| /* |
| * Alpha emulation cpu micro-operations helpers for qemu. |
| * |
| * Copyright (c) 2007 Jocelyn Mayer |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "exec.h" |
| #include "host-utils.h" |
| #include "softfloat.h" |
| #include "helper.h" |
| |
| void helper_tb_flush (void) |
| { |
| tb_flush(env); |
| } |
| |
| /*****************************************************************************/ |
| /* Exceptions processing helpers */ |
| void helper_excp (int excp, int error) |
| { |
| env->exception_index = excp; |
| env->error_code = error; |
| cpu_loop_exit(); |
| } |
| |
| uint64_t helper_load_pcc (void) |
| { |
| /* XXX: TODO */ |
| return 0; |
| } |
| |
| uint64_t helper_load_fpcr (void) |
| { |
| uint64_t ret = 0; |
| #ifdef CONFIG_SOFTFLOAT |
| ret |= env->fp_status.float_exception_flags << 52; |
| if (env->fp_status.float_exception_flags) |
| ret |= 1ULL << 63; |
| env->ipr[IPR_EXC_SUM] &= ~0x3E: |
| env->ipr[IPR_EXC_SUM] |= env->fp_status.float_exception_flags << 1; |
| #endif |
| switch (env->fp_status.float_rounding_mode) { |
| case float_round_nearest_even: |
| ret |= 2ULL << 58; |
| break; |
| case float_round_down: |
| ret |= 1ULL << 58; |
| break; |
| case float_round_up: |
| ret |= 3ULL << 58; |
| break; |
| case float_round_to_zero: |
| break; |
| } |
| return ret; |
| } |
| |
| void helper_store_fpcr (uint64_t val) |
| { |
| #ifdef CONFIG_SOFTFLOAT |
| set_float_exception_flags((val >> 52) & 0x3F, &FP_STATUS); |
| #endif |
| switch ((val >> 58) & 3) { |
| case 0: |
| set_float_rounding_mode(float_round_to_zero, &FP_STATUS); |
| break; |
| case 1: |
| set_float_rounding_mode(float_round_down, &FP_STATUS); |
| break; |
| case 2: |
| set_float_rounding_mode(float_round_nearest_even, &FP_STATUS); |
| break; |
| case 3: |
| set_float_rounding_mode(float_round_up, &FP_STATUS); |
| break; |
| } |
| } |
| |
| static a_spinlock intr_cpu_lock = SPIN_LOCK_UNLOCKED; |
| |
| uint64_t helper_rs(void) |
| { |
| uint64_t tmp; |
| |
| spin_lock(&intr_cpu_lock); |
| tmp = env->intr_flag; |
| env->intr_flag = 1; |
| spin_unlock(&intr_cpu_lock); |
| |
| return tmp; |
| } |
| |
| uint64_t helper_rc(void) |
| { |
| uint64_t tmp; |
| |
| spin_lock(&intr_cpu_lock); |
| tmp = env->intr_flag; |
| env->intr_flag = 0; |
| spin_unlock(&intr_cpu_lock); |
| |
| return tmp; |
| } |
| |
| uint64_t helper_addqv (uint64_t op1, uint64_t op2) |
| { |
| uint64_t tmp = op1; |
| op1 += op2; |
| if (unlikely((tmp ^ op2 ^ (-1ULL)) & (tmp ^ op1) & (1ULL << 63))) { |
| helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW); |
| } |
| return op1; |
| } |
| |
| uint64_t helper_addlv (uint64_t op1, uint64_t op2) |
| { |
| uint64_t tmp = op1; |
| op1 = (uint32_t)(op1 + op2); |
| if (unlikely((tmp ^ op2 ^ (-1UL)) & (tmp ^ op1) & (1UL << 31))) { |
| helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW); |
| } |
| return op1; |
| } |
| |
| uint64_t helper_subqv (uint64_t op1, uint64_t op2) |
| { |
| uint64_t res; |
| res = op1 - op2; |
| if (unlikely((op1 ^ op2) & (res ^ op1) & (1ULL << 63))) { |
| helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW); |
| } |
| return res; |
| } |
| |
| uint64_t helper_sublv (uint64_t op1, uint64_t op2) |
| { |
| uint32_t res; |
| res = op1 - op2; |
| if (unlikely((op1 ^ op2) & (res ^ op1) & (1UL << 31))) { |
| helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW); |
| } |
| return res; |
| } |
| |
| uint64_t helper_mullv (uint64_t op1, uint64_t op2) |
| { |
| int64_t res = (int64_t)op1 * (int64_t)op2; |
| |
| if (unlikely((int32_t)res != res)) { |
| helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW); |
| } |
| return (int64_t)((int32_t)res); |
| } |
| |
| uint64_t helper_mulqv (uint64_t op1, uint64_t op2) |
| { |
| uint64_t tl, th; |
| |
| muls64(&tl, &th, op1, op2); |
| /* If th != 0 && th != -1, then we had an overflow */ |
| if (unlikely((th + 1) > 1)) { |
| helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW); |
| } |
| return tl; |
| } |
| |
| uint64_t helper_umulh (uint64_t op1, uint64_t op2) |
| { |
| uint64_t tl, th; |
| |
| mulu64(&tl, &th, op1, op2); |
| return th; |
| } |
| |
| uint64_t helper_ctpop (uint64_t arg) |
| { |
| return ctpop64(arg); |
| } |
| |
| uint64_t helper_ctlz (uint64_t arg) |
| { |
| return clz64(arg); |
| } |
| |
| uint64_t helper_cttz (uint64_t arg) |
| { |
| return ctz64(arg); |
| } |
| |
| static inline uint64_t byte_zap(uint64_t op, uint8_t mskb) |
| { |
| uint64_t mask; |
| |
| mask = 0; |
| mask |= ((mskb >> 0) & 1) * 0x00000000000000FFULL; |
| mask |= ((mskb >> 1) & 1) * 0x000000000000FF00ULL; |
| mask |= ((mskb >> 2) & 1) * 0x0000000000FF0000ULL; |
| mask |= ((mskb >> 3) & 1) * 0x00000000FF000000ULL; |
| mask |= ((mskb >> 4) & 1) * 0x000000FF00000000ULL; |
| mask |= ((mskb >> 5) & 1) * 0x0000FF0000000000ULL; |
| mask |= ((mskb >> 6) & 1) * 0x00FF000000000000ULL; |
| mask |= ((mskb >> 7) & 1) * 0xFF00000000000000ULL; |
| |
| return op & ~mask; |
| } |
| |
| uint64_t helper_mskbl(uint64_t val, uint64_t mask) |
| { |
| return byte_zap(val, 0x01 << (mask & 7)); |
| } |
| |
| uint64_t helper_insbl(uint64_t val, uint64_t mask) |
| { |
| val <<= (mask & 7) * 8; |
| return byte_zap(val, ~(0x01 << (mask & 7))); |
| } |
| |
| uint64_t helper_mskwl(uint64_t val, uint64_t mask) |
| { |
| return byte_zap(val, 0x03 << (mask & 7)); |
| } |
| |
| uint64_t helper_inswl(uint64_t val, uint64_t mask) |
| { |
| val <<= (mask & 7) * 8; |
| return byte_zap(val, ~(0x03 << (mask & 7))); |
| } |
| |
| uint64_t helper_mskll(uint64_t val, uint64_t mask) |
| { |
| return byte_zap(val, 0x0F << (mask & 7)); |
| } |
| |
| uint64_t helper_insll(uint64_t val, uint64_t mask) |
| { |
| val <<= (mask & 7) * 8; |
| return byte_zap(val, ~(0x0F << (mask & 7))); |
| } |
| |
| uint64_t helper_zap(uint64_t val, uint64_t mask) |
| { |
| return byte_zap(val, mask); |
| } |
| |
| uint64_t helper_zapnot(uint64_t val, uint64_t mask) |
| { |
| return byte_zap(val, ~mask); |
| } |
| |
| uint64_t helper_mskql(uint64_t val, uint64_t mask) |
| { |
| return byte_zap(val, 0xFF << (mask & 7)); |
| } |
| |
| uint64_t helper_insql(uint64_t val, uint64_t mask) |
| { |
| val <<= (mask & 7) * 8; |
| return byte_zap(val, ~(0xFF << (mask & 7))); |
| } |
| |
| uint64_t helper_mskwh(uint64_t val, uint64_t mask) |
| { |
| return byte_zap(val, (0x03 << (mask & 7)) >> 8); |
| } |
| |
| uint64_t helper_inswh(uint64_t val, uint64_t mask) |
| { |
| val >>= 64 - ((mask & 7) * 8); |
| return byte_zap(val, ~((0x03 << (mask & 7)) >> 8)); |
| } |
| |
| uint64_t helper_msklh(uint64_t val, uint64_t mask) |
| { |
| return byte_zap(val, (0x0F << (mask & 7)) >> 8); |
| } |
| |
