vmdk: Add read-only support for seSparse snapshots

Until ESXi 6.5 VMware used the vmfsSparse format for snapshots (VMDK3 in
QEMU).

This format was lacking in the following:

    * Grain directory (L1) and grain table (L2) entries were 32-bit,
      allowing access to only 2TB (slightly less) of data.
    * The grain size (default) was 512 bytes - leading to data
      fragmentation and many grain tables.
    * For space reclamation purposes, it was necessary to find all the
      grains which are not pointed to by any grain table - so a reverse
      mapping of "offset of grain in vmdk" to "grain table" must be
      constructed - which takes large amounts of CPU/RAM.

The format specification can be found in VMware's documentation:
https://www.vmware.com/support/developer/vddk/vmdk_50_technote.pdf

In ESXi 6.5, to support snapshot files larger than 2TB, a new format was
introduced: SESparse (Space Efficient).

This format fixes the above issues:

    * All entries are now 64-bit.
    * The grain size (default) is 4KB.
    * Grain directory and grain tables are now located at the beginning
      of the file.
      + seSparse format reserves space for all grain tables.
      + Grain tables can be addressed using an index.
      + Grains are located in the end of the file and can also be
        addressed with an index.
      - seSparse vmdks of large disks (64TB) have huge preallocated
        headers - mainly due to L2 tables, even for empty snapshots.
    * The header contains a reverse mapping ("backmap") of "offset of
      grain in vmdk" to "grain table" and a bitmap ("free bitmap") which
      specifies for each grain - whether it is allocated or not.
      Using these data structures we can implement space reclamation
      efficiently.
    * Due to the fact that the header now maintains two mappings:
        * The regular one (grain directory & grain tables)
        * A reverse one (backmap and free bitmap)
      These data structures can lose consistency upon crash and result
      in a corrupted VMDK.
      Therefore, a journal is also added to the VMDK and is replayed
      when the VMware reopens the file after a crash.

Since ESXi 6.7 - SESparse is the only snapshot format available.

Unfortunately, VMware does not provide documentation regarding the new
seSparse format.

This commit is based on black-box research of the seSparse format.
Various in-guest block operations and their effect on the snapshot file
were tested.

The only VMware provided source of information (regarding the underlying
implementation) was a log file on the ESXi:

    /var/log/hostd.log

Whenever an seSparse snapshot is created - the log is being populated
with seSparse records.

Relevant log records are of the form:

[...] Const Header:
[...]  constMagic     = 0xcafebabe
[...]  version        = 2.1
[...]  capacity       = 204800
[...]  grainSize      = 8
[...]  grainTableSize = 64
[...]  flags          = 0
[...] Extents:
[...]  Header         : <1 : 1>
[...]  JournalHdr     : <2 : 2>
[...]  Journal        : <2048 : 2048>
[...]  GrainDirectory : <4096 : 2048>
[...]  GrainTables    : <6144 : 2048>
[...]  FreeBitmap     : <8192 : 2048>
[...]  BackMap        : <10240 : 2048>
[...]  Grain          : <12288 : 204800>
[...] Volatile Header:
[...] volatileMagic     = 0xcafecafe
[...] FreeGTNumber      = 0
[...] nextTxnSeqNumber  = 0
[...] replayJournal     = 0

The sizes that are seen in the log file are in sectors.
Extents are of the following format: <offset : size>

This commit is a strict implementation which enforces:
    * magics
    * version number 2.1
    * grain size of 8 sectors  (4KB)
    * grain table size of 64 sectors
    * zero flags
    * extent locations

Additionally, this commit proivdes only a subset of the functionality
offered by seSparse's format:
    * Read-only
    * No journal replay
    * No space reclamation
    * No unmap support

Hence, journal header, journal, free bitmap and backmap extents are
unused, only the "classic" (L1 -> L2 -> data) grain access is
implemented.

However there are several differences in the grain access itself.
Grain directory (L1):
    * Grain directory entries are indexes (not offsets) to grain
      tables.
    * Valid grain directory entries have their highest nibble set to
      0x1.
    * Since grain tables are always located in the beginning of the
      file - the index can fit into 32 bits - so we can use its low
      part if it's valid.
Grain table (L2):
    * Grain table entries are indexes (not offsets) to grains.
    * If the highest nibble of the entry is:
        0x0:
            The grain in not allocated.
            The rest of the bytes are 0.
        0x1:
            The grain is unmapped - guest sees a zero grain.
            The rest of the bits point to the previously mapped grain,
            see 0x3 case.
        0x2:
            The grain is zero.
        0x3:
            The grain is allocated - to get the index calculate:
            ((entry & 0x0fff000000000000) >> 48) |
            ((entry & 0x0000ffffffffffff) << 12)
    * The difference between 0x1 and 0x2 is that 0x1 is an unallocated
      grain which results from the guest using sg_unmap to unmap the
      grain - but the grain itself still exists in the grain extent - a
      space reclamation procedure should delete it.
      Unmapping a zero grain has no effect (0x2 will not change to 0x1)
      but unmapping an unallocated grain will (0x0 to 0x1) - naturally.

In order to implement seSparse some fields had to be changed to support
both 32-bit and 64-bit entry sizes.

Reviewed-by: Karl Heubaum <karl.heubaum@oracle.com>
Reviewed-by: Eyal Moscovici <eyal.moscovici@oracle.com>
Reviewed-by: Arbel Moshe <arbel.moshe@oracle.com>
Signed-off-by: Sam Eiderman <shmuel.eiderman@oracle.com>
Message-id: 20190620091057.47441-4-shmuel.eiderman@oracle.com
Signed-off-by: Max Reitz <mreitz@redhat.com>
1 file changed