blob: 10766f210c1388dd9798dfb6432b053ff9ceb5c6 [file] [log] [blame]
/*
* ARM translation: AArch32 VFP instructions
*
* Copyright (c) 2003 Fabrice Bellard
* Copyright (c) 2005-2007 CodeSourcery
* Copyright (c) 2007 OpenedHand, Ltd.
* Copyright (c) 2019 Linaro, Ltd.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* This file is intended to be included from translate.c; it uses
* some macros and definitions provided by that file.
* It might be possible to convert it to a standalone .c file eventually.
*/
/* Include the generated VFP decoder */
#include "decode-vfp.c.inc"
#include "decode-vfp-uncond.c.inc"
/*
* The imm8 encodes the sign bit, enough bits to represent an exponent in
* the range 01....1xx to 10....0xx, and the most significant 4 bits of
* the mantissa; see VFPExpandImm() in the v8 ARM ARM.
*/
uint64_t vfp_expand_imm(int size, uint8_t imm8)
{
uint64_t imm;
switch (size) {
case MO_64:
imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
(extract32(imm8, 6, 1) ? 0x3fc0 : 0x4000) |
extract32(imm8, 0, 6);
imm <<= 48;
break;
case MO_32:
imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
(extract32(imm8, 6, 1) ? 0x3e00 : 0x4000) |
(extract32(imm8, 0, 6) << 3);
imm <<= 16;
break;
case MO_16:
imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
(extract32(imm8, 6, 1) ? 0x3000 : 0x4000) |
(extract32(imm8, 0, 6) << 6);
break;
default:
g_assert_not_reached();
}
return imm;
}
/*
* Return the offset of a 16-bit half of the specified VFP single-precision
* register. If top is true, returns the top 16 bits; otherwise the bottom
* 16 bits.
*/
static inline long vfp_f16_offset(unsigned reg, bool top)
{
long offs = vfp_reg_offset(false, reg);
#ifdef HOST_WORDS_BIGENDIAN
if (!top) {
offs += 2;
}
#else
if (top) {
offs += 2;
}
#endif
return offs;
}
/*
* Generate code for M-profile lazy FP state preservation if needed;
* this corresponds to the pseudocode PreserveFPState() function.
*/
static void gen_preserve_fp_state(DisasContext *s)
{
if (s->v7m_lspact) {
/*
* Lazy state saving affects external memory and also the NVIC,
* so we must mark it as an IO operation for icount (and cause
* this to be the last insn in the TB).
*/
if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
s->base.is_jmp = DISAS_UPDATE_EXIT;
gen_io_start();
}
gen_helper_v7m_preserve_fp_state(cpu_env);
/*
* If the preserve_fp_state helper doesn't throw an exception
* then it will clear LSPACT; we don't need to repeat this for
* any further FP insns in this TB.
*/
s->v7m_lspact = false;
}
}
/*
* Check that VFP access is enabled. If it is, do the necessary
* M-profile lazy-FP handling and then return true.
* If not, emit code to generate an appropriate exception and
* return false.
* The ignore_vfp_enabled argument specifies that we should ignore
* whether VFP is enabled via FPEXC[EN]: this should be true for FMXR/FMRX
* accesses to FPSID, FPEXC, MVFR0, MVFR1, MVFR2, and false for all other insns.
*/
static bool full_vfp_access_check(DisasContext *s, bool ignore_vfp_enabled)
{
if (s->fp_excp_el) {
/* M-profile handled this earlier, in disas_m_nocp() */
assert (!arm_dc_feature(s, ARM_FEATURE_M));
gen_exception_insn(s, s->pc_curr, EXCP_UDEF,
syn_fp_access_trap(1, 0xe, false),
s->fp_excp_el);
return false;
}
if (!s->vfp_enabled && !ignore_vfp_enabled) {
assert(!arm_dc_feature(s, ARM_FEATURE_M));
unallocated_encoding(s);
return false;
}
if (arm_dc_feature(s, ARM_FEATURE_M)) {
/* Handle M-profile lazy FP state mechanics */
/* Trigger lazy-state preservation if necessary */
gen_preserve_fp_state(s);
/* Update ownership of FP context: set FPCCR.S to match current state */
if (s->v8m_fpccr_s_wrong) {
TCGv_i32 tmp;
tmp = load_cpu_field(v7m.fpccr[M_REG_S]);
if (s->v8m_secure) {
tcg_gen_ori_i32(tmp, tmp, R_V7M_FPCCR_S_MASK);
} else {
tcg_gen_andi_i32(tmp, tmp, ~R_V7M_FPCCR_S_MASK);
}
store_cpu_field(tmp, v7m.fpccr[M_REG_S]);
/* Don't need to do this for any further FP insns in this TB */
s->v8m_fpccr_s_wrong = false;
}
if (s->v7m_new_fp_ctxt_needed) {
/*
* Create new FP context by updating CONTROL.FPCA, CONTROL.SFPA
* and the FPSCR.
*/
TCGv_i32 control, fpscr;
uint32_t bits = R_V7M_CONTROL_FPCA_MASK;
fpscr = load_cpu_field(v7m.fpdscr[s->v8m_secure]);
gen_helper_vfp_set_fpscr(cpu_env, fpscr);
tcg_temp_free_i32(fpscr);
/*
* We don't need to arrange to end the TB, because the only
* parts of FPSCR which we cache in the TB flags are the VECLEN
* and VECSTRIDE, and those don't exist for M-profile.
*/
if (s->v8m_secure) {
bits |= R_V7M_CONTROL_SFPA_MASK;
}
control = load_cpu_field(v7m.control[M_REG_S]);
tcg_gen_ori_i32(control, control, bits);
store_cpu_field(control, v7m.control[M_REG_S]);
/* Don't need to do this for any further FP insns in this TB */
s->v7m_new_fp_ctxt_needed = false;
}
}
return true;
}
/*
* The most usual kind of VFP access check, for everything except
* FMXR/FMRX to the always-available special registers.
*/
static bool vfp_access_check(DisasContext *s)
{
return full_vfp_access_check(s, false);
}
static bool trans_VSEL(DisasContext *s, arg_VSEL *a)
{
uint32_t rd, rn, rm;
int sz = a->sz;
if (!dc_isar_feature(aa32_vsel, s)) {
return false;
}
if (sz == 3 && !dc_isar_feature(aa32_fpdp_v2, s)) {
return false;
}
if (sz == 1 && !dc_isar_feature(aa32_fp16_arith, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist */
if (sz == 3 && !dc_isar_feature(aa32_simd_r32, s) &&
((a->vm | a->vn | a->vd) & 0x10)) {
return false;
}
rd = a->vd;
rn = a->vn;
rm = a->vm;
if (!vfp_access_check(s)) {
return true;
}
if (sz == 3) {
TCGv_i64 frn, frm, dest;
TCGv_i64 tmp, zero, zf, nf, vf;
zero = tcg_const_i64(0);
frn = tcg_temp_new_i64();
frm = tcg_temp_new_i64();
dest = tcg_temp_new_i64();
zf = tcg_temp_new_i64();
nf = tcg_temp_new_i64();
vf = tcg_temp_new_i64();
tcg_gen_extu_i32_i64(zf, cpu_ZF);
tcg_gen_ext_i32_i64(nf, cpu_NF);
tcg_gen_ext_i32_i64(vf, cpu_VF);
vfp_load_reg64(frn, rn);
vfp_load_reg64(frm, rm);
switch (a->cc) {
case 0: /* eq: Z */
tcg_gen_movcond_i64(TCG_COND_EQ, dest, zf, zero,
frn, frm);
break;
case 1: /* vs: V */
tcg_gen_movcond_i64(TCG_COND_LT, dest, vf, zero,
frn, frm);
break;
case 2: /* ge: N == V -> N ^ V == 0 */
tmp = tcg_temp_new_i64();
tcg_gen_xor_i64(tmp, vf, nf);
tcg_gen_movcond_i64(TCG_COND_GE, dest, tmp, zero,
frn, frm);
tcg_temp_free_i64(tmp);
break;
case 3: /* gt: !Z && N == V */
tcg_gen_movcond_i64(TCG_COND_NE, dest, zf, zero,
frn, frm);
tmp = tcg_temp_new_i64();
tcg_gen_xor_i64(tmp, vf, nf);
tcg_gen_movcond_i64(TCG_COND_GE, dest, tmp, zero,
dest, frm);
tcg_temp_free_i64(tmp);
break;
}
vfp_store_reg64(dest, rd);
tcg_temp_free_i64(frn);
tcg_temp_free_i64(frm);
tcg_temp_free_i64(dest);
tcg_temp_free_i64(zf);
tcg_temp_free_i64(nf);
tcg_temp_free_i64(vf);
tcg_temp_free_i64(zero);
} else {
TCGv_i32 frn, frm, dest;
TCGv_i32 tmp, zero;
zero = tcg_const_i32(0);
frn = tcg_temp_new_i32();
frm = tcg_temp_new_i32();
dest = tcg_temp_new_i32();
vfp_load_reg32(frn, rn);
vfp_load_reg32(frm, rm);
switch (a->cc) {
case 0: /* eq: Z */
tcg_gen_movcond_i32(TCG_COND_EQ, dest, cpu_ZF, zero,
frn, frm);
break;
case 1: /* vs: V */
tcg_gen_movcond_i32(TCG_COND_LT, dest, cpu_VF, zero,
frn, frm);
break;
case 2: /* ge: N == V -> N ^ V == 0 */
tmp = tcg_temp_new_i32();
tcg_gen_xor_i32(tmp, cpu_VF, cpu_NF);
tcg_gen_movcond_i32(TCG_COND_GE, dest, tmp, zero,
frn, frm);
tcg_temp_free_i32(tmp);
break;
case 3: /* gt: !Z && N == V */
tcg_gen_movcond_i32(TCG_COND_NE, dest, cpu_ZF, zero,
frn, frm);
tmp = tcg_temp_new_i32();
tcg_gen_xor_i32(tmp, cpu_VF, cpu_NF);
tcg_gen_movcond_i32(TCG_COND_GE, dest, tmp, zero,
dest, frm);
tcg_temp_free_i32(tmp);
break;
}
/* For fp16 the top half is always zeroes */
if (sz == 1) {
tcg_gen_andi_i32(dest, dest, 0xffff);
}
vfp_store_reg32(dest, rd);
tcg_temp_free_i32(frn);
tcg_temp_free_i32(frm);
tcg_temp_free_i32(dest);
tcg_temp_free_i32(zero);
}
return true;
}
/*
* Table for converting the most common AArch32 encoding of
* rounding mode to arm_fprounding order (which matches the
* common AArch64 order); see ARM ARM pseudocode FPDecodeRM().
*/
static const uint8_t fp_decode_rm[] = {
FPROUNDING_TIEAWAY,
FPROUNDING_TIEEVEN,
FPROUNDING_POSINF,
FPROUNDING_NEGINF,
};
static bool trans_VRINT(DisasContext *s, arg_VRINT *a)
{
uint32_t rd, rm;
int sz = a->sz;
TCGv_ptr fpst;
TCGv_i32 tcg_rmode;
int rounding = fp_decode_rm[a->rm];
if (!dc_isar_feature(aa32_vrint, s)) {
return false;
}
if (sz == 3 && !dc_isar_feature(aa32_fpdp_v2, s)) {
return false;
}
if (sz == 1 && !dc_isar_feature(aa32_fp16_arith, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist */
if (sz == 3 && !dc_isar_feature(aa32_simd_r32, s) &&
((a->vm | a->vd) & 0x10)) {
return false;
}
rd = a->vd;
rm = a->vm;
if (!vfp_access_check(s)) {
return true;
}
if (sz == 1) {
fpst = fpstatus_ptr(FPST_FPCR_F16);
} else {
fpst = fpstatus_ptr(FPST_FPCR);
}
tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rounding));
gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
if (sz == 3) {
TCGv_i64 tcg_op;
TCGv_i64 tcg_res;
tcg_op = tcg_temp_new_i64();
tcg_res = tcg_temp_new_i64();
vfp_load_reg64(tcg_op, rm);
gen_helper_rintd(tcg_res, tcg_op, fpst);
vfp_store_reg64(tcg_res, rd);
tcg_temp_free_i64(tcg_op);
tcg_temp_free_i64(tcg_res);
} else {
TCGv_i32 tcg_op;
TCGv_i32 tcg_res;
tcg_op = tcg_temp_new_i32();
tcg_res = tcg_temp_new_i32();
vfp_load_reg32(tcg_op, rm);
if (sz == 1) {
gen_helper_rinth(tcg_res, tcg_op, fpst);
} else {
gen_helper_rints(tcg_res, tcg_op, fpst);
}
vfp_store_reg32(tcg_res, rd);
tcg_temp_free_i32(tcg_op);
tcg_temp_free_i32(tcg_res);
}
gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
tcg_temp_free_i32(tcg_rmode);
tcg_temp_free_ptr(fpst);
return true;
}
static bool trans_VCVT(DisasContext *s, arg_VCVT *a)
{
uint32_t rd, rm;
int sz = a->sz;
TCGv_ptr fpst;
TCGv_i32 tcg_rmode, tcg_shift;
int rounding = fp_decode_rm[a->rm];
bool is_signed = a->op;
if (!dc_isar_feature(aa32_vcvt_dr, s)) {
return false;
}
if (sz == 3 && !dc_isar_feature(aa32_fpdp_v2, s)) {
return false;
}
if (sz == 1 && !dc_isar_feature(aa32_fp16_arith, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist */
if (sz == 3 && !dc_isar_feature(aa32_simd_r32, s) && (a->vm & 0x10)) {
return false;
}
rd = a->vd;
rm = a->vm;
if (!vfp_access_check(s)) {
return true;
}
if (sz == 1) {
fpst = fpstatus_ptr(FPST_FPCR_F16);
} else {
fpst = fpstatus_ptr(FPST_FPCR);
}
tcg_shift = tcg_const_i32(0);
tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rounding));
gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
if (sz == 3) {
TCGv_i64 tcg_double, tcg_res;
TCGv_i32 tcg_tmp;
tcg_double = tcg_temp_new_i64();
tcg_res = tcg_temp_new_i64();
tcg_tmp = tcg_temp_new_i32();
vfp_load_reg64(tcg_double, rm);
if (is_signed) {
gen_helper_vfp_tosld(tcg_res, tcg_double, tcg_shift, fpst);
} else {
gen_helper_vfp_tould(tcg_res, tcg_double, tcg_shift, fpst);
}
tcg_gen_extrl_i64_i32(tcg_tmp, tcg_res);
vfp_store_reg32(tcg_tmp, rd);
tcg_temp_free_i32(tcg_tmp);
tcg_temp_free_i64(tcg_res);
tcg_temp_free_i64(tcg_double);
} else {
TCGv_i32 tcg_single, tcg_res;
tcg_single = tcg_temp_new_i32();
tcg_res = tcg_temp_new_i32();
vfp_load_reg32(tcg_single, rm);
if (sz == 1) {
if (is_signed) {
gen_helper_vfp_toslh(tcg_res, tcg_single, tcg_shift, fpst);
} else {
gen_helper_vfp_toulh(tcg_res, tcg_single, tcg_shift, fpst);
}
} else {
if (is_signed) {
gen_helper_vfp_tosls(tcg_res, tcg_single, tcg_shift, fpst);
} else {
gen_helper_vfp_touls(tcg_res, tcg_single, tcg_shift, fpst);
}
}
vfp_store_reg32(tcg_res, rd);
tcg_temp_free_i32(tcg_res);
tcg_temp_free_i32(tcg_single);
}
gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
tcg_temp_free_i32(tcg_rmode);
tcg_temp_free_i32(tcg_shift);
tcg_temp_free_ptr(fpst);
return true;
}
static bool trans_VMOV_to_gp(DisasContext *s, arg_VMOV_to_gp *a)
{
/* VMOV scalar to general purpose register */
TCGv_i32 tmp;
/* SIZE == MO_32 is a VFP instruction; otherwise NEON. */
if (a->size == MO_32
? !dc_isar_feature(aa32_fpsp_v2, s)
: !arm_dc_feature(s, ARM_FEATURE_NEON)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist */
if (!dc_isar_feature(aa32_simd_r32, s) && (a->vn & 0x10)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
tmp = tcg_temp_new_i32();
read_neon_element32(tmp, a->vn, a->index, a->size | (a->u ? 0 : MO_SIGN));
store_reg(s, a->rt, tmp);
return true;
}
static bool trans_VMOV_from_gp(DisasContext *s, arg_VMOV_from_gp *a)
{
/* VMOV general purpose register to scalar */
TCGv_i32 tmp;
/* SIZE == MO_32 is a VFP instruction; otherwise NEON. */
if (a->size == MO_32
? !dc_isar_feature(aa32_fpsp_v2, s)
: !arm_dc_feature(s, ARM_FEATURE_NEON)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist */
if (!dc_isar_feature(aa32_simd_r32, s) && (a->vn & 0x10)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
tmp = load_reg(s, a->rt);
write_neon_element32(tmp, a->vn, a->index, a->size);
tcg_temp_free_i32(tmp);
return true;
}
static bool trans_VDUP(DisasContext *s, arg_VDUP *a)
{
/* VDUP (general purpose register) */
TCGv_i32 tmp;
int size, vec_size;
if (!arm_dc_feature(s, ARM_FEATURE_NEON)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist */
if (!dc_isar_feature(aa32_simd_r32, s) && (a->vn & 0x10)) {
return false;
}
if (a->b && a->e) {
return false;
}
if (a->q && (a->vn & 1)) {
return false;
}
vec_size = a->q ? 16 : 8;
if (a->b) {
size = 0;
} else if (a->e) {
size = 1;
} else {
size = 2;
}
if (!vfp_access_check(s)) {
return true;
}
tmp = load_reg(s, a->rt);
tcg_gen_gvec_dup_i32(size, neon_full_reg_offset(a->vn),
vec_size, vec_size, tmp);
tcg_temp_free_i32(tmp);
return true;
}
/*
* M-profile provides two different sets of instructions that can
* access floating point system registers: VMSR/VMRS (which move
* to/from a general purpose register) and VLDR/VSTR sysreg (which
* move directly to/from memory). In some cases there are also side
* effects which must happen after any write to memory (which could
* cause an exception). So we implement the common logic for the
* sysreg access in gen_M_fp_sysreg_write() and gen_M_fp_sysreg_read(),
* which take pointers to callback functions which will perform the
* actual "read/write general purpose register" and "read/write
* memory" operations.