| uint64_t helper_inslh(uint64_t val, uint64_t mask) |
| { |
| val >>= 64 - ((mask & 7) * 8); |
| return byte_zap(val, ~((0x0F << (mask & 7)) >> 8)); |
| } |
| |
| uint64_t helper_mskqh(uint64_t val, uint64_t mask) |
| { |
| return byte_zap(val, (0xFF << (mask & 7)) >> 8); |
| } |
| |
| uint64_t helper_insqh(uint64_t val, uint64_t mask) |
| { |
| val >>= 64 - ((mask & 7) * 8); |
| return byte_zap(val, ~((0xFF << (mask & 7)) >> 8)); |
| } |
| |
| uint64_t helper_cmpbge (uint64_t op1, uint64_t op2) |
| { |
| uint8_t opa, opb, res; |
| int i; |
| |
| res = 0; |
| for (i = 0; i < 8; i++) { |
| opa = op1 >> (i * 8); |
| opb = op2 >> (i * 8); |
| if (opa >= opb) |
| res |= 1 << i; |
| } |
| return res; |
| } |
| |
| /* Floating point helpers */ |
| |
| /* F floating (VAX) */ |
| static inline uint64_t float32_to_f(float32 fa) |
| { |
| uint64_t r, exp, mant, sig; |
| CPU_FloatU a; |
| |
| a.f = fa; |
| sig = ((uint64_t)a.l & 0x80000000) << 32; |
| exp = (a.l >> 23) & 0xff; |
| mant = ((uint64_t)a.l & 0x007fffff) << 29; |
| |
| if (exp == 255) { |
| /* NaN or infinity */ |
| r = 1; /* VAX dirty zero */ |
| } else if (exp == 0) { |
| if (mant == 0) { |
| /* Zero */ |
| r = 0; |
| } else { |
| /* Denormalized */ |
| r = sig | ((exp + 1) << 52) | mant; |
| } |
| } else { |
| if (exp >= 253) { |
| /* Overflow */ |
| r = 1; /* VAX dirty zero */ |
| } else { |
| r = sig | ((exp + 2) << 52); |
| } |
| } |
| |
| return r; |
| } |
| |
| static inline float32 f_to_float32(uint64_t a) |
| { |
| uint32_t exp, mant_sig; |
| CPU_FloatU r; |
| |
| exp = ((a >> 55) & 0x80) | ((a >> 52) & 0x7f); |
| mant_sig = ((a >> 32) & 0x80000000) | ((a >> 29) & 0x007fffff); |
| |
| if (unlikely(!exp && mant_sig)) { |
| /* Reserved operands / Dirty zero */ |
| helper_excp(EXCP_OPCDEC, 0); |
| } |
| |
| if (exp < 3) { |
| /* Underflow */ |
| r.l = 0; |
| } else { |
| r.l = ((exp - 2) << 23) | mant_sig; |
| } |
| |
| return r.f; |
| } |
| |
| uint32_t helper_f_to_memory (uint64_t a) |
| { |
| uint32_t r; |
| r = (a & 0x00001fffe0000000ull) >> 13; |
| r |= (a & 0x07ffe00000000000ull) >> 45; |
| r |= (a & 0xc000000000000000ull) >> 48; |
| return r; |
| } |
| |
| uint64_t helper_memory_to_f (uint32_t a) |
| { |
| uint64_t r; |
| r = ((uint64_t)(a & 0x0000c000)) << 48; |
| r |= ((uint64_t)(a & 0x003fffff)) << 45; |
| r |= ((uint64_t)(a & 0xffff0000)) << 13; |
| if (!(a & 0x00004000)) |
| r |= 0x7ll << 59; |
| return r; |
| } |
| |
| uint64_t helper_addf (uint64_t a, uint64_t b) |
| { |
| float32 fa, fb, fr; |
| |
| fa = f_to_float32(a); |
| fb = f_to_float32(b); |
| fr = float32_add(fa, fb, &FP_STATUS); |
| return float32_to_f(fr); |
| } |
| |
| uint64_t helper_subf (uint64_t a, uint64_t b) |
| { |
| float32 fa, fb, fr; |
| |
| fa = f_to_float32(a); |
| fb = f_to_float32(b); |
| fr = float32_sub(fa, fb, &FP_STATUS); |
| return float32_to_f(fr); |
| } |
| |
| uint64_t helper_mulf (uint64_t a, uint64_t b) |
| { |
| float32 fa, fb, fr; |
| |
| fa = f_to_float32(a); |
| fb = f_to_float32(b); |
| fr = float32_mul(fa, fb, &FP_STATUS); |
| return float32_to_f(fr); |
| } |
| |
| uint64_t helper_divf (uint64_t a, uint64_t b) |
| { |
| float32 fa, fb, fr; |
| |
| fa = f_to_float32(a); |
| fb = f_to_float32(b); |
| fr = float32_div(fa, fb, &FP_STATUS); |
| return float32_to_f(fr); |
| } |
| |
| uint64_t helper_sqrtf (uint64_t t) |
