| /* |
| * gdb server stub |
| * |
| * Copyright (c) 2003-2005 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| #include "config.h" |
| #include "qemu-common.h" |
| #ifdef CONFIG_USER_ONLY |
| #include <stdlib.h> |
| #include <stdio.h> |
| #include <stdarg.h> |
| #include <string.h> |
| #include <errno.h> |
| #include <unistd.h> |
| #include <fcntl.h> |
| |
| #include "qemu.h" |
| #else |
| #include "qemu-char.h" |
| #include "sysemu.h" |
| #include "gdbstub.h" |
| #endif |
| |
| #define MAX_PACKET_LENGTH 4096 |
| |
| #include "qemu_socket.h" |
| #ifdef _WIN32 |
| /* XXX: these constants may be independent of the host ones even for Unix */ |
| #ifndef SIGTRAP |
| #define SIGTRAP 5 |
| #endif |
| #ifndef SIGINT |
| #define SIGINT 2 |
| #endif |
| #else |
| #include <signal.h> |
| #endif |
| |
| //#define DEBUG_GDB |
| |
| typedef struct GDBRegisterState { |
| int base_reg; |
| int num_regs; |
| gdb_reg_cb get_reg; |
| gdb_reg_cb set_reg; |
| const char *xml; |
| struct GDBRegisterState *next; |
| } GDBRegisterState; |
| |
| enum RSState { |
| RS_IDLE, |
| RS_GETLINE, |
| RS_CHKSUM1, |
| RS_CHKSUM2, |
| RS_SYSCALL, |
| }; |
| typedef struct GDBState { |
| CPUState *c_cpu; /* current CPU for step/continue ops */ |
| CPUState *g_cpu; /* current CPU for other ops */ |
| CPUState *query_cpu; /* for q{f|s}ThreadInfo */ |
| enum RSState state; /* parsing state */ |
| char line_buf[MAX_PACKET_LENGTH]; |
| int line_buf_index; |
| int line_csum; |
| uint8_t last_packet[MAX_PACKET_LENGTH + 4]; |
| int last_packet_len; |
| int signal; |
| #ifdef CONFIG_USER_ONLY |
| int fd; |
| int running_state; |
| #else |
| CharDriverState *chr; |
| #endif |
| } GDBState; |
| |
| /* By default use no IRQs and no timers while single stepping so as to |
| * make single stepping like an ICE HW step. |
| */ |
| static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER; |
| |
| static GDBState *gdbserver_state; |
| |
| /* This is an ugly hack to cope with both new and old gdb. |
| If gdb sends qXfer:features:read then assume we're talking to a newish |
| gdb that understands target descriptions. */ |
| static int gdb_has_xml; |
| |
| #ifdef CONFIG_USER_ONLY |
| /* XXX: This is not thread safe. Do we care? */ |
| static int gdbserver_fd = -1; |
| |
| static int get_char(GDBState *s) |
| { |
| uint8_t ch; |
| int ret; |
| |
| for(;;) { |
| ret = recv(s->fd, &ch, 1, 0); |
| if (ret < 0) { |
| if (errno == ECONNRESET) |
| s->fd = -1; |
| if (errno != EINTR && errno != EAGAIN) |
| return -1; |
| } else if (ret == 0) { |
| close(s->fd); |
| s->fd = -1; |
| return -1; |
| } else { |
| break; |
| } |
| } |
| return ch; |
| } |
| #endif |
| |
| static gdb_syscall_complete_cb gdb_current_syscall_cb; |
| |
| enum { |
| GDB_SYS_UNKNOWN, |
| GDB_SYS_ENABLED, |
| GDB_SYS_DISABLED, |
| } gdb_syscall_mode; |
| |
| /* If gdb is connected when the first semihosting syscall occurs then use |
| remote gdb syscalls. Otherwise use native file IO. */ |
| int use_gdb_syscalls(void) |
| { |
| if (gdb_syscall_mode == GDB_SYS_UNKNOWN) { |
| gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED |
| : GDB_SYS_DISABLED); |
| } |
| return gdb_syscall_mode == GDB_SYS_ENABLED; |
| } |
| |
| /* Resume execution. */ |
| static inline void gdb_continue(GDBState *s) |
| { |
| #ifdef CONFIG_USER_ONLY |
| s->running_state = 1; |
| #else |
| vm_start(); |
| #endif |
| } |
| |
| static void put_buffer(GDBState *s, const uint8_t *buf, int len) |
| { |
| #ifdef CONFIG_USER_ONLY |
| int ret; |
| |
| while (len > 0) { |
| ret = send(s->fd, buf, len, 0); |
| if (ret < 0) { |
| if (errno != EINTR && errno != EAGAIN) |
| return; |
| } else { |
| buf += ret; |
| len -= ret; |
| } |
| } |
| #else |
| qemu_chr_write(s->chr, buf, len); |
| #endif |
| } |
| |
| static inline int fromhex(int v) |
| { |
| if (v >= '0' && v <= '9') |
| return v - '0'; |
| else if (v >= 'A' && v <= 'F') |
| return v - 'A' + 10; |
| else if (v >= 'a' && v <= 'f') |
| return v - 'a' + 10; |
| else |
| return 0; |
| } |
| |
| static inline int tohex(int v) |
| { |
| if (v < 10) |
| return v + '0'; |
| else |
| return v - 10 + 'a'; |
| } |
| |
| static void memtohex(char *buf, const uint8_t *mem, int len) |
| { |
| int i, c; |
| char *q; |
| q = buf; |
| for(i = 0; i < len; i++) { |
| c = mem[i]; |
| *q++ = tohex(c >> 4); |
| *q++ = tohex(c & 0xf); |
| } |
| *q = '\0'; |
| } |
| |
| static void hextomem(uint8_t *mem, const char *buf, int len) |
| { |
| int i; |
| |
| for(i = 0; i < len; i++) { |
| mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]); |
| buf += 2; |
| } |
| } |
| |
| /* return -1 if error, 0 if OK */ |
| static int put_packet_binary(GDBState *s, const char *buf, int len) |
| { |
| int csum, i; |
| uint8_t *p; |
| |
| for(;;) { |
| p = s->last_packet; |
| *(p++) = '$'; |
| memcpy(p, buf, len); |
| p += len; |
| csum = 0; |
| for(i = 0; i < len; i++) { |
| csum += buf[i]; |
| } |
| *(p++) = '#'; |
| *(p++) = tohex((csum >> 4) & 0xf); |
| *(p++) = tohex((csum) & 0xf); |
| |
| s->last_packet_len = p - s->last_packet; |
| put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len); |
| |
| #ifdef CONFIG_USER_ONLY |
| i = get_char(s); |
| if (i < 0) |
| return -1; |
| if (i == '+') |
| break; |
| #else |
| break; |
| #endif |
| } |
| return 0; |
| } |
| |
| /* return -1 if error, 0 if OK */ |
| static int put_packet(GDBState *s, const char *buf) |
| { |
| #ifdef DEBUG_GDB |
| printf("reply='%s'\n", buf); |
| #endif |
| |
| return put_packet_binary(s, buf, strlen(buf)); |
| } |
| |
| /* The GDB remote protocol transfers values in target byte order. This means |
| we can use the raw memory access routines to access the value buffer. |
| Conveniently, these also handle the case where the buffer is mis-aligned. |
| */ |
| #define GET_REG8(val) do { \ |
| stb_p(mem_buf, val); \ |
| return 1; \ |
| } while(0) |
| #define GET_REG16(val) do { \ |
| stw_p(mem_buf, val); \ |
| return 2; \ |
| } while(0) |
| #define GET_REG32(val) do { \ |
| stl_p(mem_buf, val); \ |
| return 4; \ |
| } while(0) |
| #define GET_REG64(val) do { \ |
| stq_p(mem_buf, val); \ |
| return 8; \ |
| } while(0) |
| |
| #if TARGET_LONG_BITS == 64 |
| #define GET_REGL(val) GET_REG64(val) |