*/
/*
* Emit code to store the sysreg to its final destination; frees the
* TCG temp 'value' it is passed.
*/
typedef void fp_sysreg_storefn(DisasContext *s, void *opaque, TCGv_i32 value);
/*
* Emit code to load the value to be copied to the sysreg; returns
* a new TCG temporary
*/
typedef TCGv_i32 fp_sysreg_loadfn(DisasContext *s, void *opaque);
/* Common decode/access checks for fp sysreg read/write */
typedef enum FPSysRegCheckResult {
FPSysRegCheckFailed, /* caller should return false */
FPSysRegCheckDone, /* caller should return true */
FPSysRegCheckContinue, /* caller should continue generating code */
} FPSysRegCheckResult;
static FPSysRegCheckResult fp_sysreg_checks(DisasContext *s, int regno)
{
if (!dc_isar_feature(aa32_fpsp_v2, s)) {
return FPSysRegCheckFailed;
}
switch (regno) {
case ARM_VFP_FPSCR:
case QEMU_VFP_FPSCR_NZCV:
break;
case ARM_VFP_FPSCR_NZCVQC:
if (!arm_dc_feature(s, ARM_FEATURE_V8_1M)) {
return false;
}
break;
case ARM_VFP_FPCXT_S:
case ARM_VFP_FPCXT_NS:
if (!arm_dc_feature(s, ARM_FEATURE_V8_1M)) {
return false;
}
if (!s->v8m_secure) {
return false;
}
break;
default:
return FPSysRegCheckFailed;
}
/*
* FPCXT_NS is a special case: it has specific handling for
* "current FP state is inactive", and must do the PreserveFPState()
* but not the usual full set of actions done by ExecuteFPCheck().
* So we don't call vfp_access_check() and the callers must handle this.
*/
if (regno != ARM_VFP_FPCXT_NS && !vfp_access_check(s)) {
return FPSysRegCheckDone;
}
return FPSysRegCheckContinue;
}
static void gen_branch_fpInactive(DisasContext *s, TCGCond cond,
TCGLabel *label)
{
/*
* FPCXT_NS is a special case: it has specific handling for
* "current FP state is inactive", and must do the PreserveFPState()
* but not the usual full set of actions done by ExecuteFPCheck().
* We don't have a TB flag that matches the fpInactive check, so we
* do it at runtime as we don't expect FPCXT_NS accesses to be frequent.
*
* Emit code that checks fpInactive and does a conditional
* branch to label based on it:
* if cond is TCG_COND_NE then branch if fpInactive != 0 (ie if inactive)
* if cond is TCG_COND_EQ then branch if fpInactive == 0 (ie if active)
*/
assert(cond == TCG_COND_EQ || cond == TCG_COND_NE);
/* fpInactive = FPCCR_NS.ASPEN == 1 && CONTROL.FPCA == 0 */
TCGv_i32 aspen, fpca;
aspen = load_cpu_field(v7m.fpccr[M_REG_NS]);
fpca = load_cpu_field(v7m.control[M_REG_S]);
tcg_gen_andi_i32(aspen, aspen, R_V7M_FPCCR_ASPEN_MASK);
tcg_gen_xori_i32(aspen, aspen, R_V7M_FPCCR_ASPEN_MASK);
tcg_gen_andi_i32(fpca, fpca, R_V7M_CONTROL_FPCA_MASK);
tcg_gen_or_i32(fpca, fpca, aspen);
tcg_gen_brcondi_i32(tcg_invert_cond(cond), fpca, 0, label);
tcg_temp_free_i32(aspen);
tcg_temp_free_i32(fpca);
}
static bool gen_M_fp_sysreg_write(DisasContext *s, int regno,
fp_sysreg_loadfn *loadfn,
void *opaque)
{
/* Do a write to an M-profile floating point system register */
TCGv_i32 tmp;
TCGLabel *lab_end = NULL;
switch (fp_sysreg_checks(s, regno)) {
case FPSysRegCheckFailed:
return false;
case FPSysRegCheckDone:
return true;
case FPSysRegCheckContinue:
break;
}
switch (regno) {
case ARM_VFP_FPSCR:
tmp = loadfn(s, opaque);
gen_helper_vfp_set_fpscr(cpu_env, tmp);
tcg_temp_free_i32(tmp);
gen_lookup_tb(s);
break;
case ARM_VFP_FPSCR_NZCVQC:
{
TCGv_i32 fpscr;
tmp = loadfn(s, opaque);
/*
* TODO: when we implement MVE, write the QC bit.
* For non-MVE, QC is RES0.
*/
tcg_gen_andi_i32(tmp, tmp, FPCR_NZCV_MASK);
fpscr = load_cpu_field(vfp.xregs[ARM_VFP_FPSCR]);
tcg_gen_andi_i32(fpscr, fpscr, ~FPCR_NZCV_MASK);
tcg_gen_or_i32(fpscr, fpscr, tmp);
store_cpu_field(fpscr, vfp.xregs[ARM_VFP_FPSCR]);
tcg_temp_free_i32(tmp);
break;
}
case ARM_VFP_FPCXT_NS:
lab_end = gen_new_label();
/* fpInactive case: write is a NOP, so branch to end */
gen_branch_fpInactive(s, TCG_COND_NE, lab_end);
/* !fpInactive: PreserveFPState(), and reads same as FPCXT_S */
gen_preserve_fp_state(s);
/* fall through */
case ARM_VFP_FPCXT_S:
{
TCGv_i32 sfpa, control;
/*
* Set FPSCR and CONTROL.SFPA from value; the new FPSCR takes
* bits [27:0] from value and zeroes bits [31:28].
*/
tmp = loadfn(s, opaque);
sfpa = tcg_temp_new_i32();
tcg_gen_shri_i32(sfpa, tmp, 31);
control = load_cpu_field(v7m.control[M_REG_S]);
tcg_gen_deposit_i32(control, control, sfpa,
R_V7M_CONTROL_SFPA_SHIFT, 1);
store_cpu_field(control, v7m.control[M_REG_S]);
tcg_gen_andi_i32(tmp, tmp, ~FPCR_NZCV_MASK);
gen_helper_vfp_set_fpscr(cpu_env, tmp);
tcg_temp_free_i32(tmp);
tcg_temp_free_i32(sfpa);
break;
}
default:
g_assert_not_reached();
}
if (lab_end) {
gen_set_label(lab_end);
}
return true;
}
static bool gen_M_fp_sysreg_read(DisasContext *s, int regno,
fp_sysreg_storefn *storefn,
void *opaque)
{
/* Do a read from an M-profile floating point system register */
TCGv_i32 tmp;
TCGLabel *lab_end = NULL;
bool lookup_tb = false;
switch (fp_sysreg_checks(s, regno)) {
case FPSysRegCheckFailed:
return false;
case FPSysRegCheckDone:
return true;
case FPSysRegCheckContinue:
break;
}
switch (regno) {
case ARM_VFP_FPSCR:
tmp = tcg_temp_new_i32();
gen_helper_vfp_get_fpscr(tmp, cpu_env);
storefn(s, opaque, tmp);
break;
case ARM_VFP_FPSCR_NZCVQC:
/*
* TODO: MVE has a QC bit, which we probably won't store
* in the xregs[] field. For non-MVE, where QC is RES0,
* we can just fall through to the FPSCR_NZCV case.
*/
case QEMU_VFP_FPSCR_NZCV:
/*
* Read just NZCV; this is a special case to avoid the
* helper call for the "VMRS to CPSR.NZCV" insn.
*/
tmp = load_cpu_field(vfp.xregs[ARM_VFP_FPSCR]);
tcg_gen_andi_i32(tmp, tmp, FPCR_NZCV_MASK);
storefn(s, opaque, tmp);
break;
case ARM_VFP_FPCXT_S:
{
TCGv_i32 control, sfpa, fpscr;
/* Bits [27:0] from FPSCR, bit [31] from CONTROL.SFPA */
tmp = tcg_temp_new_i32();
sfpa = tcg_temp_new_i32();
gen_helper_vfp_get_fpscr(tmp, cpu_env);
tcg_gen_andi_i32(tmp, tmp, ~FPCR_NZCV_MASK);
control = load_cpu_field(v7m.control[M_REG_S]);
tcg_gen_andi_i32(sfpa, control, R_V7M_CONTROL_SFPA_MASK);
tcg_gen_shli_i32(sfpa, sfpa, 31 - R_V7M_CONTROL_SFPA_SHIFT);
tcg_gen_or_i32(tmp, tmp, sfpa);
tcg_temp_free_i32(sfpa);
/*
* Store result before updating FPSCR etc, in case
* it is a memory write which causes an exception.
*/
storefn(s, opaque, tmp);
/*
* Now we must reset FPSCR from FPDSCR_NS, and clear
* CONTROL.SFPA; so we'll end the TB here.
*/
tcg_gen_andi_i32(control, control, ~R_V7M_CONTROL_SFPA_MASK);
store_cpu_field(control, v7m.control[M_REG_S]);
fpscr = load_cpu_field(v7m.fpdscr[M_REG_NS]);
gen_helper_vfp_set_fpscr(cpu_env, fpscr);
tcg_temp_free_i32(fpscr);
lookup_tb = true;
break;
}
case ARM_VFP_FPCXT_NS:
{
TCGv_i32 control, sfpa, fpscr, fpdscr, zero;
TCGLabel *lab_active = gen_new_label();
lookup_tb = true;
gen_branch_fpInactive(s, TCG_COND_EQ, lab_active);
/* fpInactive case: reads as FPDSCR_NS */
TCGv_i32 tmp = load_cpu_field(v7m.fpdscr[M_REG_NS]);
storefn(s, opaque, tmp);
lab_end = gen_new_label();
tcg_gen_br(lab_end);
gen_set_label(lab_active);
/* !fpInactive: Reads the same as FPCXT_S, but side effects differ */
gen_preserve_fp_state(s);
tmp = tcg_temp_new_i32();
sfpa = tcg_temp_new_i32();
fpscr = tcg_temp_new_i32();
gen_helper_vfp_get_fpscr(fpscr, cpu_env);
tcg_gen_andi_i32(tmp, fpscr, ~FPCR_NZCV_MASK);
control = load_cpu_field(v7m.control[M_REG_S]);
tcg_gen_andi_i32(sfpa, control, R_V7M_CONTROL_SFPA_MASK);
tcg_gen_shli_i32(sfpa, sfpa, 31 - R_V7M_CONTROL_SFPA_SHIFT);
tcg_gen_or_i32(tmp, tmp, sfpa);
tcg_temp_free_i32(control);
/* Store result before updating FPSCR, in case it faults */
storefn(s, opaque, tmp);
/* If SFPA is zero then set FPSCR from FPDSCR_NS */
fpdscr = load_cpu_field(v7m.fpdscr[M_REG_NS]);
zero = tcg_const_i32(0);
tcg_gen_movcond_i32(TCG_COND_EQ, fpscr, sfpa, zero, fpdscr, fpscr);
gen_helper_vfp_set_fpscr(cpu_env, fpscr);
tcg_temp_free_i32(zero);
tcg_temp_free_i32(sfpa);
tcg_temp_free_i32(fpdscr);
tcg_temp_free_i32(fpscr);
break;
}
default:
g_assert_not_reached();
}
if (lab_end) {
gen_set_label(lab_end);
}
if (lookup_tb) {
gen_lookup_tb(s);
}
return true;
}
static void fp_sysreg_to_gpr(DisasContext *s, void *opaque, TCGv_i32 value)
{
arg_VMSR_VMRS *a = opaque;
if (a->rt == 15) {
/* Set the 4 flag bits in the CPSR */
gen_set_nzcv(value);
tcg_temp_free_i32(value);
} else {
store_reg(s, a->rt, value);
}
}
static TCGv_i32 gpr_to_fp_sysreg(DisasContext *s, void *opaque)
{
arg_VMSR_VMRS *a = opaque;
return load_reg(s, a->rt);
}
static bool gen_M_VMSR_VMRS(DisasContext *s, arg_VMSR_VMRS *a)
{
/*
* Accesses to R15 are UNPREDICTABLE; we choose to undef.