| { |
| float32 ft, fr; |
| |
| ft = f_to_float32(t); |
| fr = float32_sqrt(ft, &FP_STATUS); |
| return float32_to_f(fr); |
| } |
| |
| |
| /* G floating (VAX) */ |
| static inline uint64_t float64_to_g(float64 fa) |
| { |
| uint64_t r, exp, mant, sig; |
| CPU_DoubleU a; |
| |
| a.d = fa; |
| sig = a.ll & 0x8000000000000000ull; |
| exp = (a.ll >> 52) & 0x7ff; |
| mant = a.ll & 0x000fffffffffffffull; |
| |
| if (exp == 2047) { |
| /* NaN or infinity */ |
| r = 1; /* VAX dirty zero */ |
| } else if (exp == 0) { |
| if (mant == 0) { |
| /* Zero */ |
| r = 0; |
| } else { |
| /* Denormalized */ |
| r = sig | ((exp + 1) << 52) | mant; |
| } |
| } else { |
| if (exp >= 2045) { |
| /* Overflow */ |
| r = 1; /* VAX dirty zero */ |
| } else { |
| r = sig | ((exp + 2) << 52); |
| } |
| } |
| |
| return r; |
| } |
| |
| static inline float64 g_to_float64(uint64_t a) |
| { |
| uint64_t exp, mant_sig; |
| CPU_DoubleU r; |
| |
| exp = (a >> 52) & 0x7ff; |
| mant_sig = a & 0x800fffffffffffffull; |
| |
| if (!exp && mant_sig) { |
| /* Reserved operands / Dirty zero */ |
| helper_excp(EXCP_OPCDEC, 0); |
| } |
| |
| if (exp < 3) { |
| /* Underflow */ |
| r.ll = 0; |
| } else { |
| r.ll = ((exp - 2) << 52) | mant_sig; |
| } |
| |
| return r.d; |
| } |
| |
| uint64_t helper_g_to_memory (uint64_t a) |
| { |
| uint64_t r; |
| r = (a & 0x000000000000ffffull) << 48; |
| r |= (a & 0x00000000ffff0000ull) << 16; |
| r |= (a & 0x0000ffff00000000ull) >> 16; |
| r |= (a & 0xffff000000000000ull) >> 48; |
| return r; |
| } |
| |
| uint64_t helper_memory_to_g (uint64_t a) |
| { |
| uint64_t r; |
| r = (a & 0x000000000000ffffull) << 48; |
| r |= (a & 0x00000000ffff0000ull) << 16; |
| r |= (a & 0x0000ffff00000000ull) >> 16; |
| r |= (a & 0xffff000000000000ull) >> 48; |
| return r; |
| } |
| |
| uint64_t helper_addg (uint64_t a, uint64_t b) |
| { |
| float64 fa, fb, fr; |
| |
| fa = g_to_float64(a); |
| fb = g_to_float64(b); |
| fr = float64_add(fa, fb, &FP_STATUS); |
| return float64_to_g(fr); |
| } |
| |
| uint64_t helper_subg (uint64_t a, uint64_t b) |
| { |
| float64 fa, fb, fr; |
| |
| fa = g_to_float64(a); |
| fb = g_to_float64(b); |
| fr = float64_sub(fa, fb, &FP_STATUS); |
| return float64_to_g(fr); |
| } |
| |
| uint64_t helper_mulg (uint64_t a, uint64_t b) |
| { |
| float64 fa, fb, fr; |
| |
| fa = g_to_float64(a); |
| fb = g_to_float64(b); |
| fr = float64_mul(fa, fb, &FP_STATUS); |
| return float64_to_g(fr); |
| } |
| |
| uint64_t helper_divg (uint64_t a, uint64_t b) |
| { |
| float64 fa, fb, fr; |
| |
| fa = g_to_float64(a); |
| fb = g_to_float64(b); |
| fr = float64_div(fa, fb, &FP_STATUS); |
| return float64_to_g(fr); |
| } |
| |
| uint64_t helper_sqrtg (uint64_t a) |
| { |
| float64 fa, fr; |
| |
| fa = g_to_float64(a); |
| fr = float64_sqrt(fa, &FP_STATUS); |
| return float64_to_g(fr); |
| } |
| |
| |
| /* S floating (single) */ |
| static inline uint64_t float32_to_s(float32 fa) |
| { |
| CPU_FloatU a; |
| uint64_t r; |
| |
| a.f = fa; |
| |
| r = (((uint64_t)(a.l & 0xc0000000)) << 32) | (((uint64_t)(a.l & 0x3fffffff)) << 29); |
| if (((a.l & 0x7f800000) != 0x7f800000) && (!(a.l & 0x40000000))) |
| r |= 0x7ll << 59; |
| return r; |
| } |
| |
| static inline float32 s_to_float32(uint64_t a) |
| { |
| CPU_FloatU r; |
| r.l = ((a >> 32) & 0xc0000000) | ((a >> 29) & 0x3fffffff); |