| #define ldtul_p(addr) ldq_p(addr) |
| #else |
| #define GET_REGL(val) GET_REG32(val) |
| #define ldtul_p(addr) ldl_p(addr) |
| #endif |
| |
| #if defined(TARGET_I386) |
| |
| #ifdef TARGET_X86_64 |
| static const int gpr_map[16] = { |
| R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP, |
| 8, 9, 10, 11, 12, 13, 14, 15 |
| }; |
| #else |
| static const int gpr_map[8] = {0, 1, 2, 3, 4, 5, 6, 7}; |
| #endif |
| |
| #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25) |
| |
| static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n) |
| { |
| if (n < CPU_NB_REGS) { |
| GET_REGL(env->regs[gpr_map[n]]); |
| } else if (n >= CPU_NB_REGS + 8 && n < CPU_NB_REGS + 16) { |
| /* FIXME: byteswap float values. */ |
| #ifdef USE_X86LDOUBLE |
| memcpy(mem_buf, &env->fpregs[n - (CPU_NB_REGS + 8)], 10); |
| #else |
| memset(mem_buf, 0, 10); |
| #endif |
| return 10; |
| } else if (n >= CPU_NB_REGS + 24) { |
| n -= CPU_NB_REGS + 24; |
| if (n < CPU_NB_REGS) { |
| stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0)); |
| stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1)); |
| return 16; |
| } else if (n == CPU_NB_REGS) { |
| GET_REG32(env->mxcsr); |
| } |
| } else { |
| n -= CPU_NB_REGS; |
| switch (n) { |
| case 0: GET_REGL(env->eip); |
| case 1: GET_REG32(env->eflags); |
| case 2: GET_REG32(env->segs[R_CS].selector); |
| case 3: GET_REG32(env->segs[R_SS].selector); |
| case 4: GET_REG32(env->segs[R_DS].selector); |
| case 5: GET_REG32(env->segs[R_ES].selector); |
| case 6: GET_REG32(env->segs[R_FS].selector); |
| case 7: GET_REG32(env->segs[R_GS].selector); |
| /* 8...15 x87 regs. */ |
| case 16: GET_REG32(env->fpuc); |
| case 17: GET_REG32((env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11); |
| case 18: GET_REG32(0); /* ftag */ |
| case 19: GET_REG32(0); /* fiseg */ |
| case 20: GET_REG32(0); /* fioff */ |
| case 21: GET_REG32(0); /* foseg */ |
| case 22: GET_REG32(0); /* fooff */ |
| case 23: GET_REG32(0); /* fop */ |
| /* 24+ xmm regs. */ |
| } |
| } |
| return 0; |
| } |
| |
| static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int i) |
| { |
| uint32_t tmp; |
| |
| if (i < CPU_NB_REGS) { |
| env->regs[gpr_map[i]] = ldtul_p(mem_buf); |
| return sizeof(target_ulong); |
| } else if (i >= CPU_NB_REGS + 8 && i < CPU_NB_REGS + 16) { |
| i -= CPU_NB_REGS + 8; |
| #ifdef USE_X86LDOUBLE |
| memcpy(&env->fpregs[i], mem_buf, 10); |
| #endif |
| return 10; |
| } else if (i >= CPU_NB_REGS + 24) { |
| i -= CPU_NB_REGS + 24; |
| if (i < CPU_NB_REGS) { |
| env->xmm_regs[i].XMM_Q(0) = ldq_p(mem_buf); |
| env->xmm_regs[i].XMM_Q(1) = ldq_p(mem_buf + 8); |
| return 16; |
| } else if (i == CPU_NB_REGS) { |
| env->mxcsr = ldl_p(mem_buf); |
| return 4; |
| } |
| } else { |
| i -= CPU_NB_REGS; |
| switch (i) { |
| case 0: env->eip = ldtul_p(mem_buf); return sizeof(target_ulong); |
| case 1: env->eflags = ldl_p(mem_buf); return 4; |
| #if defined(CONFIG_USER_ONLY) |
| #define LOAD_SEG(index, sreg)\ |
| tmp = ldl_p(mem_buf);\ |
| if (tmp != env->segs[sreg].selector)\ |
| cpu_x86_load_seg(env, sreg, tmp); |
| #else |
| /* FIXME: Honor segment registers. Needs to avoid raising an exception |
| when the selector is invalid. */ |
| #define LOAD_SEG(index, sreg) do {} while(0) |
| #endif |
| case 2: LOAD_SEG(10, R_CS); return 4; |
| case 3: LOAD_SEG(11, R_SS); return 4; |
| case 4: LOAD_SEG(12, R_DS); return 4; |
| case 5: LOAD_SEG(13, R_ES); return 4; |
| case 6: LOAD_SEG(14, R_FS); return 4; |
| case 7: LOAD_SEG(15, R_GS); return 4; |
| /* 8...15 x87 regs. */ |
| case 16: env->fpuc = ldl_p(mem_buf); return 4; |
| case 17: |
| tmp = ldl_p(mem_buf); |
| env->fpstt = (tmp >> 11) & 7; |
| env->fpus = tmp & ~0x3800; |
| return 4; |
| case 18: /* ftag */ return 4; |
| case 19: /* fiseg */ return 4; |
| case 20: /* fioff */ return 4; |
| case 21: /* foseg */ return 4; |
| case 22: /* fooff */ return 4; |
| case 23: /* fop */ return 4; |
| /* 24+ xmm regs. */ |
| } |
| } |
| /* Unrecognised register. */ |
| return 0; |
| } |
| |
| #elif defined (TARGET_PPC) |
| |
| #define NUM_CORE_REGS 71 |
| |
| static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n) |
| { |
| if (n < 32) { |
| /* gprs */ |
| GET_REGL(env->gpr[n]); |
| } else if (n < 64) { |
| /* fprs */ |
| stfq_p(mem_buf, env->fpr[n-32]); |
| return 8; |
| } else { |
| switch (n) { |
| case 64: GET_REGL(env->nip); |
| case 65: GET_REGL(env->msr); |
| case 66: |
| { |
| uint32_t cr = 0; |
| int i; |
| for (i = 0; i < 8; i++) |
| cr |= env->crf[i] << (32 - ((i + 1) * 4)); |
| GET_REG32(cr); |
| } |
| case 67: GET_REGL(env->lr); |
| case 68: GET_REGL(env->ctr); |
| case 69: GET_REGL(env->xer); |
| case 70: GET_REG32(0); /* fpscr */ |
| } |
| } |
| return 0; |
| } |
| |
| static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n) |
| { |
| if (n < 32) { |
| /* gprs */ |
| env->gpr[n] = ldtul_p(mem_buf); |
| return sizeof(target_ulong); |
| } else if (n < 64) { |
| /* fprs */ |
| env->fpr[n-32] = ldfq_p(mem_buf); |
| return 8; |
| } else { |
| switch (n) { |
| case 64: |
| env->nip = ldtul_p(mem_buf); |
| return sizeof(target_ulong); |
| case 65: |
| ppc_store_msr(env, ldtul_p(mem_buf)); |
| return sizeof(target_ulong); |
| case 66: |
| { |
| uint32_t cr = ldl_p(mem_buf); |
| int i; |
| for (i = 0; i < 8; i++) |
| env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF; |
| return 4; |
| } |
| case 67: |
| env->lr = ldtul_p(mem_buf); |
| return sizeof(target_ulong); |
| case 68: |
| env->ctr = ldtul_p(mem_buf); |
| return sizeof(target_ulong); |
| case 69: |
| env->xer = ldtul_p(mem_buf); |
| return sizeof(target_ulong); |
| case 70: |
| /* fpscr */ |
| return 4; |
| } |
| } |
| return 0; |
| } |
| |
| #elif defined (TARGET_SPARC) |
| |
| #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) |
| #define NUM_CORE_REGS 86 |
| #else |
| #define NUM_CORE_REGS 73 |
| #endif |
| |
| #ifdef TARGET_ABI32 |
| #define GET_REGA(val) GET_REG32(val) |
| #else |
| #define GET_REGA(val) GET_REGL(val) |
| #endif |
| |
| static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n) |
| { |
| if (n < 8) { |
| /* g0..g7 */ |
| GET_REGA(env->gregs[n]); |
| } |
| if (n < 32) { |
| /* register window */ |
| GET_REGA(env->regwptr[n - 8]); |