* FPSCR -> r15 is a special case which writes to the PSR flags;
* set a->reg to a special value to tell gen_M_fp_sysreg_read()
* we only care about the top 4 bits of FPSCR there.
*/
if (a->rt == 15) {
if (a->l && a->reg == ARM_VFP_FPSCR) {
a->reg = QEMU_VFP_FPSCR_NZCV;
} else {
return false;
}
}
if (a->l) {
/* VMRS, move FP system register to gp register */
return gen_M_fp_sysreg_read(s, a->reg, fp_sysreg_to_gpr, a);
} else {
/* VMSR, move gp register to FP system register */
return gen_M_fp_sysreg_write(s, a->reg, gpr_to_fp_sysreg, a);
}
}
static bool trans_VMSR_VMRS(DisasContext *s, arg_VMSR_VMRS *a)
{
TCGv_i32 tmp;
bool ignore_vfp_enabled = false;
if (arm_dc_feature(s, ARM_FEATURE_M)) {
return gen_M_VMSR_VMRS(s, a);
}
if (!dc_isar_feature(aa32_fpsp_v2, s)) {
return false;
}
switch (a->reg) {
case ARM_VFP_FPSID:
/*
* VFPv2 allows access to FPSID from userspace; VFPv3 restricts
* all ID registers to privileged access only.
*/
if (IS_USER(s) && dc_isar_feature(aa32_fpsp_v3, s)) {
return false;
}
ignore_vfp_enabled = true;
break;
case ARM_VFP_MVFR0:
case ARM_VFP_MVFR1:
if (IS_USER(s) || !arm_dc_feature(s, ARM_FEATURE_MVFR)) {
return false;
}
ignore_vfp_enabled = true;
break;
case ARM_VFP_MVFR2:
if (IS_USER(s) || !arm_dc_feature(s, ARM_FEATURE_V8)) {
return false;
}
ignore_vfp_enabled = true;
break;
case ARM_VFP_FPSCR:
break;
case ARM_VFP_FPEXC:
if (IS_USER(s)) {
return false;
}
ignore_vfp_enabled = true;
break;
case ARM_VFP_FPINST:
case ARM_VFP_FPINST2:
/* Not present in VFPv3 */
if (IS_USER(s) || dc_isar_feature(aa32_fpsp_v3, s)) {
return false;
}
break;
default:
return false;
}
if (!full_vfp_access_check(s, ignore_vfp_enabled)) {
return true;
}
if (a->l) {
/* VMRS, move VFP special register to gp register */
switch (a->reg) {
case ARM_VFP_MVFR0:
case ARM_VFP_MVFR1:
case ARM_VFP_MVFR2:
case ARM_VFP_FPSID:
if (s->current_el == 1) {
TCGv_i32 tcg_reg, tcg_rt;
gen_set_condexec(s);
gen_set_pc_im(s, s->pc_curr);
tcg_reg = tcg_const_i32(a->reg);
tcg_rt = tcg_const_i32(a->rt);
gen_helper_check_hcr_el2_trap(cpu_env, tcg_rt, tcg_reg);
tcg_temp_free_i32(tcg_reg);
tcg_temp_free_i32(tcg_rt);
}
/* fall through */
case ARM_VFP_FPEXC:
case ARM_VFP_FPINST:
case ARM_VFP_FPINST2:
tmp = load_cpu_field(vfp.xregs[a->reg]);
break;
case ARM_VFP_FPSCR:
if (a->rt == 15) {
tmp = load_cpu_field(vfp.xregs[ARM_VFP_FPSCR]);
tcg_gen_andi_i32(tmp, tmp, FPCR_NZCV_MASK);
} else {
tmp = tcg_temp_new_i32();
gen_helper_vfp_get_fpscr(tmp, cpu_env);
}
break;
default:
g_assert_not_reached();
}
if (a->rt == 15) {
/* Set the 4 flag bits in the CPSR. */
gen_set_nzcv(tmp);
tcg_temp_free_i32(tmp);
} else {
store_reg(s, a->rt, tmp);
}
} else {
/* VMSR, move gp register to VFP special register */
switch (a->reg) {
case ARM_VFP_FPSID:
case ARM_VFP_MVFR0:
case ARM_VFP_MVFR1:
case ARM_VFP_MVFR2:
/* Writes are ignored. */
break;
case ARM_VFP_FPSCR:
tmp = load_reg(s, a->rt);
gen_helper_vfp_set_fpscr(cpu_env, tmp);
tcg_temp_free_i32(tmp);
gen_lookup_tb(s);
break;
case ARM_VFP_FPEXC:
/*
* TODO: VFP subarchitecture support.
* For now, keep the EN bit only
*/
tmp = load_reg(s, a->rt);
tcg_gen_andi_i32(tmp, tmp, 1 << 30);
store_cpu_field(tmp, vfp.xregs[a->reg]);
gen_lookup_tb(s);
break;
case ARM_VFP_FPINST:
case ARM_VFP_FPINST2:
tmp = load_reg(s, a->rt);
store_cpu_field(tmp, vfp.xregs[a->reg]);
break;
default:
g_assert_not_reached();
}
}
return true;
}
static void fp_sysreg_to_memory(DisasContext *s, void *opaque, TCGv_i32 value)
{
arg_vldr_sysreg *a = opaque;
uint32_t offset = a->imm;
TCGv_i32 addr;
if (!a->a) {
offset = - offset;
}
addr = load_reg(s, a->rn);
if (a->p) {
tcg_gen_addi_i32(addr, addr, offset);
}
if (s->v8m_stackcheck && a->rn == 13 && a->w) {
gen_helper_v8m_stackcheck(cpu_env, addr);
}
gen_aa32_st_i32(s, value, addr, get_mem_index(s),
MO_UL | MO_ALIGN | s->be_data);
tcg_temp_free_i32(value);
if (a->w) {
/* writeback */
if (!a->p) {
tcg_gen_addi_i32(addr, addr, offset);
}
store_reg(s, a->rn, addr);
} else {
tcg_temp_free_i32(addr);
}
}
static TCGv_i32 memory_to_fp_sysreg(DisasContext *s, void *opaque)
{
arg_vldr_sysreg *a = opaque;
uint32_t offset = a->imm;
TCGv_i32 addr;
TCGv_i32 value = tcg_temp_new_i32();
if (!a->a) {
offset = - offset;
}
addr = load_reg(s, a->rn);
if (a->p) {
tcg_gen_addi_i32(addr, addr, offset);
}
if (s->v8m_stackcheck && a->rn == 13 && a->w) {
gen_helper_v8m_stackcheck(cpu_env, addr);
}
gen_aa32_ld_i32(s, value, addr, get_mem_index(s),
MO_UL | MO_ALIGN | s->be_data);
if (a->w) {
/* writeback */
if (!a->p) {
tcg_gen_addi_i32(addr, addr, offset);
}
store_reg(s, a->rn, addr);
} else {
tcg_temp_free_i32(addr);
}
return value;
}
static bool trans_VLDR_sysreg(DisasContext *s, arg_vldr_sysreg *a)
{
if (!arm_dc_feature(s, ARM_FEATURE_V8_1M)) {
return false;
}
if (a->rn == 15) {
return false;
}
return gen_M_fp_sysreg_write(s, a->reg, memory_to_fp_sysreg, a);
}
static bool trans_VSTR_sysreg(DisasContext *s, arg_vldr_sysreg *a)
{
if (!arm_dc_feature(s, ARM_FEATURE_V8_1M)) {
return false;
}
if (a->rn == 15) {
return false;
}
return gen_M_fp_sysreg_read(s, a->reg, fp_sysreg_to_memory, a);
}
static bool trans_VMOV_half(DisasContext *s, arg_VMOV_single *a)
{
TCGv_i32 tmp;
if (!dc_isar_feature(aa32_fp16_arith, s)) {
return false;
}
if (a->rt == 15) {
/* UNPREDICTABLE; we choose to UNDEF */
return false;
}
if (!vfp_access_check(s)) {
return true;
}
if (a->l) {
/* VFP to general purpose register */
tmp = tcg_temp_new_i32();
vfp_load_reg32(tmp, a->vn);
tcg_gen_andi_i32(tmp, tmp, 0xffff);
store_reg(s, a->rt, tmp);
} else {
/* general purpose register to VFP */
tmp = load_reg(s, a->rt);
tcg_gen_andi_i32(tmp, tmp, 0xffff);
vfp_store_reg32(tmp, a->vn);
tcg_temp_free_i32(tmp);
}
return true;
}
static bool trans_VMOV_single(DisasContext *s, arg_VMOV_single *a)
{
TCGv_i32 tmp;
if (!dc_isar_feature(aa32_fpsp_v2, s)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
if (a->l) {
/* VFP to general purpose register */
tmp = tcg_temp_new_i32();
vfp_load_reg32(tmp, a->vn);
if (a->rt == 15) {
/* Set the 4 flag bits in the CPSR. */
gen_set_nzcv(tmp);
tcg_temp_free_i32(tmp);
} else {
store_reg(s, a->rt, tmp);
}
} else {
/* general purpose register to VFP */
tmp = load_reg(s, a->rt);
vfp_store_reg32(tmp, a->vn);
tcg_temp_free_i32(tmp);
}
return true;
}
static bool trans_VMOV_64_sp(DisasContext *s, arg_VMOV_64_sp *a)
{
TCGv_i32 tmp;
if (!dc_isar_feature(aa32_fpsp_v2, s)) {
return false;
}
/*
* VMOV between two general-purpose registers and two single precision
* floating point registers
*/
if (!vfp_access_check(s)) {
return true;
}
if (a->op) {
/* fpreg to gpreg */
tmp = tcg_temp_new_i32();
vfp_load_reg32(tmp, a->vm);
store_reg(s, a->rt, tmp);
tmp = tcg_temp_new_i32();
vfp_load_reg32(tmp, a->vm + 1);
store_reg(s, a->rt2, tmp);
} else {
/* gpreg to fpreg */
tmp = load_reg(s, a->rt);
vfp_store_reg32(tmp, a->vm);
tcg_temp_free_i32(tmp);
tmp = load_reg(s, a->rt2);
vfp_store_reg32(tmp, a->vm + 1);
tcg_temp_free_i32(tmp);
}
return true;
}
static bool trans_VMOV_64_dp(DisasContext *s, arg_VMOV_64_dp *a)
{
TCGv_i32 tmp;
/*
* VMOV between two general-purpose registers and one double precision
* floating point register. Note that this does not require support
* for double precision arithmetic.
*/
if (!dc_isar_feature(aa32_fpsp_v2, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist */
if (!dc_isar_feature(aa32_simd_r32, s) && (a->vm & 0x10)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
if (a->op) {
/* fpreg to gpreg */
tmp = tcg_temp_new_i32();
vfp_load_reg32(tmp, a->vm * 2);
store_reg(s, a->rt, tmp);
tmp = tcg_temp_new_i32();
vfp_load_reg32(tmp, a->vm * 2 + 1);
store_reg(s, a->rt2, tmp);
} else {
/* gpreg to fpreg */
tmp = load_reg(s, a->rt);
vfp_store_reg32(tmp, a->vm * 2);
tcg_temp_free_i32(tmp);
tmp = load_reg(s, a->rt2);
vfp_store_reg32(tmp, a->vm * 2 + 1);
tcg_temp_free_i32(tmp);
}
return true;
}
static bool trans_VLDR_VSTR_hp(DisasContext *s, arg_VLDR_VSTR_sp *a)
{
uint32_t offset;
TCGv_i32 addr, tmp;
if (!dc_isar_feature(aa32_fp16_arith, s)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
/* imm8 field is offset/2 for fp16, unlike fp32 and fp64 */
offset = a->imm << 1;
if (!a->u) {
offset = -offset;
}
/* For thumb, use of PC is UNPREDICTABLE. */
addr = add_reg_for_lit(s, a->rn, offset);
tmp = tcg_temp_new_i32();
if (a->l) {
gen_aa32_ld16u(s, tmp, addr, get_mem_index(s));
vfp_store_reg32(tmp, a->vd);
} else {
vfp_load_reg32(tmp, a->vd);
gen_aa32_st16(s, tmp, addr, get_mem_index(s));
}
tcg_temp_free_i32(tmp);
tcg_temp_free_i32(addr);
return true;
}
static bool trans_VLDR_VSTR_sp(DisasContext *s, arg_VLDR_VSTR_sp *a)
{
uint32_t offset;
TCGv_i32 addr, tmp;
if (!dc_isar_feature(aa32_fpsp_v2, s)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
offset = a->imm << 2;
if (!a->u) {
offset = -offset;
}
/* For thumb, use of PC is UNPREDICTABLE. */
addr = add_reg_for_lit(s, a->rn, offset);
tmp = tcg_temp_new_i32();
if (a->l) {
gen_aa32_ld32u(s, tmp, addr, get_mem_index(s));
vfp_store_reg32(tmp, a->vd);
} else {
vfp_load_reg32(tmp, a->vd);
gen_aa32_st32(s, tmp, addr, get_mem_index(s));
}
tcg_temp_free_i32(tmp);
tcg_temp_free_i32(addr);
return true;
}
static bool trans_VLDR_VSTR_dp(DisasContext *s, arg_VLDR_VSTR_dp *a)
{
uint32_t offset;
TCGv_i32 addr;
TCGv_i64 tmp;
/* Note that this does not require support for double arithmetic. */
if (!dc_isar_feature(aa32_fpsp_v2, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist */
if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd & 0x10)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
offset = a->imm << 2;
if (!a->u) {
offset = -offset;
}
/* For thumb, use of PC is UNPREDICTABLE. */
addr = add_reg_for_lit(s, a->rn, offset);
tmp = tcg_temp_new_i64();
if (a->l) {
gen_aa32_ld64(s, tmp, addr, get_mem_index(s));
vfp_store_reg64(tmp, a->vd);
} else {
vfp_load_reg64(tmp, a->vd);
gen_aa32_st64(s, tmp, addr, get_mem_index(s));
}
tcg_temp_free_i64(tmp);
tcg_temp_free_i32(addr);
return true;
}
static bool trans_VLDM_VSTM_sp(DisasContext *s, arg_VLDM_VSTM_sp *a)
{
uint32_t offset;
TCGv_i32 addr, tmp;
int i, n;
if (!dc_isar_feature(aa32_fpsp_v2, s)) {
return false;
}
n = a->imm;
if (n == 0 || (a->vd + n) > 32) {
/*
* UNPREDICTABLE cases for bad immediates: we choose to
* UNDEF to avoid generating huge numbers of TCG ops
*/
return false;
}
if (a->rn == 15 && a->w) {
/* writeback to PC is UNPREDICTABLE, we choose to UNDEF */
return false;
}
if (!vfp_access_check(s)) {
return true;
}
/* For thumb, use of PC is UNPREDICTABLE. */
addr = add_reg_for_lit(s, a->rn, 0);
if (a->p) {
/* pre-decrement */
tcg_gen_addi_i32(addr, addr, -(a->imm << 2));
}
if (s->v8m_stackcheck && a->rn == 13 && a->w) {
/*
* Here 'addr' is the lowest address we will store to,
* and is either the old SP (if post-increment) or
* the new SP (if pre-decrement). For post-increment
* where the old value is below the limit and the new
* value is above, it is UNKNOWN whether the limit check
* triggers; we choose to trigger.