| return r.f; |
| } |
| |
| uint32_t helper_s_to_memory (uint64_t a) |
| { |
| /* Memory format is the same as float32 */ |
| float32 fa = s_to_float32(a); |
| return *(uint32_t*)(&fa); |
| } |
| |
| uint64_t helper_memory_to_s (uint32_t a) |
| { |
| /* Memory format is the same as float32 */ |
| return float32_to_s(*(float32*)(&a)); |
| } |
| |
| uint64_t helper_adds (uint64_t a, uint64_t b) |
| { |
| float32 fa, fb, fr; |
| |
| fa = s_to_float32(a); |
| fb = s_to_float32(b); |
| fr = float32_add(fa, fb, &FP_STATUS); |
| return float32_to_s(fr); |
| } |
| |
| uint64_t helper_subs (uint64_t a, uint64_t b) |
| { |
| float32 fa, fb, fr; |
| |
| fa = s_to_float32(a); |
| fb = s_to_float32(b); |
| fr = float32_sub(fa, fb, &FP_STATUS); |
| return float32_to_s(fr); |
| } |
| |
| uint64_t helper_muls (uint64_t a, uint64_t b) |
| { |
| float32 fa, fb, fr; |
| |
| fa = s_to_float32(a); |
| fb = s_to_float32(b); |
| fr = float32_mul(fa, fb, &FP_STATUS); |
| return float32_to_s(fr); |
| } |
| |
| uint64_t helper_divs (uint64_t a, uint64_t b) |
| { |
| float32 fa, fb, fr; |
| |
| fa = s_to_float32(a); |
| fb = s_to_float32(b); |
| fr = float32_div(fa, fb, &FP_STATUS); |
| return float32_to_s(fr); |
| } |
| |
| uint64_t helper_sqrts (uint64_t a) |
| { |
| float32 fa, fr; |
| |
| fa = s_to_float32(a); |
| fr = float32_sqrt(fa, &FP_STATUS); |
| return float32_to_s(fr); |
| } |
| |
| |
| /* T floating (double) */ |
| static inline float64 t_to_float64(uint64_t a) |
| { |
| /* Memory format is the same as float64 */ |
| CPU_DoubleU r; |
| r.ll = a; |
| return r.d; |
| } |
| |
| static inline uint64_t float64_to_t(float64 fa) |
| { |
| /* Memory format is the same as float64 */ |
| CPU_DoubleU r; |
| r.d = fa; |
| return r.ll; |
| } |
| |
| uint64_t helper_addt (uint64_t a, uint64_t b) |
| { |
| float64 fa, fb, fr; |
| |
| fa = t_to_float64(a); |
| fb = t_to_float64(b); |
| fr = float64_add(fa, fb, &FP_STATUS); |
| return float64_to_t(fr); |
| } |
| |
| uint64_t helper_subt (uint64_t a, uint64_t b) |
| { |
| float64 fa, fb, fr; |
| |
| fa = t_to_float64(a); |
| fb = t_to_float64(b); |
| fr = float64_sub(fa, fb, &FP_STATUS); |
| return float64_to_t(fr); |
| } |
| |
| uint64_t helper_mult (uint64_t a, uint64_t b) |
| { |
| float64 fa, fb, fr; |
| |
| fa = t_to_float64(a); |
| fb = t_to_float64(b); |
| fr = float64_mul(fa, fb, &FP_STATUS); |
| return float64_to_t(fr); |
| } |
| |
| uint64_t helper_divt (uint64_t a, uint64_t b) |
| { |
| float64 fa, fb, fr; |
| |
| fa = t_to_float64(a); |
| fb = t_to_float64(b); |
| fr = float64_div(fa, fb, &FP_STATUS); |
| return float64_to_t(fr); |
| } |
| |
| uint64_t helper_sqrtt (uint64_t a) |
| { |
| float64 fa, fr; |
| |
| fa = t_to_float64(a); |
| fr = float64_sqrt(fa, &FP_STATUS); |
| return float64_to_t(fr); |
| } |
| |
| |
| /* Sign copy */ |
| uint64_t helper_cpys(uint64_t a, uint64_t b) |
| { |
| return (a & 0x8000000000000000ULL) | (b & ~0x8000000000000000ULL); |
| } |
| |
| uint64_t helper_cpysn(uint64_t a, uint64_t b) |
| { |
| return ((~a) & 0x8000000000000000ULL) | (b & ~0x8000000000000000ULL); |
| } |
| |
| uint64_t helper_cpyse(uint64_t a, uint64_t b) |
| { |
| return (a & 0xFFF0000000000000ULL) | (b & ~0xFFF0000000000000ULL); |
| } |
| |
| |
| /* Comparisons */ |
| uint64_t helper_cmptun (uint64_t a, uint64_t b) |