| } |
| #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64) |
| if (n < 64) { |
| /* fprs */ |
| GET_REG32(*((uint32_t *)&env->fpr[n - 32])); |
| } |
| /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */ |
| switch (n) { |
| case 64: GET_REGA(env->y); |
| case 65: GET_REGA(GET_PSR(env)); |
| case 66: GET_REGA(env->wim); |
| case 67: GET_REGA(env->tbr); |
| case 68: GET_REGA(env->pc); |
| case 69: GET_REGA(env->npc); |
| case 70: GET_REGA(env->fsr); |
| case 71: GET_REGA(0); /* csr */ |
| case 72: GET_REGA(0); |
| } |
| #else |
| if (n < 64) { |
| /* f0-f31 */ |
| GET_REG32(*((uint32_t *)&env->fpr[n - 32])); |
| } |
| if (n < 80) { |
| /* f32-f62 (double width, even numbers only) */ |
| uint64_t val; |
| |
| val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32; |
| val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]); |
| GET_REG64(val); |
| } |
| switch (n) { |
| case 80: GET_REGL(env->pc); |
| case 81: GET_REGL(env->npc); |
| case 82: GET_REGL(((uint64_t)GET_CCR(env) << 32) | |
| ((env->asi & 0xff) << 24) | |
| ((env->pstate & 0xfff) << 8) | |
| GET_CWP64(env)); |
| case 83: GET_REGL(env->fsr); |
| case 84: GET_REGL(env->fprs); |
| case 85: GET_REGL(env->y); |
| } |
| #endif |
| return 0; |
| } |
| |
| static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n) |
| { |
| #if defined(TARGET_ABI32) |
| abi_ulong tmp; |
| |
| tmp = ldl_p(mem_buf); |
| #else |
| target_ulong tmp; |
| |
| tmp = ldtul_p(mem_buf); |
| #endif |
| |
| if (n < 8) { |
| /* g0..g7 */ |
| env->gregs[n] = tmp; |
| } else if (n < 32) { |
| /* register window */ |
| env->regwptr[n - 8] = tmp; |
| } |
| #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64) |
| else if (n < 64) { |
| /* fprs */ |
| *((uint32_t *)&env->fpr[n - 32]) = tmp; |
| } else { |
| /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */ |
| switch (n) { |
| case 64: env->y = tmp; break; |
| case 65: PUT_PSR(env, tmp); break; |
| case 66: env->wim = tmp; break; |
| case 67: env->tbr = tmp; break; |
| case 68: env->pc = tmp; break; |
| case 69: env->npc = tmp; break; |
| case 70: env->fsr = tmp; break; |
| default: return 0; |
| } |
| } |
| return 4; |
| #else |
| else if (n < 64) { |
| /* f0-f31 */ |
| env->fpr[n] = ldfl_p(mem_buf); |
| return 4; |
| } else if (n < 80) { |
| /* f32-f62 (double width, even numbers only) */ |
| *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32; |
| *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp; |
| } else { |
| switch (n) { |
| case 80: env->pc = tmp; break; |
| case 81: env->npc = tmp; break; |
| case 82: |
| PUT_CCR(env, tmp >> 32); |
| env->asi = (tmp >> 24) & 0xff; |
| env->pstate = (tmp >> 8) & 0xfff; |
| PUT_CWP64(env, tmp & 0xff); |
| break; |
| case 83: env->fsr = tmp; break; |
| case 84: env->fprs = tmp; break; |
| case 85: env->y = tmp; break; |
| default: return 0; |
| } |
| } |
| return 8; |
| #endif |
| } |
| #elif defined (TARGET_ARM) |
| |
| /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect |
| whatever the target description contains. Due to a historical mishap |
| the FPA registers appear in between core integer regs and the CPSR. |
| We hack round this by giving the FPA regs zero size when talking to a |
| newer gdb. */ |
| #define NUM_CORE_REGS 26 |
| #define GDB_CORE_XML "arm-core.xml" |
| |
| static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n) |
| { |
| if (n < 16) { |
| /* Core integer register. */ |
| GET_REG32(env->regs[n]); |
| } |
| if (n < 24) { |
| /* FPA registers. */ |
| if (gdb_has_xml) |
| return 0; |
| memset(mem_buf, 0, 12); |
| return 12; |
| } |
| switch (n) { |
| case 24: |
| /* FPA status register. */ |
| if (gdb_has_xml) |
| return 0; |
| GET_REG32(0); |
| case 25: |
| /* CPSR */ |
| GET_REG32(cpsr_read(env)); |
| } |
| /* Unknown register. */ |
| return 0; |
| } |
| |
| static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n) |
| { |
| uint32_t tmp; |
| |
| tmp = ldl_p(mem_buf); |
| |
| /* Mask out low bit of PC to workaround gdb bugs. This will probably |
| cause problems if we ever implement the Jazelle DBX extensions. */ |
| if (n == 15) |
| tmp &= ~1; |
| |
| if (n < 16) { |
| /* Core integer register. */ |
| env->regs[n] = tmp; |
| return 4; |
| } |
| if (n < 24) { /* 16-23 */ |
| /* FPA registers (ignored). */ |
| if (gdb_has_xml) |
| return 0; |
| return 12; |
| } |
| switch (n) { |
| case 24: |
| /* FPA status register (ignored). */ |
| if (gdb_has_xml) |
| return 0; |
| return 4; |
| case 25: |
| /* CPSR */ |
| cpsr_write (env, tmp, 0xffffffff); |
| return 4; |
| } |
| /* Unknown register. */ |
| return 0; |
| } |
| |
| #elif defined (TARGET_M68K) |
| |
| #define NUM_CORE_REGS 18 |
| |
| #define GDB_CORE_XML "cf-core.xml" |
| |
| static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n) |
| { |
| if (n < 8) { |
| /* D0-D7 */ |
| GET_REG32(env->dregs[n]); |
| } else if (n < 16) { |
| /* A0-A7 */ |
| GET_REG32(env->aregs[n - 8]); |
| } else { |
| switch (n) { |
| case 16: GET_REG32(env->sr); |
| case 17: GET_REG32(env->pc); |
| } |
| } |
| /* FP registers not included here because they vary between |
| ColdFire and m68k. Use XML bits for these. */ |
| return 0; |
| } |
| |
| static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n) |
| { |
| uint32_t tmp; |
| |
| tmp = ldl_p(mem_buf); |
| |
| if (n < 8) { |
| /* D0-D7 */ |
| env->dregs[n] = tmp; |
| } else if (n < 8) { |
| /* A0-A7 */ |
| env->aregs[n - 8] = tmp; |
| } else { |
| switch (n) { |
| case 16: env->sr = tmp; break; |
| case 17: env->pc = tmp; break; |
| default: return 0; |
| } |
| } |
| return 4; |
| } |
| #elif defined (TARGET_MIPS) |
| |
| #define NUM_CORE_REGS 73 |
| |
| static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n) |
| { |
| if (n < 32) { |
| GET_REGL(env->active_tc.gpr[n]); |
| } |
| if (env->CP0_Config1 & (1 << CP0C1_FP)) { |
| if (n >= 38 && n < 70) { |
| if (env->CP0_Status & (1 << CP0St_FR)) |
| GET_REGL(env->active_fpu.fpr[n - 38].d); |
| else |
| GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]); |
| } |
| switch (n) { |
| case 70: GET_REGL((int32_t)env->active_fpu.fcr31); |
| case 71: GET_REGL((int32_t)env->active_fpu.fcr0); |
| } |
| } |
| switch (n) { |
