other_cpu) { |
| if (qatomic_read(&other_cpu->running)) { |
| other_cpu->has_waiter = true; |
| running_cpus++; |
| qemu_cpu_kick(other_cpu); |
| } |
| } |
| |
| qatomic_set(&pending_cpus, running_cpus + 1); |
| while (pending_cpus > 1) { |
| qemu_cond_wait(&exclusive_cond, &qemu_cpu_list_lock); |
| } |
| |
| /* Can release mutex, no one will enter another exclusive |
| * section until end_exclusive resets pending_cpus to 0. |
| */ |
| qemu_mutex_unlock(&qemu_cpu_list_lock); |
| |
| current_cpu->exclusive_context_count = 1; |
| } |
| |
| /* Finish an exclusive operation. */ |
| void end_exclusive(void) |
| { |
| current_cpu->exclusive_context_count--; |
| if (current_cpu->exclusive_context_count) { |
| return; |
| } |
| |
| qemu_mutex_lock(&qemu_cpu_list_lock); |
| qatomic_set(&pending_cpus, 0); |
| qemu_cond_broadcast(&exclusive_resume); |
| qemu_mutex_unlock(&qemu_cpu_list_lock); |
| } |
| |
| /* Wait for exclusive ops to finish, and begin cpu execution. */ |
| void cpu_exec_start(CPUState *cpu) |
| { |
| qatomic_set(&cpu->running, true); |
| |
| /* Write cpu->running before reading pending_cpus. */ |
| smp_mb(); |
| |
| /* 1. start_exclusive saw cpu->running == true and pending_cpus >= 1. |
| * After taking the lock we'll see cpu->has_waiter == true and run---not |
| * for long because start_exclusive kicked us. cpu_exec_end will |
| * decrement pending_cpus and signal the waiter. |
| * |
| * 2. start_exclusive saw cpu->running == false but pending_cpus >= 1. |
| * This includes the case when an exclusive item is running now. |
| * Then we'll see cpu->has_waiter == false and wait for the item to |
| * complete. |
| * |
| * 3. pending_cpus == 0. Then start_exclusive is definitely going to |
| * see cpu->running == true, and it will kick the CPU. |
| */ |
| if (unlikely(qatomic_read(&pending_cpus))) { |
| QEMU_LOCK_GUARD(&qemu_cpu_list_lock); |
| if (!cpu->has_waiter) { |
| /* Not counted in pending_cpus, let the exclusive item |
| * run. Since we have the lock, just set cpu->running to true |
| * while holding it; no need to check pending_cpus again. |
| */ |
| qatomic_set(&cpu->running, false); |
| exclusive_idle(); |
| /* Now pending_cpus is zero. */ |
| qatomic_set(&cpu->running, true); |
| } else { |
| /* Counted in pending_cpus, go ahead and release the |
| * waiter at cpu_exec_end. |
| */ |
| } |
| } |
| } |
| |
| /* Mark cpu as not executing, and release pending exclusive ops. */ |
| void cpu_exec_end(CPUState *cpu) |
| { |
| qatomic_set(&cpu->running, false); |
| |
| /* Write cpu->running before reading pending_cpus. */ |
| smp_mb(); |
| |
| /* 1. start_exclusive saw cpu->running == true. Then it will increment |
| * pending_cpus and wait for exclusive_cond. After taking the lock |
| * we'll see cpu->has_waiter == true. |
| * |
| * 2. start_exclusive saw cpu->running == false but here pending_cpus >= 1. |
| * This includes the case when an exclusive item started after setting |
| * cpu->running to false and before we read pending_cpus. Then we'll see |
| * cpu->has_waiter == false and not touch pending_cpus. The next call to |
| * cpu_exec_start will run exclusive_idle if still necessary, thus waiting |
| * for the item to complete. |
| * |
| * 3. pending_cpus == 0. Then start_exclusive is definitely going to |
| * see cpu->running == false, and it can ignore this CPU until the |
| * next cpu_exec_start. |
| */ |
| if (unlikely(qatomic_read(&pending_cpus))) { |
| QEMU_LOCK_GUARD(&qemu_cpu_list_lock); |
| if (cpu->has_waiter) { |
| cpu->has_waiter = false; |
| qatomic_set(&pending_cpus, pending_cpus - 1); |