| { |
| float64 fa, fb; |
| |
| fa = t_to_float64(a); |
| fb = t_to_float64(b); |
| |
| if (float64_is_nan(fa) || float64_is_nan(fb)) |
| return 0x4000000000000000ULL; |
| else |
| return 0; |
| } |
| |
| uint64_t helper_cmpteq(uint64_t a, uint64_t b) |
| { |
| float64 fa, fb; |
| |
| fa = t_to_float64(a); |
| fb = t_to_float64(b); |
| |
| if (float64_eq(fa, fb, &FP_STATUS)) |
| return 0x4000000000000000ULL; |
| else |
| return 0; |
| } |
| |
| uint64_t helper_cmptle(uint64_t a, uint64_t b) |
| { |
| float64 fa, fb; |
| |
| fa = t_to_float64(a); |
| fb = t_to_float64(b); |
| |
| if (float64_le(fa, fb, &FP_STATUS)) |
| return 0x4000000000000000ULL; |
| else |
| return 0; |
| } |
| |
| uint64_t helper_cmptlt(uint64_t a, uint64_t b) |
| { |
| float64 fa, fb; |
| |
| fa = t_to_float64(a); |
| fb = t_to_float64(b); |
| |
| if (float64_lt(fa, fb, &FP_STATUS)) |
| return 0x4000000000000000ULL; |
| else |
| return 0; |
| } |
| |
| uint64_t helper_cmpgeq(uint64_t a, uint64_t b) |
| { |
| float64 fa, fb; |
| |
| fa = g_to_float64(a); |
| fb = g_to_float64(b); |
| |
| if (float64_eq(fa, fb, &FP_STATUS)) |
| return 0x4000000000000000ULL; |
| else |
| return 0; |
| } |
| |
| uint64_t helper_cmpgle(uint64_t a, uint64_t b) |
| { |
| float64 fa, fb; |
| |
| fa = g_to_float64(a); |
| fb = g_to_float64(b); |
| |
| if (float64_le(fa, fb, &FP_STATUS)) |
| return 0x4000000000000000ULL; |
| else |
| return 0; |
| } |
| |
| uint64_t helper_cmpglt(uint64_t a, uint64_t b) |
| { |
| float64 fa, fb; |
| |
| fa = g_to_float64(a); |
| fb = g_to_float64(b); |
| |
| if (float64_lt(fa, fb, &FP_STATUS)) |
| return 0x4000000000000000ULL; |
| else |
| return 0; |
| } |
| |
| uint64_t helper_cmpfeq (uint64_t a) |
| { |
| return !(a & 0x7FFFFFFFFFFFFFFFULL); |
| } |
| |
| uint64_t helper_cmpfne (uint64_t a) |
| { |
| return (a & 0x7FFFFFFFFFFFFFFFULL); |
| } |
| |
| uint64_t helper_cmpflt (uint64_t a) |
| { |
| return (a & 0x8000000000000000ULL) && (a & 0x7FFFFFFFFFFFFFFFULL); |
| } |
| |
| uint64_t helper_cmpfle (uint64_t a) |
| { |
| return (a & 0x8000000000000000ULL) || !(a & 0x7FFFFFFFFFFFFFFFULL); |
| } |
| |
| uint64_t helper_cmpfgt (uint64_t a) |
| { |
| return !(a & 0x8000000000000000ULL) && (a & 0x7FFFFFFFFFFFFFFFULL); |
| } |
| |
| uint64_t helper_cmpfge (uint64_t a) |
| { |
| return !(a & 0x8000000000000000ULL) || !(a & 0x7FFFFFFFFFFFFFFFULL); |
| } |
| |
| |
| /* Floating point format conversion */ |
| uint64_t helper_cvtts (uint64_t a) |
| { |
| float64 fa; |
| float32 fr; |
| |
| fa = t_to_float64(a); |
| fr = float64_to_float32(fa, &FP_STATUS); |
| return float32_to_s(fr); |
| } |
| |
| uint64_t helper_cvtst (uint64_t a) |
| { |
| float32 fa; |
| float64 fr; |
| |
| fa = s_to_float32(a); |
| fr = float32_to_float64(fa, &FP_STATUS); |
| return float64_to_t(fr); |
| } |
| |
| uint64_t helper_cvtqs (uint64_t a) |
| { |
| float32 fr = int64_to_float32(a, &FP_STATUS); |
| return float32_to_s(fr); |
| } |
| |
| uint64_t helper_cvttq (uint64_t a) |
| { |
| float64 fa = t_to_float64(a); |
| return float64_to_int64_round_to_zero(fa, &FP_STATUS); |
| } |
| |
| uint64_t helper_cvtqt (uint64_t a) |
| { |
| float64 fr = int64_to_float64(a, &FP_STATUS); |
| return float64_to_t(fr); |
| } |
| |
| uint64_t helper_cvtqf (uint64_t a) |
| { |
| float32 fr = int64_to_float32(a, &FP_STATUS); |