*/
gen_helper_v8m_stackcheck(cpu_env, addr);
}
offset = 4;
tmp = tcg_temp_new_i32();
for (i = 0; i < n; i++) {
if (a->l) {
/* load */
gen_aa32_ld32u(s, tmp, addr, get_mem_index(s));
vfp_store_reg32(tmp, a->vd + i);
} else {
/* store */
vfp_load_reg32(tmp, a->vd + i);
gen_aa32_st32(s, tmp, addr, get_mem_index(s));
}
tcg_gen_addi_i32(addr, addr, offset);
}
tcg_temp_free_i32(tmp);
if (a->w) {
/* writeback */
if (a->p) {
offset = -offset * n;
tcg_gen_addi_i32(addr, addr, offset);
}
store_reg(s, a->rn, addr);
} else {
tcg_temp_free_i32(addr);
}
return true;
}
static bool trans_VLDM_VSTM_dp(DisasContext *s, arg_VLDM_VSTM_dp *a)
{
uint32_t offset;
TCGv_i32 addr;
TCGv_i64 tmp;
int i, n;
/* Note that this does not require support for double arithmetic. */
if (!dc_isar_feature(aa32_fpsp_v2, s)) {
return false;
}
n = a->imm >> 1;
if (n == 0 || (a->vd + n) > 32 || n > 16) {
/*
* UNPREDICTABLE cases for bad immediates: we choose to
* UNDEF to avoid generating huge numbers of TCG ops
*/
return false;
}
if (a->rn == 15 && a->w) {
/* writeback to PC is UNPREDICTABLE, we choose to UNDEF */
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist */
if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd + n) > 16) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
/* For thumb, use of PC is UNPREDICTABLE. */
addr = add_reg_for_lit(s, a->rn, 0);
if (a->p) {
/* pre-decrement */
tcg_gen_addi_i32(addr, addr, -(a->imm << 2));
}
if (s->v8m_stackcheck && a->rn == 13 && a->w) {
/*
* Here 'addr' is the lowest address we will store to,
* and is either the old SP (if post-increment) or
* the new SP (if pre-decrement). For post-increment
* where the old value is below the limit and the new
* value is above, it is UNKNOWN whether the limit check
* triggers; we choose to trigger.
*/
gen_helper_v8m_stackcheck(cpu_env, addr);
}
offset = 8;
tmp = tcg_temp_new_i64();
for (i = 0; i < n; i++) {
if (a->l) {
/* load */
gen_aa32_ld64(s, tmp, addr, get_mem_index(s));
vfp_store_reg64(tmp, a->vd + i);
} else {
/* store */
vfp_load_reg64(tmp, a->vd + i);
gen_aa32_st64(s, tmp, addr, get_mem_index(s));
}
tcg_gen_addi_i32(addr, addr, offset);
}
tcg_temp_free_i64(tmp);
if (a->w) {
/* writeback */
if (a->p) {
offset = -offset * n;
} else if (a->imm & 1) {
offset = 4;
} else {
offset = 0;
}
if (offset != 0) {
tcg_gen_addi_i32(addr, addr, offset);
}
store_reg(s, a->rn, addr);
} else {
tcg_temp_free_i32(addr);
}
return true;
}
/*
* Types for callbacks for do_vfp_3op_sp() and do_vfp_3op_dp().
* The callback should emit code to write a value to vd. If
* do_vfp_3op_{sp,dp}() was passed reads_vd then the TCGv vd
* will contain the old value of the relevant VFP register;
* otherwise it must be written to only.
*/
typedef void VFPGen3OpSPFn(TCGv_i32 vd,
TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst);
typedef void VFPGen3OpDPFn(TCGv_i64 vd,
TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst);
/*
* Types for callbacks for do_vfp_2op_sp() and do_vfp_2op_dp().
* The callback should emit code to write a value to vd (which
* should be written to only).
*/
typedef void VFPGen2OpSPFn(TCGv_i32 vd, TCGv_i32 vm);
typedef void VFPGen2OpDPFn(TCGv_i64 vd, TCGv_i64 vm);
/*
* Return true if the specified S reg is in a scalar bank
* (ie if it is s0..s7)
*/
static inline bool vfp_sreg_is_scalar(int reg)
{
return (reg & 0x18) == 0;
}
/*
* Return true if the specified D reg is in a scalar bank
* (ie if it is d0..d3 or d16..d19)
*/
static inline bool vfp_dreg_is_scalar(int reg)
{
return (reg & 0xc) == 0;
}
/*
* Advance the S reg number forwards by delta within its bank
* (ie increment the low 3 bits but leave the rest the same)
*/
static inline int vfp_advance_sreg(int reg, int delta)
{
return ((reg + delta) & 0x7) | (reg & ~0x7);
}
/*
* Advance the D reg number forwards by delta within its bank
* (ie increment the low 2 bits but leave the rest the same)
*/
static inline int vfp_advance_dreg(int reg, int delta)
{
return ((reg + delta) & 0x3) | (reg & ~0x3);
}
/*
* Perform a 3-operand VFP data processing instruction. fn is the
* callback to do the actual operation; this function deals with the
* code to handle looping around for VFP vector processing.
*/
static bool do_vfp_3op_sp(DisasContext *s, VFPGen3OpSPFn *fn,
int vd, int vn, int vm, bool reads_vd)
{
uint32_t delta_m = 0;
uint32_t delta_d = 0;
int veclen = s->vec_len;
TCGv_i32 f0, f1, fd;
TCGv_ptr fpst;
if (!dc_isar_feature(aa32_fpsp_v2, s)) {
return false;
}
if (!dc_isar_feature(aa32_fpshvec, s) &&
(veclen != 0 || s->vec_stride != 0)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
if (veclen > 0) {
/* Figure out what type of vector operation this is. */
if (vfp_sreg_is_scalar(vd)) {
/* scalar */
veclen = 0;
} else {
delta_d = s->vec_stride + 1;
if (vfp_sreg_is_scalar(vm)) {
/* mixed scalar/vector */
delta_m = 0;
} else {
/* vector */
delta_m = delta_d;
}
}
}
f0 = tcg_temp_new_i32();
f1 = tcg_temp_new_i32();
fd = tcg_temp_new_i32();
fpst = fpstatus_ptr(FPST_FPCR);
vfp_load_reg32(f0, vn);
vfp_load_reg32(f1, vm);
for (;;) {
if (reads_vd) {
vfp_load_reg32(fd, vd);
}
fn(fd, f0, f1, fpst);
vfp_store_reg32(fd, vd);
if (veclen == 0) {
break;
}
/* Set up the operands for the next iteration */
veclen--;
vd = vfp_advance_sreg(vd, delta_d);
vn = vfp_advance_sreg(vn, delta_d);
vfp_load_reg32(f0, vn);
if (delta_m) {
vm = vfp_advance_sreg(vm, delta_m);
vfp_load_reg32(f1, vm);
}
}
tcg_temp_free_i32(f0);
tcg_temp_free_i32(f1);
tcg_temp_free_i32(fd);
tcg_temp_free_ptr(fpst);
return true;
}
static bool do_vfp_3op_hp(DisasContext *s, VFPGen3OpSPFn *fn,
int vd, int vn, int vm, bool reads_vd)
{
/*
* Do a half-precision operation. Functionally this is
* the same as do_vfp_3op_sp(), except:
* - it uses the FPST_FPCR_F16
* - it doesn't need the VFP vector handling (fp16 is a
* v8 feature, and in v8 VFP vectors don't exist)
* - it does the aa32_fp16_arith feature test
*/
TCGv_i32 f0, f1, fd;
TCGv_ptr fpst;
if (!dc_isar_feature(aa32_fp16_arith, s)) {
return false;
}
if (s->vec_len != 0 || s->vec_stride != 0) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
f0 = tcg_temp_new_i32();
f1 = tcg_temp_new_i32();
fd = tcg_temp_new_i32();
fpst = fpstatus_ptr(FPST_FPCR_F16);
vfp_load_reg32(f0, vn);
vfp_load_reg32(f1, vm);
if (reads_vd) {
vfp_load_reg32(fd, vd);
}
fn(fd, f0, f1, fpst);
vfp_store_reg32(fd, vd);
tcg_temp_free_i32(f0);
tcg_temp_free_i32(f1);
tcg_temp_free_i32(fd);
tcg_temp_free_ptr(fpst);
return true;
}
static bool do_vfp_3op_dp(DisasContext *s, VFPGen3OpDPFn *fn,
int vd, int vn, int vm, bool reads_vd)
{
uint32_t delta_m = 0;
uint32_t delta_d = 0;
int veclen = s->vec_len;
TCGv_i64 f0, f1, fd;
TCGv_ptr fpst;
if (!dc_isar_feature(aa32_fpdp_v2, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist */
if (!dc_isar_feature(aa32_simd_r32, s) && ((vd | vn | vm) & 0x10)) {
return false;
}
if (!dc_isar_feature(aa32_fpshvec, s) &&
(veclen != 0 || s->vec_stride != 0)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
if (veclen > 0) {
/* Figure out what type of vector operation this is. */
if (vfp_dreg_is_scalar(vd)) {
/* scalar */
veclen = 0;
} else {
delta_d = (s->vec_stride >> 1) + 1;
if (vfp_dreg_is_scalar(vm)) {
/* mixed scalar/vector */
delta_m = 0;
} else {
/* vector */
delta_m = delta_d;
}
}
}
f0 = tcg_temp_new_i64();
f1 = tcg_temp_new_i64();
fd = tcg_temp_new_i64();
fpst = fpstatus_ptr(FPST_FPCR);
vfp_load_reg64(f0, vn);
vfp_load_reg64(f1, vm);
for (;;) {
if (reads_vd) {
vfp_load_reg64(fd, vd);
}
fn(fd, f0, f1, fpst);
vfp_store_reg64(fd, vd);
if (veclen == 0) {
break;
}
/* Set up the operands for the next iteration */
veclen--;
vd = vfp_advance_dreg(vd, delta_d);
vn = vfp_advance_dreg(vn, delta_d);
vfp_load_reg64(f0, vn);
if (delta_m) {
vm = vfp_advance_dreg(vm, delta_m);
vfp_load_reg64(f1, vm);
}
}
tcg_temp_free_i64(f0);
tcg_temp_free_i64(f1);
tcg_temp_free_i64(fd);
tcg_temp_free_ptr(fpst);
return true;
}
static bool do_vfp_2op_sp(DisasContext *s, VFPGen2OpSPFn *fn, int vd, int vm)
{
uint32_t delta_m = 0;
uint32_t delta_d = 0;
int veclen = s->vec_len;
TCGv_i32 f0, fd;
if (!dc_isar_feature(aa32_fpsp_v2, s)) {
return false;
}
if (!dc_isar_feature(aa32_fpshvec, s) &&
(veclen != 0 || s->vec_stride != 0)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
if (veclen > 0) {
/* Figure out what type of vector operation this is. */
if (vfp_sreg_is_scalar(vd)) {
/* scalar */
veclen = 0;
} else {
delta_d = s->vec_stride + 1;
if (vfp_sreg_is_scalar(vm)) {
/* mixed scalar/vector */
delta_m = 0;
} else {
/* vector */
delta_m = delta_d;
}
}
}
f0 = tcg_temp_new_i32();
fd = tcg_temp_new_i32();
vfp_load_reg32(f0, vm);
for (;;) {
fn(fd, f0);
vfp_store_reg32(fd, vd);
if (veclen == 0) {
break;
}
if (delta_m == 0) {
/* single source one-many */
while (veclen--) {
vd = vfp_advance_sreg(vd, delta_d);
vfp_store_reg32(fd, vd);
}
break;
}
/* Set up the operands for the next iteration */
veclen--;
vd = vfp_advance_sreg(vd, delta_d);
vm = vfp_advance_sreg(vm, delta_m);
vfp_load_reg32(f0, vm);
}
tcg_temp_free_i32(f0);
tcg_temp_free_i32(fd);
return true;
}
static bool do_vfp_2op_hp(DisasContext *s, VFPGen2OpSPFn *fn, int vd, int vm)
{
/*
* Do a half-precision operation. Functionally this is
* the same as do_vfp_2op_sp(), except:
* - it doesn't need the VFP vector handling (fp16 is a
* v8 feature, and in v8 VFP vectors don't exist)
* - it does the aa32_fp16_arith feature test
*/
TCGv_i32 f0;
if (!dc_isar_feature(aa32_fp16_arith, s)) {
return false;
}
if (s->vec_len != 0 || s->vec_stride != 0) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
f0 = tcg_temp_new_i32();
vfp_load_reg32(f0, vm);
fn(f0, f0);
vfp_store_reg32(f0, vd);
tcg_temp_free_i32(f0);
return true;
}
static bool do_vfp_2op_dp(DisasContext *s, VFPGen2OpDPFn *fn, int vd, int vm)
{
uint32_t delta_m = 0;
uint32_t delta_d = 0;
int veclen = s->vec_len;
TCGv_i64 f0, fd;
if (!dc_isar_feature(aa32_fpdp_v2, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist */
if (!dc_isar_feature(aa32_simd_r32, s) && ((vd | vm) & 0x10)) {
return false;
}
if (!dc_isar_feature(aa32_fpshvec, s) &&
(veclen != 0 || s->vec_stride != 0)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
if (veclen > 0) {
/* Figure out what type of vector operation this is. */
if (vfp_dreg_is_scalar(vd)) {
/* scalar */
veclen = 0;
} else {
delta_d = (s->vec_stride >> 1) + 1;
if (vfp_dreg_is_scalar(vm)) {
/* mixed scalar/vector */
delta_m = 0;
} else {
/* vector */
delta_m = delta_d;
}
}
}
f0 = tcg_temp_new_i64();
fd = tcg_temp_new_i64();
vfp_load_reg64(f0, vm);
for (;;) {
fn(fd, f0);
vfp_store_reg64(fd, vd);
if (veclen == 0) {
break;
}
if (delta_m == 0) {
/* single source one-many */
while (veclen--) {
vd = vfp_advance_dreg(vd, delta_d);
vfp_store_reg64(fd, vd);
}
break;
}
/* Set up the operands for the next iteration */
veclen--;
vd = vfp_advance_dreg(vd, delta_d);
vd = vfp_advance_dreg(vm, delta_m);
vfp_load_reg64(f0, vm);
}
tcg_temp_free_i64(f0);
tcg_temp_free_i64(fd);
return true;
}
static void gen_VMLA_hp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst)
{
/* Note that order of inputs to the add matters for NaNs */
TCGv_i32 tmp = tcg_temp_new_i32();
gen_helper_vfp_mulh(tmp, vn, vm, fpst);
gen_helper_vfp_addh(vd, vd, tmp, fpst);
tcg_temp_free_i32(tmp);
}
static bool trans_VMLA_hp(DisasContext *s, arg_VMLA_sp *a)
{
return do_vfp_3op_hp(s, gen_VMLA_hp, a->vd, a->vn, a->vm, true);
}
static void gen_VMLA_sp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst)
{
/* Note that order of inputs to the add matters for NaNs */
TCGv_i32 tmp = tcg_temp_new_i32();
gen_helper_vfp_muls(tmp, vn, vm, fpst);
gen_helper_vfp_adds(vd, vd, tmp, fpst);
tcg_temp_free_i32(tmp);
}
static bool trans_VMLA_sp(DisasContext *s, arg_VMLA_sp *a)
{
return do_vfp_3op_sp(s, gen_VMLA_sp, a->vd, a->vn, a->vm, true);
}
static void gen_VMLA_dp(TCGv_i64 vd, TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst)
{
/* Note that order of inputs to the add matters for NaNs */
TCGv_i64 tmp = tcg_temp_new_i64();
gen_helper_vfp_muld(tmp, vn, vm, fpst);
gen_helper_vfp_addd(vd, vd, tmp, fpst);
tcg_temp_free_i64(tmp);
}
static bool trans_VMLA_dp(DisasContext *s, arg_VMLA_dp *a)
{
return do_vfp_3op_dp(s, gen_VMLA_dp, a->vd, a->vn, a->vm, true);
}
static void gen_VMLS_hp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst)
{
/*
* VMLS: vd = vd + -(vn * vm)
* Note that order of inputs to the add matters for NaNs.