| if (pending_cpus == 1) { |
| qemu_cond_signal(&exclusive_cond); |
| } |
| } |
| } |
| } |
| |
| void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, |
| run_on_cpu_data data) |
| { |
| struct qemu_work_item *wi; |
| |
| wi = g_new0(struct qemu_work_item, 1); |
| wi->func = func; |
| wi->data = data; |
| wi->free = true; |
| wi->exclusive = true; |
| |
| queue_work_on_cpu(cpu, wi); |
| } |
| |
| void free_queued_cpu_work(CPUState *cpu) |
| { |
| while (!QSIMPLEQ_EMPTY(&cpu->work_list)) { |
| struct qemu_work_item *wi = QSIMPLEQ_FIRST(&cpu->work_list); |
| QSIMPLEQ_REMOVE_HEAD(&cpu->work_list, node); |
| if (wi->free) { |
| g_free(wi); |
| } |
| } |
| } |
| |
| void process_queued_cpu_work(CPUState *cpu) |
| { |
| struct qemu_work_item *wi; |
| |
| qemu_mutex_lock(&cpu->work_mutex); |
| if (QSIMPLEQ_EMPTY(&cpu->work_list)) { |
| qemu_mutex_unlock(&cpu->work_mutex); |
| return; |
| } |
| while (!QSIMPLEQ_EMPTY(&cpu->work_list)) { |
| wi = QSIMPLEQ_FIRST(&cpu->work_list); |
| QSIMPLEQ_REMOVE_HEAD(&cpu->work_list, node); |
| qemu_mutex_unlock(&cpu->work_mutex); |
| if (wi->exclusive) { |
| /* Running work items outside the BQL avoids the following deadlock: |
| * 1) start_exclusive() is called with the BQL taken while another |
| * CPU is running; 2) cpu_exec in the other CPU tries to takes the |
| * BQL, so it goes to sleep; start_exclusive() is sleeping too, so |
| * neither CPU can proceed. |
| */ |
| bql_unlock(); |
| start_exclusive(); |
| wi->func(cpu, wi->data); |
| end_exclusive(); |
| bql_lock(); |
| } else { |
| wi->func(cpu, wi->data); |
| } |
| qemu_mutex_lock(&cpu->work_mutex); |
| if (wi->free) { |
| g_free(wi); |
| } else { |
| qatomic_store_release(&wi->done, true); |
| } |
| } |
| qemu_mutex_unlock(&cpu->work_mutex); |
| qemu_cond_broadcast(&qemu_work_cond); |
| } |
| |
| /* Add a breakpoint. */ |
| int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, |
| CPUBreakpoint **breakpoint) |
| { |
| CPUClass *cc = CPU_GET_CLASS(cpu); |
| CPUBreakpoint *bp; |
| |
| if (cc->gdb_adjust_breakpoint) { |
| pc = cc->gdb_adjust_breakpoint(cpu, pc); |
| } |
| |
| bp = g_malloc(sizeof(*bp)); |
| |
| bp->pc = pc; |
| bp->flags = flags; |
| |
| /* keep all GDB-injected breakpoints in front */ |
| if (flags & BP_GDB) { |
| QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); |
| } else { |
| QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); |
| } |
| |
| if (breakpoint) { |
| *breakpoint = bp; |
| } |
| |
| trace_breakpoint_insert(cpu->cpu_index, pc, flags); |
| return 0; |
| } |
| |
| /* Remove a specific breakpoint. */ |
| int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) |
| { |
| CPUClass *cc = CPU_GET_CLASS(cpu); |
| CPUBreakpoint *bp; |
| |
| if (cc->gdb_adjust_breakpoint) { |
| pc = cc->gdb_adjust_breakpoint(cpu, pc); |
| } |
| |
| QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { |
| if (bp->pc == pc && bp->flags == flags) { |
| cpu_breakpoint_remove_by_ref(cpu, bp); |
| return 0; |
| } |
| } |
| return -ENOENT; |
| } |
| |
| /* Remove a specific breakpoint by reference. */ |
| void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *bp) |
| { |
| QTAILQ_REMOVE(&cpu->breakpoints, bp, entry); |
| |
| trace_breakpoint_remove(cpu->cpu_index, bp->pc, bp->flags); |
| g_free(bp); |
| } |
| |
| /* Remove all matching breakpoints. */ |
| void cpu_breakpoint_remove_all(CPUState *cpu, int mask) |
| { |
| CPUBreakpoint *bp, *next; |
| |
| QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { |
| if (bp->flags & mask) { |
| cpu_breakpoint_remove_by_ref(cpu, bp); |
| } |
| } |
| } |