| case 32: GET_REGL((int32_t)env->CP0_Status); |
| case 33: GET_REGL(env->active_tc.LO[0]); |
| case 34: GET_REGL(env->active_tc.HI[0]); |
| case 35: GET_REGL(env->CP0_BadVAddr); |
| case 36: GET_REGL((int32_t)env->CP0_Cause); |
| case 37: GET_REGL(env->active_tc.PC); |
| case 72: GET_REGL(0); /* fp */ |
| case 89: GET_REGL((int32_t)env->CP0_PRid); |
| } |
| if (n >= 73 && n <= 88) { |
| /* 16 embedded regs. */ |
| GET_REGL(0); |
| } |
| |
| return 0; |
| } |
| |
| /* convert MIPS rounding mode in FCR31 to IEEE library */ |
| static unsigned int ieee_rm[] = |
| { |
| float_round_nearest_even, |
| float_round_to_zero, |
| float_round_up, |
| float_round_down |
| }; |
| #define RESTORE_ROUNDING_MODE \ |
| set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status) |
| |
| static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n) |
| { |
| target_ulong tmp; |
| |
| tmp = ldtul_p(mem_buf); |
| |
| if (n < 32) { |
| env->active_tc.gpr[n] = tmp; |
| return sizeof(target_ulong); |
| } |
| if (env->CP0_Config1 & (1 << CP0C1_FP) |
| && n >= 38 && n < 73) { |
| if (n < 70) { |
| if (env->CP0_Status & (1 << CP0St_FR)) |
| env->active_fpu.fpr[n - 38].d = tmp; |
| else |
| env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp; |
| } |
| switch (n) { |
| case 70: |
| env->active_fpu.fcr31 = tmp & 0xFF83FFFF; |
| /* set rounding mode */ |
| RESTORE_ROUNDING_MODE; |
| #ifndef CONFIG_SOFTFLOAT |
| /* no floating point exception for native float */ |
| SET_FP_ENABLE(env->active_fpu.fcr31, 0); |
| #endif |
| break; |
| case 71: env->active_fpu.fcr0 = tmp; break; |
| } |
| return sizeof(target_ulong); |
| } |
| switch (n) { |
| case 32: env->CP0_Status = tmp; break; |
| case 33: env->active_tc.LO[0] = tmp; break; |
| case 34: env->active_tc.HI[0] = tmp; break; |
| case 35: env->CP0_BadVAddr = tmp; break; |
| case 36: env->CP0_Cause = tmp; break; |
| case 37: env->active_tc.PC = tmp; break; |
| case 72: /* fp, ignored */ break; |
| default: |
| if (n > 89) |
| return 0; |
| /* Other registers are readonly. Ignore writes. */ |
| break; |
| } |
| |
| return sizeof(target_ulong); |
| } |
| #elif defined (TARGET_SH4) |
| |
| /* Hint: Use "set architecture sh4" in GDB to see fpu registers */ |
| /* FIXME: We should use XML for this. */ |
| |
| #define NUM_CORE_REGS 59 |
| |
| static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n) |
| { |
| if (n < 8) { |
| if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) { |
| GET_REGL(env->gregs[n + 16]); |
| } else { |
| GET_REGL(env->gregs[n]); |
| } |
| } else if (n < 16) { |
| GET_REGL(env->gregs[n - 8]); |
| } else if (n >= 25 && n < 41) { |
| GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]); |
| } else if (n >= 43 && n < 51) { |
| GET_REGL(env->gregs[n - 43]); |
| } else if (n >= 51 && n < 59) { |
| GET_REGL(env->gregs[n - (51 - 16)]); |
| } |
| switch (n) { |
| case 16: GET_REGL(env->pc); |
| case 17: GET_REGL(env->pr); |
| case 18: GET_REGL(env->gbr); |
| case 19: GET_REGL(env->vbr); |
| case 20: GET_REGL(env->mach); |
| case 21: GET_REGL(env->macl); |
| case 22: GET_REGL(env->sr); |
| case 23: GET_REGL(env->fpul); |
| case 24: GET_REGL(env->fpscr); |
| case 41: GET_REGL(env->ssr); |
| case 42: GET_REGL(env->spc); |
| } |
| |
| return 0; |
| } |
| |
| static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n) |
| { |
| uint32_t tmp; |
| |
| tmp = ldl_p(mem_buf); |
| |
| if (n < 8) { |
| if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) { |
| env->gregs[n + 16] = tmp; |
| } else { |
| env->gregs[n] = tmp; |
| } |
| return 4; |
| } else if (n < 16) { |
| env->gregs[n - 8] = tmp; |
| return 4; |
| } else if (n >= 25 && n < 41) { |
| env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp; |
| } else if (n >= 43 && n < 51) { |
| env->gregs[n - 43] = tmp; |
| return 4; |
| } else if (n >= 51 && n < 59) { |
| env->gregs[n - (51 - 16)] = tmp; |
| return 4; |
| } |
| switch (n) { |
| case 16: env->pc = tmp; |
| case 17: env->pr = tmp; |
| case 18: env->gbr = tmp; |
| case 19: env->vbr = tmp; |
| case 20: env->mach = tmp; |
| case 21: env->macl = tmp; |
| case 22: env->sr = tmp; |
| case 23: env->fpul = tmp; |
| case 24: env->fpscr = tmp; |
| case 41: env->ssr = tmp; |
| case 42: env->spc = tmp; |
| default: return 0; |
| } |
| |
| return 4; |
| } |
| #elif defined (TARGET_CRIS) |
| |
| #define NUM_CORE_REGS 49 |
| |
| static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n) |
| { |
| uint8_t srs; |
| |
| srs = env->pregs[PR_SRS]; |
| if (n < 16) { |
| GET_REG32(env->regs[n]); |
| } |
| |
| if (n >= 21 && n < 32) { |
| GET_REG32(env->pregs[n - 16]); |
| } |
| if (n >= 33 && n < 49) { |
| GET_REG32(env->sregs[srs][n - 33]); |
| } |
| switch (n) { |
| case 16: GET_REG8(env->pregs[0]); |
| case 17: GET_REG8(env->pregs[1]); |
| case 18: GET_REG32(env->pregs[2]); |
| case 19: GET_REG8(srs); |
| case 20: GET_REG16(env->pregs[4]); |
| case 32: GET_REG32(env->pc); |
| } |
| |
| return 0; |
| } |
| |
| static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n) |
| { |
| uint32_t tmp; |
| |
| if (n > 49) |
| return 0; |
| |
| tmp = ldl_p(mem_buf); |
| |
| if (n < 16) { |
| env->regs[n] = tmp; |
| } |
| |
| if (n >= 21 && n < 32) { |
| env->pregs[n - 16] = tmp; |
| } |
| |
| /* FIXME: Should support function regs be writable? */ |
| switch (n) { |
| case 16: return 1; |
| case 17: return 1; |
| case 18: env->pregs[PR_PID] = tmp; break; |
| case 19: return 1; |
| case 20: return 2; |
| case 32: env->pc = tmp; break; |
| } |
| |
| return 4; |
| } |
| #elif defined (TARGET_ALPHA) |
| |
| #define NUM_CORE_REGS 65 |
| |
| static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n) |
| { |
| if (n < 31) { |
| GET_REGL(env->ir[n]); |
| } |
| else if (n == 31) { |
| GET_REGL(0); |
| } |
| else if (n<63) { |
| uint64_t val; |
| |
| val=*((uint64_t *)&env->fir[n-32]); |
| GET_REGL(val); |
| } |
| else if (n==63) { |
| GET_REGL(env->fpcr); |
| } |
| else if (n==64) { |
| GET_REGL(env->pc); |
| } |
| else { |
| GET_REGL(0); |
| } |
| |
| return 0; |
| } |
| |
| static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n) |
| { |
| target_ulong tmp; |
| tmp = ldtul_p(mem_buf); |
| |
| if (n < 31) { |
| env->ir[n] = tmp; |
| } |
| |