| return float32_to_f(fr); |
| } |
| |
| uint64_t helper_cvtgf (uint64_t a) |
| { |
| float64 fa; |
| float32 fr; |
| |
| fa = g_to_float64(a); |
| fr = float64_to_float32(fa, &FP_STATUS); |
| return float32_to_f(fr); |
| } |
| |
| uint64_t helper_cvtgq (uint64_t a) |
| { |
| float64 fa = g_to_float64(a); |
| return float64_to_int64_round_to_zero(fa, &FP_STATUS); |
| } |
| |
| uint64_t helper_cvtqg (uint64_t a) |
| { |
| float64 fr; |
| fr = int64_to_float64(a, &FP_STATUS); |
| return float64_to_g(fr); |
| } |
| |
| uint64_t helper_cvtlq (uint64_t a) |
| { |
| return (int64_t)((int32_t)((a >> 32) | ((a >> 29) & 0x3FFFFFFF))); |
| } |
| |
| static inline uint64_t __helper_cvtql(uint64_t a, int s, int v) |
| { |
| uint64_t r; |
| |
| r = ((uint64_t)(a & 0xC0000000)) << 32; |
| r |= ((uint64_t)(a & 0x7FFFFFFF)) << 29; |
| |
| if (v && (int64_t)((int32_t)r) != (int64_t)r) { |
| helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW); |
| } |
| if (s) { |
| /* TODO */ |
| } |
| return r; |
| } |
| |
| uint64_t helper_cvtql (uint64_t a) |
| { |
| return __helper_cvtql(a, 0, 0); |
| } |
| |
| uint64_t helper_cvtqlv (uint64_t a) |
| { |
| return __helper_cvtql(a, 0, 1); |
| } |
| |
| uint64_t helper_cvtqlsv (uint64_t a) |
| { |
| return __helper_cvtql(a, 1, 1); |
| } |
| |
| /* PALcode support special instructions */ |
| #if !defined (CONFIG_USER_ONLY) |
| void helper_hw_rei (void) |
| { |
| env->pc = env->ipr[IPR_EXC_ADDR] & ~3; |
| env->ipr[IPR_EXC_ADDR] = env->ipr[IPR_EXC_ADDR] & 1; |
| /* XXX: re-enable interrupts and memory mapping */ |
| } |
| |
| void helper_hw_ret (uint64_t a) |
| { |
| env->pc = a & ~3; |
| env->ipr[IPR_EXC_ADDR] = a & 1; |
| /* XXX: re-enable interrupts and memory mapping */ |
| } |
| |
| uint64_t helper_mfpr (int iprn, uint64_t val) |
| { |
| uint64_t tmp; |
| |
| if (cpu_alpha_mfpr(env, iprn, &tmp) == 0) |
| val = tmp; |
| |
| return val; |
| } |
| |
| void helper_mtpr (int iprn, uint64_t val) |
| { |
| cpu_alpha_mtpr(env, iprn, val, NULL); |
| } |
| |
| void helper_set_alt_mode (void) |
| { |
| env->saved_mode = env->ps & 0xC; |
| env->ps = (env->ps & ~0xC) | (env->ipr[IPR_ALT_MODE] & 0xC); |
| } |
| |
| void helper_restore_mode (void) |
| { |
| env->ps = (env->ps & ~0xC) | env->saved_mode; |
| } |
| |
| #endif |
| |
| /*****************************************************************************/ |
| /* Softmmu support */ |
| #if !defined (CONFIG_USER_ONLY) |
| |
| /* XXX: the two following helpers are pure hacks. |
| * Hopefully, we emulate the PALcode, then we should never see |
| * HW_LD / HW_ST instructions. |
| */ |
| uint64_t helper_ld_virt_to_phys (uint64_t virtaddr) |
| { |
| uint64_t tlb_addr, physaddr; |
| int index, mmu_idx; |
| void *retaddr; |
| |
| mmu_idx = cpu_mmu_index(env); |
| index = (virtaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
| redo: |
| tlb_addr = env->tlb_table[mmu_idx][index].addr_read; |
| if ((virtaddr & TARGET_PAGE_MASK) == |
| (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { |
| physaddr = virtaddr + env->tlb_table[mmu_idx][index].addend; |
| } else { |
| /* the page is not in the TLB : fill it */ |
| retaddr = GETPC(); |
| tlb_fill(virtaddr, 0, mmu_idx, retaddr); |
| goto redo; |
| } |
| return physaddr; |
| } |
| |
| uint64_t helper_st_virt_to_phys (uint64_t virtaddr) |