*/
TCGv_i32 tmp = tcg_temp_new_i32();
gen_helper_vfp_mulh(tmp, vn, vm, fpst);
gen_helper_vfp_negh(tmp, tmp);
gen_helper_vfp_addh(vd, vd, tmp, fpst);
tcg_temp_free_i32(tmp);
}
static bool trans_VMLS_hp(DisasContext *s, arg_VMLS_sp *a)
{
return do_vfp_3op_hp(s, gen_VMLS_hp, a->vd, a->vn, a->vm, true);
}
static void gen_VMLS_sp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst)
{
/*
* VMLS: vd = vd + -(vn * vm)
* Note that order of inputs to the add matters for NaNs.
*/
TCGv_i32 tmp = tcg_temp_new_i32();
gen_helper_vfp_muls(tmp, vn, vm, fpst);
gen_helper_vfp_negs(tmp, tmp);
gen_helper_vfp_adds(vd, vd, tmp, fpst);
tcg_temp_free_i32(tmp);
}
static bool trans_VMLS_sp(DisasContext *s, arg_VMLS_sp *a)
{
return do_vfp_3op_sp(s, gen_VMLS_sp, a->vd, a->vn, a->vm, true);
}
static void gen_VMLS_dp(TCGv_i64 vd, TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst)
{
/*
* VMLS: vd = vd + -(vn * vm)
* Note that order of inputs to the add matters for NaNs.
*/
TCGv_i64 tmp = tcg_temp_new_i64();
gen_helper_vfp_muld(tmp, vn, vm, fpst);
gen_helper_vfp_negd(tmp, tmp);
gen_helper_vfp_addd(vd, vd, tmp, fpst);
tcg_temp_free_i64(tmp);
}
static bool trans_VMLS_dp(DisasContext *s, arg_VMLS_dp *a)
{
return do_vfp_3op_dp(s, gen_VMLS_dp, a->vd, a->vn, a->vm, true);
}
static void gen_VNMLS_hp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst)
{
/*
* VNMLS: -fd + (fn * fm)
* Note that it isn't valid to replace (-A + B) with (B - A) or similar
* plausible looking simplifications because this will give wrong results
* for NaNs.
*/
TCGv_i32 tmp = tcg_temp_new_i32();
gen_helper_vfp_mulh(tmp, vn, vm, fpst);
gen_helper_vfp_negh(vd, vd);
gen_helper_vfp_addh(vd, vd, tmp, fpst);
tcg_temp_free_i32(tmp);
}
static bool trans_VNMLS_hp(DisasContext *s, arg_VNMLS_sp *a)
{
return do_vfp_3op_hp(s, gen_VNMLS_hp, a->vd, a->vn, a->vm, true);
}
static void gen_VNMLS_sp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst)
{
/*
* VNMLS: -fd + (fn * fm)
* Note that it isn't valid to replace (-A + B) with (B - A) or similar
* plausible looking simplifications because this will give wrong results
* for NaNs.
*/
TCGv_i32 tmp = tcg_temp_new_i32();
gen_helper_vfp_muls(tmp, vn, vm, fpst);
gen_helper_vfp_negs(vd, vd);
gen_helper_vfp_adds(vd, vd, tmp, fpst);
tcg_temp_free_i32(tmp);
}
static bool trans_VNMLS_sp(DisasContext *s, arg_VNMLS_sp *a)
{
return do_vfp_3op_sp(s, gen_VNMLS_sp, a->vd, a->vn, a->vm, true);
}
static void gen_VNMLS_dp(TCGv_i64 vd, TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst)
{
/*
* VNMLS: -fd + (fn * fm)
* Note that it isn't valid to replace (-A + B) with (B - A) or similar
* plausible looking simplifications because this will give wrong results
* for NaNs.
*/
TCGv_i64 tmp = tcg_temp_new_i64();
gen_helper_vfp_muld(tmp, vn, vm, fpst);
gen_helper_vfp_negd(vd, vd);
gen_helper_vfp_addd(vd, vd, tmp, fpst);
tcg_temp_free_i64(tmp);
}
static bool trans_VNMLS_dp(DisasContext *s, arg_VNMLS_dp *a)
{
return do_vfp_3op_dp(s, gen_VNMLS_dp, a->vd, a->vn, a->vm, true);
}
static void gen_VNMLA_hp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst)
{
/* VNMLA: -fd + -(fn * fm) */
TCGv_i32 tmp = tcg_temp_new_i32();
gen_helper_vfp_mulh(tmp, vn, vm, fpst);
gen_helper_vfp_negh(tmp, tmp);
gen_helper_vfp_negh(vd, vd);
gen_helper_vfp_addh(vd, vd, tmp, fpst);
tcg_temp_free_i32(tmp);
}
static bool trans_VNMLA_hp(DisasContext *s, arg_VNMLA_sp *a)
{
return do_vfp_3op_hp(s, gen_VNMLA_hp, a->vd, a->vn, a->vm, true);
}
static void gen_VNMLA_sp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst)
{
/* VNMLA: -fd + -(fn * fm) */
TCGv_i32 tmp = tcg_temp_new_i32();
gen_helper_vfp_muls(tmp, vn, vm, fpst);
gen_helper_vfp_negs(tmp, tmp);
gen_helper_vfp_negs(vd, vd);
gen_helper_vfp_adds(vd, vd, tmp, fpst);
tcg_temp_free_i32(tmp);
}
static bool trans_VNMLA_sp(DisasContext *s, arg_VNMLA_sp *a)
{
return do_vfp_3op_sp(s, gen_VNMLA_sp, a->vd, a->vn, a->vm, true);
}
static void gen_VNMLA_dp(TCGv_i64 vd, TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst)
{
/* VNMLA: -fd + (fn * fm) */
TCGv_i64 tmp = tcg_temp_new_i64();
gen_helper_vfp_muld(tmp, vn, vm, fpst);
gen_helper_vfp_negd(tmp, tmp);
gen_helper_vfp_negd(vd, vd);
gen_helper_vfp_addd(vd, vd, tmp, fpst);
tcg_temp_free_i64(tmp);
}
static bool trans_VNMLA_dp(DisasContext *s, arg_VNMLA_dp *a)
{
return do_vfp_3op_dp(s, gen_VNMLA_dp, a->vd, a->vn, a->vm, true);
}
static bool trans_VMUL_hp(DisasContext *s, arg_VMUL_sp *a)
{
return do_vfp_3op_hp(s, gen_helper_vfp_mulh, a->vd, a->vn, a->vm, false);
}
static bool trans_VMUL_sp(DisasContext *s, arg_VMUL_sp *a)
{
return do_vfp_3op_sp(s, gen_helper_vfp_muls, a->vd, a->vn, a->vm, false);
}
static bool trans_VMUL_dp(DisasContext *s, arg_VMUL_dp *a)
{
return do_vfp_3op_dp(s, gen_helper_vfp_muld, a->vd, a->vn, a->vm, false);
}
static void gen_VNMUL_hp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst)
{
/* VNMUL: -(fn * fm) */
gen_helper_vfp_mulh(vd, vn, vm, fpst);
gen_helper_vfp_negh(vd, vd);
}
static bool trans_VNMUL_hp(DisasContext *s, arg_VNMUL_sp *a)
{
return do_vfp_3op_hp(s, gen_VNMUL_hp, a->vd, a->vn, a->vm, false);
}
static void gen_VNMUL_sp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst)
{
/* VNMUL: -(fn * fm) */
gen_helper_vfp_muls(vd, vn, vm, fpst);
gen_helper_vfp_negs(vd, vd);
}
static bool trans_VNMUL_sp(DisasContext *s, arg_VNMUL_sp *a)
{
return do_vfp_3op_sp(s, gen_VNMUL_sp, a->vd, a->vn, a->vm, false);
}
static void gen_VNMUL_dp(TCGv_i64 vd, TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst)
{
/* VNMUL: -(fn * fm) */
gen_helper_vfp_muld(vd, vn, vm, fpst);
gen_helper_vfp_negd(vd, vd);
}
static bool trans_VNMUL_dp(DisasContext *s, arg_VNMUL_dp *a)
{
return do_vfp_3op_dp(s, gen_VNMUL_dp, a->vd, a->vn, a->vm, false);
}
static bool trans_VADD_hp(DisasContext *s, arg_VADD_sp *a)
{
return do_vfp_3op_hp(s, gen_helper_vfp_addh, a->vd, a->vn, a->vm, false);
}
static bool trans_VADD_sp(DisasContext *s, arg_VADD_sp *a)
{
return do_vfp_3op_sp(s, gen_helper_vfp_adds, a->vd, a->vn, a->vm, false);
}
static bool trans_VADD_dp(DisasContext *s, arg_VADD_dp *a)
{
return do_vfp_3op_dp(s, gen_helper_vfp_addd, a->vd, a->vn, a->vm, false);
}
static bool trans_VSUB_hp(DisasContext *s, arg_VSUB_sp *a)
{
return do_vfp_3op_hp(s, gen_helper_vfp_subh, a->vd, a->vn, a->vm, false);
}
static bool trans_VSUB_sp(DisasContext *s, arg_VSUB_sp *a)
{
return do_vfp_3op_sp(s, gen_helper_vfp_subs, a->vd, a->vn, a->vm, false);
}
static bool trans_VSUB_dp(DisasContext *s, arg_VSUB_dp *a)
{
return do_vfp_3op_dp(s, gen_helper_vfp_subd, a->vd, a->vn, a->vm, false);
}
static bool trans_VDIV_hp(DisasContext *s, arg_VDIV_sp *a)
{
return do_vfp_3op_hp(s, gen_helper_vfp_divh, a->vd, a->vn, a->vm, false);
}
static bool trans_VDIV_sp(DisasContext *s, arg_VDIV_sp *a)
{
return do_vfp_3op_sp(s, gen_helper_vfp_divs, a->vd, a->vn, a->vm, false);
}
static bool trans_VDIV_dp(DisasContext *s, arg_VDIV_dp *a)
{
return do_vfp_3op_dp(s, gen_helper_vfp_divd, a->vd, a->vn, a->vm, false);
}
static bool trans_VMINNM_hp(DisasContext *s, arg_VMINNM_sp *a)
{
if (!dc_isar_feature(aa32_vminmaxnm, s)) {
return false;
}
return do_vfp_3op_hp(s, gen_helper_vfp_minnumh,
a->vd, a->vn, a->vm, false);
}
static bool trans_VMAXNM_hp(DisasContext *s, arg_VMAXNM_sp *a)
{
if (!dc_isar_feature(aa32_vminmaxnm, s)) {
return false;
}
return do_vfp_3op_hp(s, gen_helper_vfp_maxnumh,
a->vd, a->vn, a->vm, false);
}
static bool trans_VMINNM_sp(DisasContext *s, arg_VMINNM_sp *a)
{
if (!dc_isar_feature(aa32_vminmaxnm, s)) {
return false;
}
return do_vfp_3op_sp(s, gen_helper_vfp_minnums,
a->vd, a->vn, a->vm, false);
}
static bool trans_VMAXNM_sp(DisasContext *s, arg_VMAXNM_sp *a)
{
if (!dc_isar_feature(aa32_vminmaxnm, s)) {
return false;
}
return do_vfp_3op_sp(s, gen_helper_vfp_maxnums,
a->vd, a->vn, a->vm, false);
}
static bool trans_VMINNM_dp(DisasContext *s, arg_VMINNM_dp *a)
{
if (!dc_isar_feature(aa32_vminmaxnm, s)) {
return false;
}
return do_vfp_3op_dp(s, gen_helper_vfp_minnumd,
a->vd, a->vn, a->vm, false);
}
static bool trans_VMAXNM_dp(DisasContext *s, arg_VMAXNM_dp *a)
{
if (!dc_isar_feature(aa32_vminmaxnm, s)) {
return false;
}
return do_vfp_3op_dp(s, gen_helper_vfp_maxnumd,
a->vd, a->vn, a->vm, false);
}
static bool do_vfm_hp(DisasContext *s, arg_VFMA_sp *a, bool neg_n, bool neg_d)
{
/*
* VFNMA : fd = muladd(-fd, fn, fm)
* VFNMS : fd = muladd(-fd, -fn, fm)
* VFMA : fd = muladd( fd, fn, fm)
* VFMS : fd = muladd( fd, -fn, fm)
*
* These are fused multiply-add, and must be done as one floating
* point operation with no rounding between the multiplication and
* addition steps. NB that doing the negations here as separate
* steps is correct : an input NaN should come out with its sign
* bit flipped if it is a negated-input.