| if (n > 31 && n < 63) { |
| env->fir[n - 32] = ldfl_p(mem_buf); |
| } |
| |
| if (n == 64 ) { |
| env->pc=tmp; |
| } |
| |
| return 8; |
| } |
| #else |
| |
| #define NUM_CORE_REGS 0 |
| |
| static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n) |
| { |
| return 0; |
| } |
| |
| static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n) |
| { |
| return 0; |
| } |
| |
| #endif |
| |
| static int num_g_regs = NUM_CORE_REGS; |
| |
| #ifdef GDB_CORE_XML |
| /* Encode data using the encoding for 'x' packets. */ |
| static int memtox(char *buf, const char *mem, int len) |
| { |
| char *p = buf; |
| char c; |
| |
| while (len--) { |
| c = *(mem++); |
| switch (c) { |
| case '#': case '$': case '*': case '}': |
| *(p++) = '}'; |
| *(p++) = c ^ 0x20; |
| break; |
| default: |
| *(p++) = c; |
| break; |
| } |
| } |
| return p - buf; |
| } |
| |
| static const char *get_feature_xml(const char *p, const char **newp) |
| { |
| extern const char *const xml_builtin[][2]; |
| size_t len; |
| int i; |
| const char *name; |
| static char target_xml[1024]; |
| |
| len = 0; |
| while (p[len] && p[len] != ':') |
| len++; |
| *newp = p + len; |
| |
| name = NULL; |
| if (strncmp(p, "target.xml", len) == 0) { |
| /* Generate the XML description for this CPU. */ |
| if (!target_xml[0]) { |
| GDBRegisterState *r; |
| |
| snprintf(target_xml, sizeof(target_xml), |
| "<?xml version=\"1.0\"?>" |
| "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">" |
| "<target>" |
| "<xi:include href=\"%s\"/>", |
| GDB_CORE_XML); |
| |
| for (r = first_cpu->gdb_regs; r; r = r->next) { |
| strcat(target_xml, "<xi:include href=\""); |
| strcat(target_xml, r->xml); |
| strcat(target_xml, "\"/>"); |
| } |
| strcat(target_xml, "</target>"); |
| } |
| return target_xml; |
| } |
| for (i = 0; ; i++) { |
| name = xml_builtin[i][0]; |
| if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len)) |
| break; |
| } |
| return name ? xml_builtin[i][1] : NULL; |
| } |
| #endif |
| |
| static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg) |
| { |
| GDBRegisterState *r; |
| |
| if (reg < NUM_CORE_REGS) |
| return cpu_gdb_read_register(env, mem_buf, reg); |
| |
| for (r = env->gdb_regs; r; r = r->next) { |
| if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) { |
| return r->get_reg(env, mem_buf, reg - r->base_reg); |
| } |
| } |
| return 0; |
| } |
| |
| static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg) |
| { |
| GDBRegisterState *r; |
| |
| if (reg < NUM_CORE_REGS) |
| return cpu_gdb_write_register(env, mem_buf, reg); |
| |
| for (r = env->gdb_regs; r; r = r->next) { |
| if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) { |
| return r->set_reg(env, mem_buf, reg - r->base_reg); |
| } |
| } |
| return 0; |
| } |
| |
| /* Register a supplemental set of CPU registers. If g_pos is nonzero it |
| specifies the first register number and these registers are included in |
| a standard "g" packet. Direction is relative to gdb, i.e. get_reg is |
| gdb reading a CPU register, and set_reg is gdb modifying a CPU register. |
| */ |
| |
| void gdb_register_coprocessor(CPUState * env, |
| gdb_reg_cb get_reg, gdb_reg_cb set_reg, |
| int num_regs, const char *xml, int g_pos) |
| { |
| GDBRegisterState *s; |
| GDBRegisterState **p; |
| static int last_reg = NUM_CORE_REGS; |
| |
| s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState)); |
| s->base_reg = last_reg; |
| s->num_regs = num_regs; |
| s->get_reg = get_reg; |
| s->set_reg = set_reg; |
| s->xml = xml; |
| p = &env->gdb_regs; |
| while (*p) { |
| /* Check for duplicates. */ |
| if (strcmp((*p)->xml, xml) == 0) |
| return; |
| p = &(*p)->next; |
| } |
| /* Add to end of list. */ |
| last_reg += num_regs; |
| *p = s; |
| if (g_pos) { |
| if (g_pos != s->base_reg) { |
| fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n" |
| "Expected %d got %d\n", xml, g_pos, s->base_reg); |
| } else { |
| num_g_regs = last_reg; |
| } |
| } |
| } |
| |
| /* GDB breakpoint/watchpoint types */ |
| #define GDB_BREAKPOINT_SW 0 |
| #define GDB_BREAKPOINT_HW 1 |
| #define GDB_WATCHPOINT_WRITE 2 |
| #define GDB_WATCHPOINT_READ 3 |
| #define GDB_WATCHPOINT_ACCESS 4 |
| |
| #ifndef CONFIG_USER_ONLY |
| static const int xlat_gdb_type[] = { |
| [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE, |
| [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ, |
| [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS, |
| }; |
| #endif |
| |
| static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type) |
| { |
| CPUState *env; |
| int err = 0; |
| |
| switch (type) { |
| case GDB_BREAKPOINT_SW: |
| case GDB_BREAKPOINT_HW: |
| for (env = first_cpu; env != NULL; env = env->next_cpu) { |
| err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL); |
| if (err) |
| break; |
| } |
| return err; |
| #ifndef CONFIG_USER_ONLY |
| case GDB_WATCHPOINT_WRITE: |
| case GDB_WATCHPOINT_READ: |
| case GDB_WATCHPOINT_ACCESS: |
| for (env = first_cpu; env != NULL; env = env->next_cpu) { |
| err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type], |
| NULL); |
| if (err) |
| break; |
| } |
| return err; |
| #endif |
| default: |
| return -ENOSYS; |
| } |
| } |
| |
| static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type) |
| { |
| CPUState *env; |
| int err = 0; |
| |
| switch (type) { |
| case GDB_BREAKPOINT_SW: |
| case GDB_BREAKPOINT_HW: |
| for (env = first_cpu; env != NULL; env = env->next_cpu) { |
| err = cpu_breakpoint_remove(env, addr, BP_GDB); |
| if (err) |
| break; |
| } |
| return err; |
| #ifndef CONFIG_USER_ONLY |
| case GDB_WATCHPOINT_WRITE: |
| case GDB_WATCHPOINT_READ: |
| case GDB_WATCHPOINT_ACCESS: |
| for (env = first_cpu; env != NULL; env = env->next_cpu) { |
| err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]); |
| if (err) |
| break; |
| } |
| return err; |
| #endif |
| default: |
| return -ENOSYS; |
| } |
| } |
| |
| static void gdb_breakpoint_remove_all(void) |
| { |
| CPUState *env; |
| |
| for (env = first_cpu; env != NULL; env = env->next_cpu) { |
| cpu_breakpoint_remove_all(env, BP_GDB); |
| #ifndef CONFIG_USER_ONLY |
| cpu_watchpoint_remove_all(env, BP_GDB); |
| #endif |
| } |
| } |
| |