| { |
| uint64_t tlb_addr, physaddr; |
| int index, mmu_idx; |
| void *retaddr; |
| |
| mmu_idx = cpu_mmu_index(env); |
| index = (virtaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
| redo: |
| tlb_addr = env->tlb_table[mmu_idx][index].addr_write; |
| if ((virtaddr & TARGET_PAGE_MASK) == |
| (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { |
| physaddr = virtaddr + env->tlb_table[mmu_idx][index].addend; |
| } else { |
| /* the page is not in the TLB : fill it */ |
| retaddr = GETPC(); |
| tlb_fill(virtaddr, 1, mmu_idx, retaddr); |
| goto redo; |
| } |
| return physaddr; |
| } |
| |
| void helper_ldl_raw(uint64_t t0, uint64_t t1) |
| { |
| ldl_raw(t1, t0); |
| } |
| |
| void helper_ldq_raw(uint64_t t0, uint64_t t1) |
| { |
| ldq_raw(t1, t0); |
| } |
| |
| void helper_ldl_l_raw(uint64_t t0, uint64_t t1) |
| { |
| env->lock = t1; |
| ldl_raw(t1, t0); |
| } |
| |
| void helper_ldq_l_raw(uint64_t t0, uint64_t t1) |
| { |
| env->lock = t1; |
| ldl_raw(t1, t0); |
| } |
| |
| void helper_ldl_kernel(uint64_t t0, uint64_t t1) |
| { |
| ldl_kernel(t1, t0); |
| } |
| |
| void helper_ldq_kernel(uint64_t t0, uint64_t t1) |
| { |
| ldq_kernel(t1, t0); |
| } |
| |
| void helper_ldl_data(uint64_t t0, uint64_t t1) |
| { |
| ldl_data(t1, t0); |
| } |
| |
| void helper_ldq_data(uint64_t t0, uint64_t t1) |
| { |
| ldq_data(t1, t0); |
| } |
| |
| void helper_stl_raw(uint64_t t0, uint64_t t1) |
| { |
| stl_raw(t1, t0); |
| } |
| |
| void helper_stq_raw(uint64_t t0, uint64_t t1) |
| { |
| stq_raw(t1, t0); |
| } |
| |
| uint64_t helper_stl_c_raw(uint64_t t0, uint64_t t1) |
| { |
| uint64_t ret; |
| |
| if (t1 == env->lock) { |
| stl_raw(t1, t0); |
| ret = 0; |
| } else |
| ret = 1; |
| |
| env->lock = 1; |
| |
| return ret; |
| } |
| |
| uint64_t helper_stq_c_raw(uint64_t t0, uint64_t t1) |
| { |
| uint64_t ret; |
| |
| if (t1 == env->lock) { |
| stq_raw(t1, t0); |
| ret = 0; |
| } else |
| ret = 1; |
| |
| env->lock = 1; |
| |
| return ret; |
| } |
| |
| #define MMUSUFFIX _mmu |
| |
| #define SHIFT 0 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 1 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 2 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 3 |
| #include "softmmu_template.h" |
| |
| /* try to fill the TLB and return an exception if error. If retaddr is |
| NULL, it means that the function was called in C code (i.e. not |
| from generated code or from helper.c) */ |
| /* XXX: fix it to restore all registers */ |
| void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr) |
| { |
| TranslationBlock *tb; |
| CPUState *saved_env; |
| unsigned long pc; |
| int ret; |
| |
| /* XXX: hack to restore env in all cases, even if not called from |
| generated code */ |
| saved_env = env; |
| env = cpu_single_env; |
| ret = cpu_alpha_handle_mmu_fault(env, addr, is_write, mmu_idx, 1); |
| if (!likely(ret == 0)) { |
| if (likely(retaddr)) { |
| /* now we have a real cpu fault */ |
| pc = (unsigned long)retaddr; |
| tb = tb_find_pc(pc); |
| if (likely(tb)) { |
| /* the PC is inside the translated code. It means that we have |
| a virtual CPU fault */ |
| cpu_restore_state(tb, env, pc, NULL); |
| } |
| } |
| /* Exception index and error code are already set */ |
| cpu_loop_exit(); |
| } |
| env = saved_env; |
| } |
| |
| #endif |