*/
TCGv_ptr fpst;
TCGv_i32 vn, vm, vd;
/*
* Present in VFPv4 only, and only with the FP16 extension.
* Note that we can't rely on the SIMDFMAC check alone, because
* in a Neon-no-VFP core that ID register field will be non-zero.
*/
if (!dc_isar_feature(aa32_fp16_arith, s) ||
!dc_isar_feature(aa32_simdfmac, s) ||
!dc_isar_feature(aa32_fpsp_v2, s)) {
return false;
}
if (s->vec_len != 0 || s->vec_stride != 0) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
vn = tcg_temp_new_i32();
vm = tcg_temp_new_i32();
vd = tcg_temp_new_i32();
vfp_load_reg32(vn, a->vn);
vfp_load_reg32(vm, a->vm);
if (neg_n) {
/* VFNMS, VFMS */
gen_helper_vfp_negh(vn, vn);
}
vfp_load_reg32(vd, a->vd);
if (neg_d) {
/* VFNMA, VFNMS */
gen_helper_vfp_negh(vd, vd);
}
fpst = fpstatus_ptr(FPST_FPCR_F16);
gen_helper_vfp_muladdh(vd, vn, vm, vd, fpst);
vfp_store_reg32(vd, a->vd);
tcg_temp_free_ptr(fpst);
tcg_temp_free_i32(vn);
tcg_temp_free_i32(vm);
tcg_temp_free_i32(vd);
return true;
}
static bool do_vfm_sp(DisasContext *s, arg_VFMA_sp *a, bool neg_n, bool neg_d)
{
/*
* VFNMA : fd = muladd(-fd, fn, fm)
* VFNMS : fd = muladd(-fd, -fn, fm)
* VFMA : fd = muladd( fd, fn, fm)
* VFMS : fd = muladd( fd, -fn, fm)
*
* These are fused multiply-add, and must be done as one floating
* point operation with no rounding between the multiplication and
* addition steps. NB that doing the negations here as separate
* steps is correct : an input NaN should come out with its sign
* bit flipped if it is a negated-input.
*/
TCGv_ptr fpst;
TCGv_i32 vn, vm, vd;
/*
* Present in VFPv4 only.
* Note that we can't rely on the SIMDFMAC check alone, because
* in a Neon-no-VFP core that ID register field will be non-zero.
*/
if (!dc_isar_feature(aa32_simdfmac, s) ||
!dc_isar_feature(aa32_fpsp_v2, s)) {
return false;
}
/*
* In v7A, UNPREDICTABLE with non-zero vector length/stride; from
* v8A, must UNDEF. We choose to UNDEF for both v7A and v8A.
*/
if (s->vec_len != 0 || s->vec_stride != 0) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
vn = tcg_temp_new_i32();
vm = tcg_temp_new_i32();
vd = tcg_temp_new_i32();
vfp_load_reg32(vn, a->vn);
vfp_load_reg32(vm, a->vm);
if (neg_n) {
/* VFNMS, VFMS */
gen_helper_vfp_negs(vn, vn);
}
vfp_load_reg32(vd, a->vd);
if (neg_d) {
/* VFNMA, VFNMS */
gen_helper_vfp_negs(vd, vd);
}
fpst = fpstatus_ptr(FPST_FPCR);
gen_helper_vfp_muladds(vd, vn, vm, vd, fpst);
vfp_store_reg32(vd, a->vd);
tcg_temp_free_ptr(fpst);
tcg_temp_free_i32(vn);
tcg_temp_free_i32(vm);
tcg_temp_free_i32(vd);
return true;
}
static bool do_vfm_dp(DisasContext *s, arg_VFMA_dp *a, bool neg_n, bool neg_d)
{
/*
* VFNMA : fd = muladd(-fd, fn, fm)
* VFNMS : fd = muladd(-fd, -fn, fm)
* VFMA : fd = muladd( fd, fn, fm)
* VFMS : fd = muladd( fd, -fn, fm)
*
* These are fused multiply-add, and must be done as one floating
* point operation with no rounding between the multiplication and
* addition steps. NB that doing the negations here as separate
* steps is correct : an input NaN should come out with its sign
* bit flipped if it is a negated-input.
*/
TCGv_ptr fpst;
TCGv_i64 vn, vm, vd;
/*
* Present in VFPv4 only.
* Note that we can't rely on the SIMDFMAC check alone, because
* in a Neon-no-VFP core that ID register field will be non-zero.
*/
if (!dc_isar_feature(aa32_simdfmac, s) ||
!dc_isar_feature(aa32_fpdp_v2, s)) {
return false;
}
/*
* In v7A, UNPREDICTABLE with non-zero vector length/stride; from
* v8A, must UNDEF. We choose to UNDEF for both v7A and v8A.
*/
if (s->vec_len != 0 || s->vec_stride != 0) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_simd_r32, s) &&
((a->vd | a->vn | a->vm) & 0x10)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
vn = tcg_temp_new_i64();
vm = tcg_temp_new_i64();
vd = tcg_temp_new_i64();
vfp_load_reg64(vn, a->vn);
vfp_load_reg64(vm, a->vm);
if (neg_n) {
/* VFNMS, VFMS */
gen_helper_vfp_negd(vn, vn);
}
vfp_load_reg64(vd, a->vd);
if (neg_d) {
/* VFNMA, VFNMS */
gen_helper_vfp_negd(vd, vd);
}
fpst = fpstatus_ptr(FPST_FPCR);
gen_helper_vfp_muladdd(vd, vn, vm, vd, fpst);
vfp_store_reg64(vd, a->vd);
tcg_temp_free_ptr(fpst);
tcg_temp_free_i64(vn);
tcg_temp_free_i64(vm);
tcg_temp_free_i64(vd);
return true;
}
#define MAKE_ONE_VFM_TRANS_FN(INSN, PREC, NEGN, NEGD) \
static bool trans_##INSN##_##PREC(DisasContext *s, \
arg_##INSN##_##PREC *a) \
{ \
return do_vfm_##PREC(s, a, NEGN, NEGD); \
}
#define MAKE_VFM_TRANS_FNS(PREC) \
MAKE_ONE_VFM_TRANS_FN(VFMA, PREC, false, false) \
MAKE_ONE_VFM_TRANS_FN(VFMS, PREC, true, false) \
MAKE_ONE_VFM_TRANS_FN(VFNMA, PREC, false, true) \
MAKE_ONE_VFM_TRANS_FN(VFNMS, PREC, true, true)
MAKE_VFM_TRANS_FNS(hp)
MAKE_VFM_TRANS_FNS(sp)
MAKE_VFM_TRANS_FNS(dp)
static bool trans_VMOV_imm_hp(DisasContext *s, arg_VMOV_imm_sp *a)
{
TCGv_i32 fd;
if (!dc_isar_feature(aa32_fp16_arith, s)) {
return false;
}
if (s->vec_len != 0 || s->vec_stride != 0) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
fd = tcg_const_i32(vfp_expand_imm(MO_16, a->imm));
vfp_store_reg32(fd, a->vd);
tcg_temp_free_i32(fd);
return true;
}
static bool trans_VMOV_imm_sp(DisasContext *s, arg_VMOV_imm_sp *a)
{
uint32_t delta_d = 0;
int veclen = s->vec_len;
TCGv_i32 fd;
uint32_t vd;
vd = a->vd;
if (!dc_isar_feature(aa32_fpsp_v3, s)) {
return false;
}
if (!dc_isar_feature(aa32_fpshvec, s) &&
(veclen != 0 || s->vec_stride != 0)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
if (veclen > 0) {
/* Figure out what type of vector operation this is. */
if (vfp_sreg_is_scalar(vd)) {
/* scalar */
veclen = 0;
} else {
delta_d = s->vec_stride + 1;
}
}
fd = tcg_const_i32(vfp_expand_imm(MO_32, a->imm));
for (;;) {
vfp_store_reg32(fd, vd);
if (veclen == 0) {
break;
}
/* Set up the operands for the next iteration */
veclen--;
vd = vfp_advance_sreg(vd, delta_d);
}
tcg_temp_free_i32(fd);
return true;
}
static bool trans_VMOV_imm_dp(DisasContext *s, arg_VMOV_imm_dp *a)
{
uint32_t delta_d = 0;
int veclen = s->vec_len;
TCGv_i64 fd;
uint32_t vd;
vd = a->vd;
if (!dc_isar_feature(aa32_fpdp_v3, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_simd_r32, s) && (vd & 0x10)) {
return false;
}
if (!dc_isar_feature(aa32_fpshvec, s) &&
(veclen != 0 || s->vec_stride != 0)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
if (veclen > 0) {
/* Figure out what type of vector operation this is. */
if (vfp_dreg_is_scalar(vd)) {
/* scalar */
veclen = 0;
} else {
delta_d = (s->vec_stride >> 1) + 1;
}
}
fd = tcg_const_i64(vfp_expand_imm(MO_64, a->imm));
for (;;) {
vfp_store_reg64(fd, vd);
if (veclen == 0) {
break;
}
/* Set up the operands for the next iteration */
veclen--;
vd = vfp_advance_dreg(vd, delta_d);
}
tcg_temp_free_i64(fd);
return true;
}
#define DO_VFP_2OP(INSN, PREC, FN) \
static bool trans_##INSN##_##PREC(DisasContext *s, \
arg_##INSN##_##PREC *a) \
{ \
return do_vfp_2op_##PREC(s, FN, a->vd, a->vm); \
}
DO_VFP_2OP(VMOV_reg, sp, tcg_gen_mov_i32)
DO_VFP_2OP(VMOV_reg, dp, tcg_gen_mov_i64)
DO_VFP_2OP(VABS, hp, gen_helper_vfp_absh)
DO_VFP_2OP(VABS, sp, gen_helper_vfp_abss)
DO_VFP_2OP(VABS, dp, gen_helper_vfp_absd)
DO_VFP_2OP(VNEG, hp, gen_helper_vfp_negh)
DO_VFP_2OP(VNEG, sp, gen_helper_vfp_negs)
DO_VFP_2OP(VNEG, dp, gen_helper_vfp_negd)
static void gen_VSQRT_hp(TCGv_i32 vd, TCGv_i32 vm)
{
gen_helper_vfp_sqrth(vd, vm, cpu_env);
}
static void gen_VSQRT_sp(TCGv_i32 vd, TCGv_i32 vm)
{
gen_helper_vfp_sqrts(vd, vm, cpu_env);
}
static void gen_VSQRT_dp(TCGv_i64 vd, TCGv_i64 vm)
{
gen_helper_vfp_sqrtd(vd, vm, cpu_env);
}
DO_VFP_2OP(VSQRT, hp, gen_VSQRT_hp)
DO_VFP_2OP(VSQRT, sp, gen_VSQRT_sp)
DO_VFP_2OP(VSQRT, dp, gen_VSQRT_dp)
static bool trans_VCMP_hp(DisasContext *s, arg_VCMP_sp *a)
{
TCGv_i32 vd, vm;
if (!dc_isar_feature(aa32_fp16_arith, s)) {
return false;
}
/* Vm/M bits must be zero for the Z variant */
if (a->z && a->vm != 0) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
vd = tcg_temp_new_i32();
vm = tcg_temp_new_i32();
vfp_load_reg32(vd, a->vd);
if (a->z) {
tcg_gen_movi_i32(vm, 0);
} else {
vfp_load_reg32(vm, a->vm);
}
if (a->e) {
gen_helper_vfp_cmpeh(vd, vm, cpu_env);
} else {
gen_helper_vfp_cmph(vd, vm, cpu_env);
}
tcg_temp_free_i32(vd);
tcg_temp_free_i32(vm);
return true;
}
static bool trans_VCMP_sp(DisasContext *s, arg_VCMP_sp *a)
{
TCGv_i32 vd, vm;
if (!dc_isar_feature(aa32_fpsp_v2, s)) {
return false;
}
/* Vm/M bits must be zero for the Z variant */
if (a->z && a->vm != 0) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
vd = tcg_temp_new_i32();
vm = tcg_temp_new_i32();
vfp_load_reg32(vd, a->vd);
if (a->z) {
tcg_gen_movi_i32(vm, 0);
} else {
vfp_load_reg32(vm, a->vm);
}
if (a->e) {
gen_helper_vfp_cmpes(vd, vm, cpu_env);
} else {
gen_helper_vfp_cmps(vd, vm, cpu_env);
}
tcg_temp_free_i32(vd);
tcg_temp_free_i32(vm);
return true;
}
static bool trans_VCMP_dp(DisasContext *s, arg_VCMP_dp *a)
{
TCGv_i64 vd, vm;
if (!dc_isar_feature(aa32_fpdp_v2, s)) {
return false;
}
/* Vm/M bits must be zero for the Z variant */
if (a->z && a->vm != 0) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
vd = tcg_temp_new_i64();
vm = tcg_temp_new_i64();
vfp_load_reg64(vd, a->vd);
if (a->z) {
tcg_gen_movi_i64(vm, 0);
} else {
vfp_load_reg64(vm, a->vm);
}
if (a->e) {
gen_helper_vfp_cmped(vd, vm, cpu_env);
} else {
gen_helper_vfp_cmpd(vd, vm, cpu_env);
}
tcg_temp_free_i64(vd);
tcg_temp_free_i64(vm);
return true;
}
static bool trans_VCVT_f32_f16(DisasContext *s, arg_VCVT_f32_f16 *a)
{
TCGv_ptr fpst;
TCGv_i32 ahp_mode;
TCGv_i32 tmp;
if (!dc_isar_feature(aa32_fp16_spconv, s)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
fpst = fpstatus_ptr(FPST_FPCR);
ahp_mode = get_ahp_flag();
tmp = tcg_temp_new_i32();
/* The T bit tells us if we want the low or high 16 bits of Vm */
tcg_gen_ld16u_i32(tmp, cpu_env, vfp_f16_offset(a->vm, a->t));
gen_helper_vfp_fcvt_f16_to_f32(tmp, tmp, fpst, ahp_mode);
vfp_store_reg32(tmp, a->vd);
tcg_temp_free_i32(ahp_mode);
tcg_temp_free_ptr(fpst);
tcg_temp_free_i32(tmp);
return true;
}
static bool trans_VCVT_f64_f16(DisasContext *s, arg_VCVT_f64_f16 *a)
{
TCGv_ptr fpst;
TCGv_i32 ahp_mode;
TCGv_i32 tmp;
TCGv_i64 vd;
if (!dc_isar_feature(aa32_fpdp_v2, s)) {
return false;
}
if (!dc_isar_feature(aa32_fp16_dpconv, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd & 0x10)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
fpst = fpstatus_ptr(FPST_FPCR);