| static int gdb_handle_packet(GDBState *s, const char *line_buf) |
| { |
| CPUState *env; |
| const char *p; |
| int ch, reg_size, type, res, thread; |
| char buf[MAX_PACKET_LENGTH]; |
| uint8_t mem_buf[MAX_PACKET_LENGTH]; |
| uint8_t *registers; |
| target_ulong addr, len; |
| |
| #ifdef DEBUG_GDB |
| printf("command='%s'\n", line_buf); |
| #endif |
| p = line_buf; |
| ch = *p++; |
| switch(ch) { |
| case '?': |
| /* TODO: Make this return the correct value for user-mode. */ |
| snprintf(buf, sizeof(buf), "T%02xthread:%02x;", SIGTRAP, |
| s->c_cpu->cpu_index+1); |
| put_packet(s, buf); |
| /* Remove all the breakpoints when this query is issued, |
| * because gdb is doing and initial connect and the state |
| * should be cleaned up. |
| */ |
| gdb_breakpoint_remove_all(); |
| break; |
| case 'c': |
| if (*p != '\0') { |
| addr = strtoull(p, (char **)&p, 16); |
| #if defined(TARGET_I386) |
| s->c_cpu->eip = addr; |
| #elif defined (TARGET_PPC) |
| s->c_cpu->nip = addr; |
| #elif defined (TARGET_SPARC) |
| s->c_cpu->pc = addr; |
| s->c_cpu->npc = addr + 4; |
| #elif defined (TARGET_ARM) |
| s->c_cpu->regs[15] = addr; |
| #elif defined (TARGET_SH4) |
| s->c_cpu->pc = addr; |
| #elif defined (TARGET_MIPS) |
| s->c_cpu->active_tc.PC = addr; |
| #elif defined (TARGET_CRIS) |
| s->c_cpu->pc = addr; |
| #elif defined (TARGET_ALPHA) |
| s->c_cpu->pc = addr; |
| #endif |
| } |
| gdb_continue(s); |
| return RS_IDLE; |
| case 'C': |
| s->signal = strtoul(p, (char **)&p, 16); |
| gdb_continue(s); |
| return RS_IDLE; |
| case 'k': |
| /* Kill the target */ |
| fprintf(stderr, "\nQEMU: Terminated via GDBstub\n"); |
| exit(0); |
| case 'D': |
| /* Detach packet */ |
| gdb_breakpoint_remove_all(); |
| gdb_continue(s); |
| put_packet(s, "OK"); |
| break; |
| case 's': |
| if (*p != '\0') { |
| addr = strtoull(p, (char **)&p, 16); |
| #if defined(TARGET_I386) |
| s->c_cpu->eip = addr; |
| #elif defined (TARGET_PPC) |
| s->c_cpu->nip = addr; |
| #elif defined (TARGET_SPARC) |
| s->c_cpu->pc = addr; |
| s->c_cpu->npc = addr + 4; |
| #elif defined (TARGET_ARM) |
| s->c_cpu->regs[15] = addr; |
| #elif defined (TARGET_SH4) |
| s->c_cpu->pc = addr; |
| #elif defined (TARGET_MIPS) |
| s->c_cpu->active_tc.PC = addr; |
| #elif defined (TARGET_CRIS) |
| s->c_cpu->pc = addr; |
| #elif defined (TARGET_ALPHA) |
| s->c_cpu->pc = addr; |
| #endif |
| } |
| cpu_single_step(s->c_cpu, sstep_flags); |
| gdb_continue(s); |
| return RS_IDLE; |
| case 'F': |
| { |
| target_ulong ret; |
| target_ulong err; |
| |
| ret = strtoull(p, (char **)&p, 16); |
| if (*p == ',') { |
| p++; |
| err = strtoull(p, (char **)&p, 16); |
| } else { |
| err = 0; |
| } |
| if (*p == ',') |
| p++; |
| type = *p; |
| if (gdb_current_syscall_cb) |
| gdb_current_syscall_cb(s->c_cpu, ret, err); |
| if (type == 'C') { |
| put_packet(s, "T02"); |
| } else { |
| gdb_continue(s); |
| } |
| } |
| break; |
| case 'g': |
| len = 0; |
| for (addr = 0; addr < num_g_regs; addr++) { |
| reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr); |
| len += reg_size; |
| } |
| memtohex(buf, mem_buf, len); |
| put_packet(s, buf); |
| break; |
| case 'G': |
| registers = mem_buf; |
| len = strlen(p) / 2; |
| hextomem((uint8_t *)registers, p, len); |
| for (addr = 0; addr < num_g_regs && len > 0; addr++) { |
| reg_size = gdb_write_register(s->g_cpu, registers, addr); |
| len -= reg_size; |
| registers += reg_size; |
| } |
| put_packet(s, "OK"); |
| break; |
| case 'm': |
| addr = strtoull(p, (char **)&p, 16); |
| if (*p == ',') |
| p++; |
| len = strtoull(p, NULL, 16); |
| if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) { |
| put_packet (s, "E14"); |
| } else { |
| memtohex(buf, mem_buf, len); |
| put_packet(s, buf); |
| } |
| break; |
| case 'M': |
| addr = strtoull(p, (char **)&p, 16); |
| if (*p == ',') |
| p++; |
| len = strtoull(p, (char **)&p, 16); |
| if (*p == ':') |
| p++; |
| hextomem(mem_buf, p, len); |
| if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0) |
| put_packet(s, "E14"); |
| else |
| put_packet(s, "OK"); |
| break; |
| case 'p': |
| /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable. |
| This works, but can be very slow. Anything new enough to |
| understand XML also knows how to use this properly. */ |
| if (!gdb_has_xml) |
| goto unknown_command; |
| addr = strtoull(p, (char **)&p, 16); |
| reg_size = gdb_read_register(s->g_cpu, mem_buf, addr); |
| if (reg_size) { |
| memtohex(buf, mem_buf, reg_size); |
| put_packet(s, buf); |
| } else { |
| put_packet(s, "E14"); |
| } |
| break; |
| case 'P': |
| if (!gdb_has_xml) |
| goto unknown_command; |
| addr = strtoull(p, (char **)&p, 16); |
| if (*p == '=') |
| p++; |
| reg_size = strlen(p) / 2; |
| hextomem(mem_buf, p, reg_size); |
| gdb_write_register(s->g_cpu, mem_buf, addr); |
| put_packet(s, "OK"); |
| break; |
| case 'Z': |
| case 'z': |
| type = strtoul(p, (char **)&p, 16); |
| if (*p == ',') |
| p++; |
| addr = strtoull(p, (char **)&p, 16); |
| if (*p == ',') |
| p++; |
| len = strtoull(p, (char **)&p, 16); |
| if (ch == 'Z') |
| res = gdb_breakpoint_insert(addr, len, type); |
| else |
| res = gdb_breakpoint_remove(addr, len, type); |
| if (res >= 0) |
| put_packet(s, "OK"); |
| else if (res == -ENOSYS) |
| put_packet(s, ""); |
| else |
| put_packet(s, "E22"); |
| break; |
| case 'H': |
| type = *p++; |
| thread = strtoull(p, (char **)&p, 16); |
| if (thread == -1 || thread == 0) { |
| put_packet(s, "OK"); |
| break; |
| } |
| for (env = first_cpu; env != NULL; env = env->next_cpu) |
| if (env->cpu_index + 1 == thread) |
| break; |
| if (env == NULL) { |
| put_packet(s, "E22"); |
| break; |
| } |
| switch (type) { |
| case 'c': |
| s->c_cpu = env; |
| put_packet(s, "OK"); |
| break; |
| case 'g': |
| s->g_cpu = env; |
| put_packet(s, "OK"); |
| break; |
| default: |
| put_packet(s, "E22"); |
| break; |
| } |
| break; |
| case 'T': |
| thread = strtoull(p, (char **)&p, 16); |
| #ifndef CONFIG_USER_ONLY |
| if (thread > 0 && thread < smp_cpus + 1) |
| #else |
| if (thread == 1) |
| #endif |
| put_packet(s, "OK"); |
| else |
| put_packet(s, "E22"); |
| break; |
| case 'q': |
| case 'Q': |
| /* parse any 'q' packets here */ |
| if (!strcmp(p,"qemu.sstepbits")) { |
