| /* Support for writing ELF notes for ARM architectures |
| * |
| * Copyright (C) 2015 Red Hat Inc. |
| * |
| * Author: Andrew Jones <drjones@redhat.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "elf.h" |
| #include "sysemu/dump.h" |
| |
| /* struct user_pt_regs from arch/arm64/include/uapi/asm/ptrace.h */ |
| struct aarch64_user_regs { |
| uint64_t regs[31]; |
| uint64_t sp; |
| uint64_t pc; |
| uint64_t pstate; |
| } QEMU_PACKED; |
| |
| QEMU_BUILD_BUG_ON(sizeof(struct aarch64_user_regs) != 272); |
| |
| /* struct elf_prstatus from include/uapi/linux/elfcore.h */ |
| struct aarch64_elf_prstatus { |
| char pad1[32]; /* 32 == offsetof(struct elf_prstatus, pr_pid) */ |
| uint32_t pr_pid; |
| char pad2[76]; /* 76 == offsetof(struct elf_prstatus, pr_reg) - |
| offsetof(struct elf_prstatus, pr_ppid) */ |
| struct aarch64_user_regs pr_reg; |
| uint32_t pr_fpvalid; |
| char pad3[4]; |
| } QEMU_PACKED; |
| |
| QEMU_BUILD_BUG_ON(sizeof(struct aarch64_elf_prstatus) != 392); |
| |
| /* struct user_fpsimd_state from arch/arm64/include/uapi/asm/ptrace.h |
| * |
| * While the vregs member of user_fpsimd_state is of type __uint128_t, |
| * QEMU uses an array of uint64_t, where the high half of the 128-bit |
| * value is always in the 2n+1'th index. Thus we also break the 128- |
| * bit values into two halves in this reproduction of user_fpsimd_state. |
| */ |
| struct aarch64_user_vfp_state { |
| uint64_t vregs[64]; |
| uint32_t fpsr; |
| uint32_t fpcr; |
| char pad[8]; |
| } QEMU_PACKED; |
| |
| QEMU_BUILD_BUG_ON(sizeof(struct aarch64_user_vfp_state) != 528); |
| |
| /* struct user_sve_header from arch/arm64/include/uapi/asm/ptrace.h */ |
| struct aarch64_user_sve_header { |
| uint32_t size; |
| uint32_t max_size; |
| uint16_t vl; |
| uint16_t max_vl; |
| uint16_t flags; |
| uint16_t reserved; |
| } QEMU_PACKED; |
| |
| struct aarch64_note { |
| Elf64_Nhdr hdr; |
| char name[8]; /* align_up(sizeof("CORE"), 4) */ |
| union { |
| struct aarch64_elf_prstatus prstatus; |
| struct aarch64_user_vfp_state vfp; |
| struct aarch64_user_sve_header sve; |
| }; |
| } QEMU_PACKED; |
| |
| #define AARCH64_NOTE_HEADER_SIZE offsetof(struct aarch64_note, prstatus) |
| #define AARCH64_PRSTATUS_NOTE_SIZE \ |
| (AARCH64_NOTE_HEADER_SIZE + sizeof(struct aarch64_elf_prstatus)) |
| #define AARCH64_PRFPREG_NOTE_SIZE \ |
| (AARCH64_NOTE_HEADER_SIZE + sizeof(struct aarch64_user_vfp_state)) |
| #define AARCH64_SVE_NOTE_SIZE(env) \ |
| (AARCH64_NOTE_HEADER_SIZE + sve_size(env)) |
| |
| static void aarch64_note_init(struct aarch64_note *note, DumpState *s, |
| const char *name, Elf64_Word namesz, |
| Elf64_Word type, Elf64_Word descsz) |
| { |
| memset(note, 0, sizeof(*note)); |
| |
| note->hdr.n_namesz = cpu_to_dump32(s, namesz); |
| note->hdr.n_descsz = cpu_to_dump32(s, descsz); |
| note->hdr.n_type = cpu_to_dump32(s, type); |
| |
| memcpy(note->name, name, namesz); |
| } |
| |
| static int aarch64_write_elf64_prfpreg(WriteCoreDumpFunction f, |
| CPUARMState *env, int cpuid, |
| DumpState *s) |
| { |
| struct aarch64_note note; |
| int ret, i; |
| |
| aarch64_note_init(¬e, s, "CORE", 5, NT_PRFPREG, sizeof(note.vfp)); |
| |
| for (i = 0; i < 32; ++i) { |
| uint64_t *q = aa64_vfp_qreg(env, i); |
| note.vfp.vregs[2 * i + 0] = cpu_to_dump64(s, q[0]); |
| note.vfp.vregs[2 * i + 1] = cpu_to_dump64(s, q[1]); |
| } |
| |
| if (s->dump_info.d_endian == ELFDATA2MSB) { |
| /* For AArch64 we must always swap the vfp.regs's 2n and 2n+1 |
| * entries when generating BE notes, because even big endian |
| * hosts use 2n+1 for the high half. |
| */ |
| for (i = 0; i < 32; ++i) { |
| uint64_t tmp = note.vfp.vregs[2*i]; |
| note.vfp.vregs[2 * i] = note.vfp.vregs[2 * i + 1]; |