ahp_mode = get_ahp_flag();
tmp = tcg_temp_new_i32();
/* The T bit tells us if we want the low or high 16 bits of Vm */
tcg_gen_ld16u_i32(tmp, cpu_env, vfp_f16_offset(a->vm, a->t));
vd = tcg_temp_new_i64();
gen_helper_vfp_fcvt_f16_to_f64(vd, tmp, fpst, ahp_mode);
vfp_store_reg64(vd, a->vd);
tcg_temp_free_i32(ahp_mode);
tcg_temp_free_ptr(fpst);
tcg_temp_free_i32(tmp);
tcg_temp_free_i64(vd);
return true;
}
static bool trans_VCVT_f16_f32(DisasContext *s, arg_VCVT_f16_f32 *a)
{
TCGv_ptr fpst;
TCGv_i32 ahp_mode;
TCGv_i32 tmp;
if (!dc_isar_feature(aa32_fp16_spconv, s)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
fpst = fpstatus_ptr(FPST_FPCR);
ahp_mode = get_ahp_flag();
tmp = tcg_temp_new_i32();
vfp_load_reg32(tmp, a->vm);
gen_helper_vfp_fcvt_f32_to_f16(tmp, tmp, fpst, ahp_mode);
tcg_gen_st16_i32(tmp, cpu_env, vfp_f16_offset(a->vd, a->t));
tcg_temp_free_i32(ahp_mode);
tcg_temp_free_ptr(fpst);
tcg_temp_free_i32(tmp);
return true;
}
static bool trans_VCVT_f16_f64(DisasContext *s, arg_VCVT_f16_f64 *a)
{
TCGv_ptr fpst;
TCGv_i32 ahp_mode;
TCGv_i32 tmp;
TCGv_i64 vm;
if (!dc_isar_feature(aa32_fpdp_v2, s)) {
return false;
}
if (!dc_isar_feature(aa32_fp16_dpconv, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_simd_r32, s) && (a->vm & 0x10)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
fpst = fpstatus_ptr(FPST_FPCR);
ahp_mode = get_ahp_flag();
tmp = tcg_temp_new_i32();
vm = tcg_temp_new_i64();
vfp_load_reg64(vm, a->vm);
gen_helper_vfp_fcvt_f64_to_f16(tmp, vm, fpst, ahp_mode);
tcg_temp_free_i64(vm);
tcg_gen_st16_i32(tmp, cpu_env, vfp_f16_offset(a->vd, a->t));
tcg_temp_free_i32(ahp_mode);
tcg_temp_free_ptr(fpst);
tcg_temp_free_i32(tmp);
return true;
}
static bool trans_VRINTR_hp(DisasContext *s, arg_VRINTR_sp *a)
{
TCGv_ptr fpst;
TCGv_i32 tmp;
if (!dc_isar_feature(aa32_fp16_arith, s)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
tmp = tcg_temp_new_i32();
vfp_load_reg32(tmp, a->vm);
fpst = fpstatus_ptr(FPST_FPCR_F16);
gen_helper_rinth(tmp, tmp, fpst);
vfp_store_reg32(tmp, a->vd);
tcg_temp_free_ptr(fpst);
tcg_temp_free_i32(tmp);
return true;
}
static bool trans_VRINTR_sp(DisasContext *s, arg_VRINTR_sp *a)
{
TCGv_ptr fpst;
TCGv_i32 tmp;
if (!dc_isar_feature(aa32_vrint, s)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
tmp = tcg_temp_new_i32();
vfp_load_reg32(tmp, a->vm);
fpst = fpstatus_ptr(FPST_FPCR);
gen_helper_rints(tmp, tmp, fpst);
vfp_store_reg32(tmp, a->vd);
tcg_temp_free_ptr(fpst);
tcg_temp_free_i32(tmp);
return true;
}
static bool trans_VRINTR_dp(DisasContext *s, arg_VRINTR_dp *a)
{
TCGv_ptr fpst;
TCGv_i64 tmp;
if (!dc_isar_feature(aa32_fpdp_v2, s)) {
return false;
}
if (!dc_isar_feature(aa32_vrint, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
tmp = tcg_temp_new_i64();
vfp_load_reg64(tmp, a->vm);
fpst = fpstatus_ptr(FPST_FPCR);
gen_helper_rintd(tmp, tmp, fpst);
vfp_store_reg64(tmp, a->vd);
tcg_temp_free_ptr(fpst);
tcg_temp_free_i64(tmp);
return true;
}
static bool trans_VRINTZ_hp(DisasContext *s, arg_VRINTZ_sp *a)
{
TCGv_ptr fpst;
TCGv_i32 tmp;
TCGv_i32 tcg_rmode;
if (!dc_isar_feature(aa32_fp16_arith, s)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
tmp = tcg_temp_new_i32();
vfp_load_reg32(tmp, a->vm);
fpst = fpstatus_ptr(FPST_FPCR_F16);
tcg_rmode = tcg_const_i32(float_round_to_zero);
gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
gen_helper_rinth(tmp, tmp, fpst);
gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
vfp_store_reg32(tmp, a->vd);
tcg_temp_free_ptr(fpst);
tcg_temp_free_i32(tcg_rmode);
tcg_temp_free_i32(tmp);
return true;
}
static bool trans_VRINTZ_sp(DisasContext *s, arg_VRINTZ_sp *a)
{
TCGv_ptr fpst;
TCGv_i32 tmp;
TCGv_i32 tcg_rmode;
if (!dc_isar_feature(aa32_vrint, s)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
tmp = tcg_temp_new_i32();
vfp_load_reg32(tmp, a->vm);
fpst = fpstatus_ptr(FPST_FPCR);
tcg_rmode = tcg_const_i32(float_round_to_zero);
gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
gen_helper_rints(tmp, tmp, fpst);
gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
vfp_store_reg32(tmp, a->vd);
tcg_temp_free_ptr(fpst);
tcg_temp_free_i32(tcg_rmode);
tcg_temp_free_i32(tmp);
return true;
}
static bool trans_VRINTZ_dp(DisasContext *s, arg_VRINTZ_dp *a)
{
TCGv_ptr fpst;
TCGv_i64 tmp;
TCGv_i32 tcg_rmode;
if (!dc_isar_feature(aa32_fpdp_v2, s)) {
return false;
}
if (!dc_isar_feature(aa32_vrint, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
tmp = tcg_temp_new_i64();
vfp_load_reg64(tmp, a->vm);
fpst = fpstatus_ptr(FPST_FPCR);
tcg_rmode = tcg_const_i32(float_round_to_zero);
gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
gen_helper_rintd(tmp, tmp, fpst);
gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
vfp_store_reg64(tmp, a->vd);
tcg_temp_free_ptr(fpst);
tcg_temp_free_i64(tmp);
tcg_temp_free_i32(tcg_rmode);
return true;
}
static bool trans_VRINTX_hp(DisasContext *s, arg_VRINTX_sp *a)
{
TCGv_ptr fpst;
TCGv_i32 tmp;
if (!dc_isar_feature(aa32_fp16_arith, s)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
tmp = tcg_temp_new_i32();
vfp_load_reg32(tmp, a->vm);
fpst = fpstatus_ptr(FPST_FPCR_F16);
gen_helper_rinth_exact(tmp, tmp, fpst);
vfp_store_reg32(tmp, a->vd);
tcg_temp_free_ptr(fpst);
tcg_temp_free_i32(tmp);
return true;
}
static bool trans_VRINTX_sp(DisasContext *s, arg_VRINTX_sp *a)
{
TCGv_ptr fpst;
TCGv_i32 tmp;
if (!dc_isar_feature(aa32_vrint, s)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
tmp = tcg_temp_new_i32();
vfp_load_reg32(tmp, a->vm);
fpst = fpstatus_ptr(FPST_FPCR);
gen_helper_rints_exact(tmp, tmp, fpst);
vfp_store_reg32(tmp, a->vd);
tcg_temp_free_ptr(fpst);
tcg_temp_free_i32(tmp);
return true;
}
static bool trans_VRINTX_dp(DisasContext *s, arg_VRINTX_dp *a)
{
TCGv_ptr fpst;
TCGv_i64 tmp;
if (!dc_isar_feature(aa32_fpdp_v2, s)) {
return false;
}
if (!dc_isar_feature(aa32_vrint, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
tmp = tcg_temp_new_i64();
vfp_load_reg64(tmp, a->vm);
fpst = fpstatus_ptr(FPST_FPCR);
gen_helper_rintd_exact(tmp, tmp, fpst);
vfp_store_reg64(tmp, a->vd);
tcg_temp_free_ptr(fpst);
tcg_temp_free_i64(tmp);
return true;
}
static bool trans_VCVT_sp(DisasContext *s, arg_VCVT_sp *a)
{
TCGv_i64 vd;
TCGv_i32 vm;
if (!dc_isar_feature(aa32_fpdp_v2, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd & 0x10)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
vm = tcg_temp_new_i32();
vd = tcg_temp_new_i64();
vfp_load_reg32(vm, a->vm);
gen_helper_vfp_fcvtds(vd, vm, cpu_env);
vfp_store_reg64(vd, a->vd);
tcg_temp_free_i32(vm);
tcg_temp_free_i64(vd);
return true;
}
static bool trans_VCVT_dp(DisasContext *s, arg_VCVT_dp *a)
{
TCGv_i64 vm;
TCGv_i32 vd;
if (!dc_isar_feature(aa32_fpdp_v2, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_simd_r32, s) && (a->vm & 0x10)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
vd = tcg_temp_new_i32();
vm = tcg_temp_new_i64();
vfp_load_reg64(vm, a->vm);
gen_helper_vfp_fcvtsd(vd, vm, cpu_env);
vfp_store_reg32(vd, a->vd);
tcg_temp_free_i32(vd);
tcg_temp_free_i64(vm);
return true;
}
static bool trans_VCVT_int_hp(DisasContext *s, arg_VCVT_int_sp *a)
{
TCGv_i32 vm;
TCGv_ptr fpst;
if (!dc_isar_feature(aa32_fp16_arith, s)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
vm = tcg_temp_new_i32();
vfp_load_reg32(vm, a->vm);
fpst = fpstatus_ptr(FPST_FPCR_F16);
if (a->s) {
/* i32 -> f16 */
gen_helper_vfp_sitoh(vm, vm, fpst);
} else {
/* u32 -> f16 */
gen_helper_vfp_uitoh(vm, vm, fpst);
}
vfp_store_reg32(vm, a->vd);
tcg_temp_free_i32(vm);
tcg_temp_free_ptr(fpst);
return true;
}
static bool trans_VCVT_int_sp(DisasContext *s, arg_VCVT_int_sp *a)
{
TCGv_i32 vm;
TCGv_ptr fpst;
if (!dc_isar_feature(aa32_fpsp_v2, s)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
vm = tcg_temp_new_i32();
vfp_load_reg32(vm, a->vm);
fpst = fpstatus_ptr(FPST_FPCR);
if (a->s) {
/* i32 -> f32 */
gen_helper_vfp_sitos(vm, vm, fpst);
} else {
/* u32 -> f32 */
gen_helper_vfp_uitos(vm, vm, fpst);
}
vfp_store_reg32(vm, a->vd);
tcg_temp_free_i32(vm);
tcg_temp_free_ptr(fpst);
return true;
}
static bool trans_VCVT_int_dp(DisasContext *s, arg_VCVT_int_dp *a)
{
TCGv_i32 vm;
TCGv_i64 vd;
TCGv_ptr fpst;
if (!dc_isar_feature(aa32_fpdp_v2, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd & 0x10)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
vm = tcg_temp_new_i32();
vd = tcg_temp_new_i64();
vfp_load_reg32(vm, a->vm);
fpst = fpstatus_ptr(FPST_FPCR);
if (a->s) {
/* i32 -> f64 */
gen_helper_vfp_sitod(vd, vm, fpst);
} else {
/* u32 -> f64 */
gen_helper_vfp_uitod(vd, vm, fpst);
}
vfp_store_reg64(vd, a->vd);
tcg_temp_free_i32(vm);
tcg_temp_free_i64(vd);
tcg_temp_free_ptr(fpst);
return true;
}
static bool trans_VJCVT(DisasContext *s, arg_VJCVT *a)
{
TCGv_i32 vd;
TCGv_i64 vm;
if (!dc_isar_feature(aa32_fpdp_v2, s)) {
return false;
}
if (!dc_isar_feature(aa32_jscvt, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_simd_r32, s) && (a->vm & 0x10)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
vm = tcg_temp_new_i64();
vd = tcg_temp_new_i32();
vfp_load_reg64(vm, a->vm);
gen_helper_vjcvt(vd, vm, cpu_env);
vfp_store_reg32(vd, a->vd);
tcg_temp_free_i64(vm);
tcg_temp_free_i32(vd);
return true;
}
static bool trans_VCVT_fix_hp(DisasContext *s, arg_VCVT_fix_sp *a)
{
TCGv_i32 vd, shift;
TCGv_ptr fpst;
int frac_bits;
if (!dc_isar_feature(aa32_fp16_arith, s)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
frac_bits = (a->opc & 1) ? (32 - a->imm) : (16 - a->imm);
vd = tcg_temp_new_i32();
vfp_load_reg32(vd, a->vd);
fpst = fpstatus_ptr(FPST_FPCR_F16);
shift = tcg_const_i32(frac_bits);
/* Switch on op:U:sx bits */
switch (a->opc) {
case 0:
gen_helper_vfp_shtoh_round_to_nearest(vd, vd, shift, fpst);
break;
case 1:
gen_helper_vfp_sltoh_round_to_nearest(vd, vd, shift, fpst);
break;
case 2:
gen_helper_vfp_uhtoh_round_to_nearest(vd, vd, shift, fpst);
break;
case 3:
gen_helper_vfp_ultoh_round_to_nearest(vd, vd, shift, fpst);
break;
case 4:
gen_helper_vfp_toshh_round_to_zero(vd, vd, shift, fpst);
break;
case 5:
gen_helper_vfp_toslh_round_to_zero(vd, vd, shift, fpst);
break;
case 6:
gen_helper_vfp_touhh_round_to_zero(vd, vd, shift, fpst);
break;
case 7:
gen_helper_vfp_toulh_round_to_zero(vd, vd, shift, fpst);
break;
default:
g_assert_not_reached();
}
vfp_store_reg32(vd, a->vd);
tcg_temp_free_i32(vd);