| /* Query Breakpoint bit definitions */ |
| snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x", |
| SSTEP_ENABLE, |
| SSTEP_NOIRQ, |
| SSTEP_NOTIMER); |
| put_packet(s, buf); |
| break; |
| } else if (strncmp(p,"qemu.sstep",10) == 0) { |
| /* Display or change the sstep_flags */ |
| p += 10; |
| if (*p != '=') { |
| /* Display current setting */ |
| snprintf(buf, sizeof(buf), "0x%x", sstep_flags); |
| put_packet(s, buf); |
| break; |
| } |
| p++; |
| type = strtoul(p, (char **)&p, 16); |
| sstep_flags = type; |
| put_packet(s, "OK"); |
| break; |
| } else if (strcmp(p,"C") == 0) { |
| /* "Current thread" remains vague in the spec, so always return |
| * the first CPU (gdb returns the first thread). */ |
| put_packet(s, "QC1"); |
| break; |
| } else if (strcmp(p,"fThreadInfo") == 0) { |
| s->query_cpu = first_cpu; |
| goto report_cpuinfo; |
| } else if (strcmp(p,"sThreadInfo") == 0) { |
| report_cpuinfo: |
| if (s->query_cpu) { |
| snprintf(buf, sizeof(buf), "m%x", s->query_cpu->cpu_index+1); |
| put_packet(s, buf); |
| s->query_cpu = s->query_cpu->next_cpu; |
| } else |
| put_packet(s, "l"); |
| break; |
| } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) { |
| thread = strtoull(p+16, (char **)&p, 16); |
| for (env = first_cpu; env != NULL; env = env->next_cpu) |
| if (env->cpu_index + 1 == thread) { |
| len = snprintf((char *)mem_buf, sizeof(mem_buf), |
| "CPU#%d [%s]", env->cpu_index, |
| env->halted ? "halted " : "running"); |
| memtohex(buf, mem_buf, len); |
| put_packet(s, buf); |
| break; |
| } |
| break; |
| } |
| #ifdef CONFIG_LINUX_USER |
| else if (strncmp(p, "Offsets", 7) == 0) { |
| TaskState *ts = s->c_cpu->opaque; |
| |
| snprintf(buf, sizeof(buf), |
| "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx |
| ";Bss=" TARGET_ABI_FMT_lx, |
| ts->info->code_offset, |
| ts->info->data_offset, |
| ts->info->data_offset); |
| put_packet(s, buf); |
| break; |
| } |
| #endif |
| if (strncmp(p, "Supported", 9) == 0) { |
| snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH); |
| #ifdef GDB_CORE_XML |
| strcat(buf, ";qXfer:features:read+"); |
| #endif |
| put_packet(s, buf); |
| break; |
| } |
| #ifdef GDB_CORE_XML |
| if (strncmp(p, "Xfer:features:read:", 19) == 0) { |
| const char *xml; |
| target_ulong total_len; |
| |
| gdb_has_xml = 1; |
| p += 19; |
| xml = get_feature_xml(p, &p); |
| if (!xml) { |
| snprintf(buf, sizeof(buf), "E00"); |
| put_packet(s, buf); |
| break; |
| } |
| |
| if (*p == ':') |
| p++; |
| addr = strtoul(p, (char **)&p, 16); |
| if (*p == ',') |
| p++; |
| len = strtoul(p, (char **)&p, 16); |
| |
| total_len = strlen(xml); |
| if (addr > total_len) { |
| snprintf(buf, sizeof(buf), "E00"); |
| put_packet(s, buf); |
| break; |
| } |
| if (len > (MAX_PACKET_LENGTH - 5) / 2) |
| len = (MAX_PACKET_LENGTH - 5) / 2; |
| if (len < total_len - addr) { |
| buf[0] = 'm'; |
| len = memtox(buf + 1, xml + addr, len); |
| } else { |
| buf[0] = 'l'; |
| len = memtox(buf + 1, xml + addr, total_len - addr); |
| } |
| put_packet_binary(s, buf, len + 1); |
| break; |
| } |
| #endif |
| /* Unrecognised 'q' command. */ |
| goto unknown_command; |
| |
| default: |
| unknown_command: |
| /* put empty packet */ |
| buf[0] = '\0'; |
| put_packet(s, buf); |
| break; |
| } |
| return RS_IDLE; |
| } |
| |
| void gdb_set_stop_cpu(CPUState *env) |
| { |
| gdbserver_state->c_cpu = env; |
| gdbserver_state->g_cpu = env; |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| static void gdb_vm_stopped(void *opaque, int reason) |
| { |
| GDBState *s = gdbserver_state; |
| CPUState *env = s->c_cpu; |
| char buf[256]; |
| const char *type; |
| int ret; |
| |
| if (s->state == RS_SYSCALL) |
| return; |
| |
| /* disable single step if it was enable */ |
| cpu_single_step(env, 0); |
| |
| if (reason == EXCP_DEBUG) { |
| if (env->watchpoint_hit) { |
| switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) { |
| case BP_MEM_READ: |
| type = "r"; |
| break; |
| case BP_MEM_ACCESS: |
| type = "a"; |
| break; |
| default: |
| type = ""; |
| break; |
| } |
| snprintf(buf, sizeof(buf), |
| "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";", |
| SIGTRAP, env->cpu_index+1, type, |
| env->watchpoint_hit->vaddr); |
| put_packet(s, buf); |
| env->watchpoint_hit = NULL; |
| return; |
| } |
| tb_flush(env); |
| ret = SIGTRAP; |
| } else if (reason == EXCP_INTERRUPT) { |
| ret = SIGINT; |
| } else { |
| ret = 0; |
| } |
| snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, env->cpu_index+1); |
| put_packet(s, buf); |
| } |
| #endif |
| |
| /* Send a gdb syscall request. |
| This accepts limited printf-style format specifiers, specifically: |
| %x - target_ulong argument printed in hex. |
| %lx - 64-bit argument printed in hex. |
| %s - string pointer (target_ulong) and length (int) pair. */ |
| void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...) |
| { |
| va_list va; |
| char buf[256]; |
| char *p; |
| target_ulong addr; |
| uint64_t i64; |
| GDBState *s; |
| |
| s = gdbserver_state; |
| if (!s) |
| return; |
| gdb_current_syscall_cb = cb; |
| s->state = RS_SYSCALL; |
| #ifndef CONFIG_USER_ONLY |
| vm_stop(EXCP_DEBUG); |
| #endif |
| s->state = RS_IDLE; |
| va_start(va, fmt); |
| p = buf; |
| *(p++) = 'F'; |
| while (*fmt) { |
| if (*fmt == '%') { |
| fmt++; |
| switch (*fmt++) { |
| case 'x': |
| addr = va_arg(va, target_ulong); |
| p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr); |
| break; |
| case 'l': |
| if (*(fmt++) != 'x') |
| goto bad_format; |
| i64 = va_arg(va, uint64_t); |
| p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64); |
| break; |
| case 's': |
| addr = va_arg(va, target_ulong); |
| p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x", |
| addr, va_arg(va, int)); |
| break; |
| default: |
| bad_format: |
| fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n", |
| fmt - 1); |
| break; |
| } |
| } else { |
| *(p++) = *(fmt++); |
| } |
| } |
| *p = 0; |
| va_end(va); |
| put_packet(s, buf); |
| #ifdef CONFIG_USER_ONLY |
| gdb_handlesig(s->c_cpu, 0); |
| #else |
| cpu_interrupt(s->c_cpu, CPU_INTERRUPT_EXIT); |
| #endif |
| } |
| |
| static void gdb_read_byte(GDBState *s, int ch) |
| { |
| int i, csum; |
| uint8_t reply; |
| |
| #ifndef CONFIG_USER_ONLY |
| if (s->last_packet_len) { |
| /* Waiting for a response to the last packet. If we see the start |
| of a new command then abandon the previous response. */ |
| if (ch == '-') { |
| #ifdef DEBUG_GDB |
| printf("Got NACK, retransmitting\n"); |
| #endif |
| put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len); |
| } |
| #ifdef DEBUG_GDB |
| else if (ch == '+') |
| printf("Got ACK\n"); |
| else |
| printf("Got '%c' when expecting ACK/NACK\n", ch); |
| #endif |
| if (ch == '+' || ch == '$') |
| s->last_packet_len = 0; |
| if (ch != '$') |
| return; |
| } |
| if (vm_running) { |
| /* when the CPU is running, we cannot do anything except stop |
| it when receiving a char */ |
| vm_stop(EXCP_INTERRUPT); |
| } else |
| #endif |
| { |
| switch(s->state) { |
| case RS_IDLE: |
| if (ch == '$') { |
| s->line_buf_index = 0; |
| s->state = RS_GETLINE; |
| } |
| break; |
| case RS_GETLINE: |
| if (ch == '#') { |
| s->state = RS_CHKSUM1; |
| } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) { |
| s->state = RS_IDLE; |
| } else { |
| s->line_buf[s->line_buf_index++] = ch; |
| } |
| break; |
| case RS_CHKSUM1: |
| s->line_buf[s->line_buf_index] = '\0'; |
| s->line_csum = fromhex(ch) << 4; |
| s->state = RS_CHKSUM2; |
| break; |
| case RS_CHKSUM2: |
| s->line_csum |= fromhex(ch); |
| csum = 0; |
| for(i = 0; i < s->line_buf_index; i++) { |
| csum += s->line_buf[i]; |
| } |
| if (s->line_csum != (csum & 0xff)) { |
| reply = '-'; |
| put_buffer(s, &reply, 1); |
| s->state = RS_IDLE; |
| } else { |
| reply = '+'; |
| put_buffer(s, &reply, 1); |
| s->state = gdb_handle_packet(s, s->line_buf); |
| } |
| break; |
| default: |
| abort(); |
| } |
| } |
| } |
| |
| #ifdef CONFIG_USER_ONLY |
| int |
| gdb_handlesig (CPUState *env, int sig) |
| { |
| GDBState *s; |
| char buf[256]; |
| int n; |
| |
| s = gdbserver_state; |
| if (gdbserver_fd < 0 || s->fd < 0) |
| return sig; |
| |
| /* disable single step if it was enabled */ |
| cpu_single_step(env, 0); |
| tb_flush(env); |
| |
| if (sig != 0) |
| { |
| snprintf(buf, sizeof(buf), "S%02x", sig); |
| put_packet(s, buf); |
| } |
| /* put_packet() might have detected that the peer terminated the |
| connection. */ |
| if (s->fd < 0) |
| return sig; |
| |
| sig = 0; |
| s->state = RS_IDLE; |
| s->running_state = 0; |
| while (s->running_state == 0) { |
| n = read (s->fd, buf, 256); |
| if (n > 0) |
| { |
| int i; |
| |
| for (i = 0; i < n; i++) |
| gdb_read_byte (s, buf[i]); |
| } |
| else if (n == 0 || errno != EAGAIN) |
| { |
| /* XXX: Connection closed. Should probably wait for annother |
| connection before continuing. */ |
| return sig; |
| } |
| } |
| sig = s->signal; |
| s->signal = 0; |
| return sig; |
| } |
| |
| /* Tell the remote gdb that the process has exited. */ |
| void gdb_exit(CPUState *env, int code) |
| { |
| GDBState *s; |
| char buf[4]; |
| |
| s = gdbserver_state; |
| if (gdbserver_fd < 0 || s->fd < 0) |
| return; |
| |
| snprintf(buf, sizeof(buf), "W%02x", code); |
| put_packet(s, buf); |
| } |
| |
| |
| static void gdb_accept(void) |
| { |
| GDBState *s; |
| struct sockaddr_in sockaddr; |
| socklen_t len; |
| int val, fd; |
| |
| for(;;) { |
| len = sizeof(sockaddr); |
| fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len); |
| if (fd < 0 && errno != EINTR) { |
| perror("accept"); |
| return; |
| } else if (fd >= 0) { |
| break; |
| } |
| } |
| |
| /* set short latency */ |
| val = 1; |
| setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val)); |
| |
| s = qemu_mallocz(sizeof(GDBState)); |
| if (!s) { |
| errno = ENOMEM; |
| perror("accept"); |
| return; |
| } |
| |
| memset (s, 0, sizeof (GDBState)); |
| s->c_cpu = first_cpu; |
| s->g_cpu = first_cpu; |
| s->fd = fd; |
| gdb_has_xml = 0; |
| |
| gdbserver_state = s; |
| |
| fcntl(fd, F_SETFL, O_NONBLOCK); |
| } |
| |
| static int gdbserver_open(int port) |
| { |
| struct sockaddr_in sockaddr; |
| int fd, val, ret; |
| |
| fd = socket(PF_INET, SOCK_STREAM, 0); |
| if (fd < 0) { |
| perror("socket"); |
| return -1; |
| } |
| |
| /* allow fast reuse */ |
| val = 1; |
| setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val)); |
| |
| sockaddr.sin_family = AF_INET; |
| sockaddr.sin_port = htons(port); |
| sockaddr.sin_addr.s_addr = 0; |
| ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr)); |
| if (ret < 0) { |
| perror("bind"); |
| return -1; |
| } |
| ret = listen(fd, 0); |
| if (ret < 0) { |
| perror("listen"); |
| return -1; |
| } |
| return fd; |
| } |
| |
| int gdbserver_start(int port) |
| { |
| gdbserver_fd = gdbserver_open(port); |
| if (gdbserver_fd < 0) |
| return -1; |
| /* accept connections */ |
| gdb_accept(); |
| return 0; |
| } |
| #else |
| static int gdb_chr_can_receive(void *opaque) |
| { |
| /* We can handle an arbitrarily large amount of data. |
| Pick the maximum packet size, which is as good as anything. */ |
| return MAX_PACKET_LENGTH; |
| } |
| |
| static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size) |
| { |
| int i; |
| |
| for (i = 0; i < size; i++) { |
| gdb_read_byte(gdbserver_state, buf[i]); |
| } |
| } |
| |
| static void gdb_chr_event(void *opaque, int event) |
| { |
| switch (event) { |
| case CHR_EVENT_RESET: |
| vm_stop(EXCP_INTERRUPT); |
| gdb_has_xml = 0; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| int gdbserver_start(const char *port) |
| { |
| GDBState *s; |
| char gdbstub_port_name[128]; |
| int port_num; |
| char *p; |
| CharDriverState *chr; |
| |
| if (!port || !*port) |
| return -1; |
| |
| port_num = strtol(port, &p, 10); |
| if (*p == 0) { |
| /* A numeric value is interpreted as a port number. */ |
| snprintf(gdbstub_port_name, sizeof(gdbstub_port_name), |
| "tcp::%d,nowait,nodelay,server", port_num); |
| port = gdbstub_port_name; |
| } |
| |
| chr = qemu_chr_open("gdb", port); |
| if (!chr) |
| return -1; |
| |
| s = qemu_mallocz(sizeof(GDBState)); |
| if (!s) { |
| return -1; |
| } |
| s->c_cpu = first_cpu; |
| s->g_cpu = first_cpu; |
| s->chr = chr; |
| gdbserver_state = s; |
| qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive, |
| gdb_chr_event, NULL); |
| qemu_add_vm_stop_handler(gdb_vm_stopped, NULL); |
| return 0; |
| } |
| #endif |