tcg_temp_free_i32(shift);
tcg_temp_free_ptr(fpst);
return true;
}
static bool trans_VCVT_fix_sp(DisasContext *s, arg_VCVT_fix_sp *a)
{
TCGv_i32 vd, shift;
TCGv_ptr fpst;
int frac_bits;
if (!dc_isar_feature(aa32_fpsp_v3, s)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
frac_bits = (a->opc & 1) ? (32 - a->imm) : (16 - a->imm);
vd = tcg_temp_new_i32();
vfp_load_reg32(vd, a->vd);
fpst = fpstatus_ptr(FPST_FPCR);
shift = tcg_const_i32(frac_bits);
/* Switch on op:U:sx bits */
switch (a->opc) {
case 0:
gen_helper_vfp_shtos_round_to_nearest(vd, vd, shift, fpst);
break;
case 1:
gen_helper_vfp_sltos_round_to_nearest(vd, vd, shift, fpst);
break;
case 2:
gen_helper_vfp_uhtos_round_to_nearest(vd, vd, shift, fpst);
break;
case 3:
gen_helper_vfp_ultos_round_to_nearest(vd, vd, shift, fpst);
break;
case 4:
gen_helper_vfp_toshs_round_to_zero(vd, vd, shift, fpst);
break;
case 5:
gen_helper_vfp_tosls_round_to_zero(vd, vd, shift, fpst);
break;
case 6:
gen_helper_vfp_touhs_round_to_zero(vd, vd, shift, fpst);
break;
case 7:
gen_helper_vfp_touls_round_to_zero(vd, vd, shift, fpst);
break;
default:
g_assert_not_reached();
}
vfp_store_reg32(vd, a->vd);
tcg_temp_free_i32(vd);
tcg_temp_free_i32(shift);
tcg_temp_free_ptr(fpst);
return true;
}
static bool trans_VCVT_fix_dp(DisasContext *s, arg_VCVT_fix_dp *a)
{
TCGv_i64 vd;
TCGv_i32 shift;
TCGv_ptr fpst;
int frac_bits;
if (!dc_isar_feature(aa32_fpdp_v3, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd & 0x10)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
frac_bits = (a->opc & 1) ? (32 - a->imm) : (16 - a->imm);
vd = tcg_temp_new_i64();
vfp_load_reg64(vd, a->vd);
fpst = fpstatus_ptr(FPST_FPCR);
shift = tcg_const_i32(frac_bits);
/* Switch on op:U:sx bits */
switch (a->opc) {
case 0:
gen_helper_vfp_shtod_round_to_nearest(vd, vd, shift, fpst);
break;
case 1:
gen_helper_vfp_sltod_round_to_nearest(vd, vd, shift, fpst);
break;
case 2:
gen_helper_vfp_uhtod_round_to_nearest(vd, vd, shift, fpst);
break;
case 3:
gen_helper_vfp_ultod_round_to_nearest(vd, vd, shift, fpst);
break;
case 4:
gen_helper_vfp_toshd_round_to_zero(vd, vd, shift, fpst);
break;
case 5:
gen_helper_vfp_tosld_round_to_zero(vd, vd, shift, fpst);
break;
case 6:
gen_helper_vfp_touhd_round_to_zero(vd, vd, shift, fpst);
break;
case 7:
gen_helper_vfp_tould_round_to_zero(vd, vd, shift, fpst);
break;
default:
g_assert_not_reached();
}
vfp_store_reg64(vd, a->vd);
tcg_temp_free_i64(vd);
tcg_temp_free_i32(shift);
tcg_temp_free_ptr(fpst);
return true;
}
static bool trans_VCVT_hp_int(DisasContext *s, arg_VCVT_sp_int *a)
{
TCGv_i32 vm;
TCGv_ptr fpst;
if (!dc_isar_feature(aa32_fp16_arith, s)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
fpst = fpstatus_ptr(FPST_FPCR_F16);
vm = tcg_temp_new_i32();
vfp_load_reg32(vm, a->vm);
if (a->s) {
if (a->rz) {
gen_helper_vfp_tosizh(vm, vm, fpst);
} else {
gen_helper_vfp_tosih(vm, vm, fpst);
}
} else {
if (a->rz) {
gen_helper_vfp_touizh(vm, vm, fpst);
} else {
gen_helper_vfp_touih(vm, vm, fpst);
}
}
vfp_store_reg32(vm, a->vd);
tcg_temp_free_i32(vm);
tcg_temp_free_ptr(fpst);
return true;
}
static bool trans_VCVT_sp_int(DisasContext *s, arg_VCVT_sp_int *a)
{
TCGv_i32 vm;
TCGv_ptr fpst;
if (!dc_isar_feature(aa32_fpsp_v2, s)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
fpst = fpstatus_ptr(FPST_FPCR);
vm = tcg_temp_new_i32();
vfp_load_reg32(vm, a->vm);
if (a->s) {
if (a->rz) {
gen_helper_vfp_tosizs(vm, vm, fpst);
} else {
gen_helper_vfp_tosis(vm, vm, fpst);
}
} else {
if (a->rz) {
gen_helper_vfp_touizs(vm, vm, fpst);
} else {
gen_helper_vfp_touis(vm, vm, fpst);
}
}
vfp_store_reg32(vm, a->vd);
tcg_temp_free_i32(vm);
tcg_temp_free_ptr(fpst);
return true;
}
static bool trans_VCVT_dp_int(DisasContext *s, arg_VCVT_dp_int *a)
{
TCGv_i32 vd;
TCGv_i64 vm;
TCGv_ptr fpst;
if (!dc_isar_feature(aa32_fpdp_v2, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_simd_r32, s) && (a->vm & 0x10)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
fpst = fpstatus_ptr(FPST_FPCR);
vm = tcg_temp_new_i64();
vd = tcg_temp_new_i32();
vfp_load_reg64(vm, a->vm);
if (a->s) {
if (a->rz) {
gen_helper_vfp_tosizd(vd, vm, fpst);
} else {
gen_helper_vfp_tosid(vd, vm, fpst);
}
} else {
if (a->rz) {
gen_helper_vfp_touizd(vd, vm, fpst);
} else {
gen_helper_vfp_touid(vd, vm, fpst);
}
}
vfp_store_reg32(vd, a->vd);
tcg_temp_free_i32(vd);
tcg_temp_free_i64(vm);
tcg_temp_free_ptr(fpst);
return true;
}
/*
* Decode VLLDM and VLSTM are nonstandard because:
* * if there is no FPU then these insns must NOP in
* Secure state and UNDEF in Nonsecure state
* * if there is an FPU then these insns do not have
* the usual behaviour that vfp_access_check() provides of
* being controlled by CPACR/NSACR enable bits or the
* lazy-stacking logic.
*/
static bool trans_VLLDM_VLSTM(DisasContext *s, arg_VLLDM_VLSTM *a)
{
TCGv_i32 fptr;
if (!arm_dc_feature(s, ARM_FEATURE_M) ||
!arm_dc_feature(s, ARM_FEATURE_V8)) {
return false;
}
if (a->op) {
/*
* T2 encoding ({D0-D31} reglist): v8.1M and up. We choose not
* to take the IMPDEF option to make memory accesses to the stack
* slots that correspond to the D16-D31 registers (discarding
* read data and writing UNKNOWN values), so for us the T2
* encoding behaves identically to the T1 encoding.
*/
if (!arm_dc_feature(s, ARM_FEATURE_V8_1M)) {
return false;
}
} else {
/*
* T1 encoding ({D0-D15} reglist); undef if we have 32 Dregs.
* This is currently architecturally impossible, but we add the
* check to stay in line with the pseudocode. Note that we must
* emit code for the UNDEF so it takes precedence over the NOCP.
*/
if (dc_isar_feature(aa32_simd_r32, s)) {
unallocated_encoding(s);
return true;
}
}
/*
* If not secure, UNDEF. We must emit code for this
* rather than returning false so that this takes
* precedence over the m-nocp.decode NOCP fallback.
*/
if (!s->v8m_secure) {
unallocated_encoding(s);
return true;
}
/* If no fpu, NOP. */
if (!dc_isar_feature(aa32_vfp, s)) {
return true;
}
fptr = load_reg(s, a->rn);
if (a->l) {
gen_helper_v7m_vlldm(cpu_env, fptr);
} else {
gen_helper_v7m_vlstm(cpu_env, fptr);
}
tcg_temp_free_i32(fptr);
/* End the TB, because we have updated FP control bits */
s->base.is_jmp = DISAS_UPDATE_EXIT;
return true;
}
static bool trans_VSCCLRM(DisasContext *s, arg_VSCCLRM *a)
{
int btmreg, topreg;
TCGv_i64 zero;
TCGv_i32 aspen, sfpa;
if (!dc_isar_feature(aa32_m_sec_state, s)) {
/* Before v8.1M, fall through in decode to NOCP check */
return false;
}
/* Explicitly UNDEF because this takes precedence over NOCP */
if (!arm_dc_feature(s, ARM_FEATURE_M_MAIN) || !s->v8m_secure) {
unallocated_encoding(s);
return true;
}
if (!dc_isar_feature(aa32_vfp_simd, s)) {
/* NOP if we have neither FP nor MVE */
return true;
}
/*
* If FPCCR.ASPEN != 0 && CONTROL_S.SFPA == 0 then there is no
* active floating point context so we must NOP (without doing
* any lazy state preservation or the NOCP check).
*/
aspen = load_cpu_field(v7m.fpccr[M_REG_S]);
sfpa = load_cpu_field(v7m.control[M_REG_S]);
tcg_gen_andi_i32(aspen, aspen, R_V7M_FPCCR_ASPEN_MASK);
tcg_gen_xori_i32(aspen, aspen, R_V7M_FPCCR_ASPEN_MASK);
tcg_gen_andi_i32(sfpa, sfpa, R_V7M_CONTROL_SFPA_MASK);
tcg_gen_or_i32(sfpa, sfpa, aspen);
arm_gen_condlabel(s);
tcg_gen_brcondi_i32(TCG_COND_EQ, sfpa, 0, s->condlabel);
if (s->fp_excp_el != 0) {
gen_exception_insn(s, s->pc_curr, EXCP_NOCP,
syn_uncategorized(), s->fp_excp_el);
return true;
}
topreg = a->vd + a->imm - 1;
btmreg = a->vd;
/* Convert to Sreg numbers if the insn specified in Dregs */
if (a->size == 3) {
topreg = topreg * 2 + 1;
btmreg *= 2;
}
if (topreg > 63 || (topreg > 31 && !(topreg & 1))) {
/* UNPREDICTABLE: we choose to undef */
unallocated_encoding(s);
return true;
}
/* Silently ignore requests to clear D16-D31 if they don't exist */
if (topreg > 31 && !dc_isar_feature(aa32_simd_r32, s)) {
topreg = 31;
}
if (!vfp_access_check(s)) {
return true;
}
/* Zero the Sregs from btmreg to topreg inclusive. */
zero = tcg_const_i64(0);
if (btmreg & 1) {
write_neon_element64(zero, btmreg >> 1, 1, MO_32);
btmreg++;
}
for (; btmreg + 1 <= topreg; btmreg += 2) {
write_neon_element64(zero, btmreg >> 1, 0, MO_64);
}
if (btmreg == topreg) {
write_neon_element64(zero, btmreg >> 1, 0, MO_32);
btmreg++;
}
assert(btmreg == topreg + 1);
/* TODO: when MVE is implemented, zero VPR here */
return true;
}
static bool trans_NOCP(DisasContext *s, arg_nocp *a)
{
/*
* Handle M-profile early check for disabled coprocessor:
* all we need to do here is emit the NOCP exception if
* the coprocessor is disabled. Otherwise we return false
* and the real VFP/etc decode will handle the insn.
*/
assert(arm_dc_feature(s, ARM_FEATURE_M));
if (a->cp == 11) {
a->cp = 10;
}
if (arm_dc_feature(s, ARM_FEATURE_V8_1M) &&
(a->cp == 8 || a->cp == 9 || a->cp == 14 || a->cp == 15)) {
/* in v8.1M cp 8, 9, 14, 15 also are governed by the cp10 enable */
a->cp = 10;
}
if (a->cp != 10) {
gen_exception_insn(s, s->pc_curr, EXCP_NOCP,
syn_uncategorized(), default_exception_el(s));
return true;
}
if (s->fp_excp_el != 0) {
gen_exception_insn(s, s->pc_curr, EXCP_NOCP,
syn_uncategorized(), s->fp_excp_el);
return true;
}
return false;
}
static bool trans_NOCP_8_1(DisasContext *s, arg_nocp *a)
{
/* This range needs a coprocessor check for v8.1M and later only */
if (!arm_dc_feature(s, ARM_FEATURE_V8_1M)) {
return false;
}
return trans_NOCP(s, a);
}
static bool trans_VINS(DisasContext *s, arg_VINS *a)
{
TCGv_i32 rd, rm;
if (!dc_isar_feature(aa32_fp16_arith, s)) {
return false;
}
if (s->vec_len != 0 || s->vec_stride != 0) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
/* Insert low half of Vm into high half of Vd */
rm = tcg_temp_new_i32();
rd = tcg_temp_new_i32();
vfp_load_reg32(rm, a->vm);
vfp_load_reg32(rd, a->vd);
tcg_gen_deposit_i32(rd, rd, rm, 16, 16);
vfp_store_reg32(rd, a->vd);
tcg_temp_free_i32(rm);
tcg_temp_free_i32(rd);
return true;
}
static bool trans_VMOVX(DisasContext *s, arg_VINS *a)
{
TCGv_i32 rm;
if (!dc_isar_feature(aa32_fp16_arith, s)) {
return false;
}
if (s->vec_len != 0 || s->vec_stride != 0) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
/* Set Vd to high half of Vm */
rm = tcg_temp_new_i32();
vfp_load_reg32(rm, a->vm);
tcg_gen_shri_i32(rm, rm, 16);
vfp_store_reg32(rm, a->vd);
tcg_temp_free_i32(rm);
return true;
}