| note.vfp.vregs[2 * i + 1] = tmp; |
| } |
| } |
| |
| note.vfp.fpsr = cpu_to_dump32(s, vfp_get_fpsr(env)); |
| note.vfp.fpcr = cpu_to_dump32(s, vfp_get_fpcr(env)); |
| |
| ret = f(¬e, AARCH64_PRFPREG_NOTE_SIZE, s); |
| if (ret < 0) { |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| #ifdef TARGET_AARCH64 |
| static off_t sve_zreg_offset(uint32_t vq, int n) |
| { |
| off_t off = sizeof(struct aarch64_user_sve_header); |
| return ROUND_UP(off, 16) + vq * 16 * n; |
| } |
| |
| static off_t sve_preg_offset(uint32_t vq, int n) |
| { |
| return sve_zreg_offset(vq, 32) + vq * 16 / 8 * n; |
| } |
| |
| static off_t sve_fpsr_offset(uint32_t vq) |
| { |
| off_t off = sve_preg_offset(vq, 17); |
| return ROUND_UP(off, 16); |
| } |
| |
| static off_t sve_fpcr_offset(uint32_t vq) |
| { |
| return sve_fpsr_offset(vq) + sizeof(uint32_t); |
| } |
| |
| static uint32_t sve_current_vq(CPUARMState *env) |
| { |
| return sve_zcr_len_for_el(env, arm_current_el(env)) + 1; |
| } |
| |
| static size_t sve_size_vq(uint32_t vq) |
| { |
| off_t off = sve_fpcr_offset(vq) + sizeof(uint32_t); |
| return ROUND_UP(off, 16); |
| } |
| |
| static size_t sve_size(CPUARMState *env) |
| { |
| return sve_size_vq(sve_current_vq(env)); |
| } |
| |
| static int aarch64_write_elf64_sve(WriteCoreDumpFunction f, |
| CPUARMState *env, int cpuid, |
| DumpState *s) |
| { |
| struct aarch64_note *note; |
| ARMCPU *cpu = env_archcpu(env); |
| uint32_t vq = sve_current_vq(env); |
| uint64_t tmp[ARM_MAX_VQ * 2], *r; |
| uint32_t fpr; |
| uint8_t *buf; |
| int ret, i; |
| |
| note = g_malloc0(AARCH64_SVE_NOTE_SIZE(env)); |
| buf = (uint8_t *)¬e->sve; |
| |
| aarch64_note_init(note, s, "LINUX", 6, NT_ARM_SVE, sve_size_vq(vq)); |
| |
| note->sve.size = cpu_to_dump32(s, sve_size_vq(vq)); |
| note->sve.max_size = cpu_to_dump32(s, sve_size_vq(cpu->sve_max_vq)); |
| note->sve.vl = cpu_to_dump16(s, vq * 16); |
| note->sve.max_vl = cpu_to_dump16(s, cpu->sve_max_vq * 16); |
| note->sve.flags = cpu_to_dump16(s, 1); |
| |
| for (i = 0; i < 32; ++i) { |
| r = sve_bswap64(tmp, &env->vfp.zregs[i].d[0], vq * 2); |
| memcpy(&buf[sve_zreg_offset(vq, i)], r, vq * 16); |
| } |
| |
| for (i = 0; i < 17; ++i) { |
| r = sve_bswap64(tmp, r = &env->vfp.pregs[i].p[0], |
| DIV_ROUND_UP(vq * 2, 8)); |
| memcpy(&buf[sve_preg_offset(vq, i)], r, vq * 16 / 8); |
| } |
| |
| fpr = cpu_to_dump32(s, vfp_get_fpsr(env)); |
| memcpy(&buf[sve_fpsr_offset(vq)], &fpr, sizeof(uint32_t)); |
| |
| fpr = cpu_to_dump32(s, vfp_get_fpcr(env)); |
| memcpy(&buf[sve_fpcr_offset(vq)], &fpr, sizeof(uint32_t)); |
| |
| ret = f(note, AARCH64_SVE_NOTE_SIZE(env), s); |
| g_free(note); |
| |
| if (ret < 0) { |
| return -1; |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs, |
| int cpuid, void *opaque) |
| { |
| struct aarch64_note note; |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| DumpState *s = opaque; |
| uint64_t pstate, sp; |
| int ret, i; |
| |
| aarch64_note_init(¬e, s, "CORE", 5, NT_PRSTATUS, sizeof(note.prstatus)); |
| |
| note.prstatus.pr_pid = cpu_to_dump32(s, cpuid); |
| note.prstatus.pr_fpvalid = cpu_to_dump32(s, 1); |
| |
| if (!is_a64(env)) { |
| aarch64_sync_32_to_64(env); |
| pstate = cpsr_read(env); |
| sp = 0; |
| } else { |
| pstate = pstate_read(env); |
| sp = env->xregs[31]; |
| } |
| |
| for (i = 0; i < 31; ++i) { |
| note.prstatus.pr_reg.regs[i] = cpu_to_dump64(s, env->xregs[i]); |
| } |
| note.prstatus.pr_reg.sp = cpu_to_dump64(s, sp); |
| note.prstatus.pr_reg.pc = cpu_to_dump64(s, env->pc); |
| note.prstatus.pr_reg.pstate = cpu_to_dump64(s, pstate); |
| |
| ret = f(¬e, AARCH64_PRSTATUS_NOTE_SIZE, s); |
| if (ret < 0) { |
| return -1; |
| } |
| |
| ret = aarch64_write_elf64_prfpreg(f, env, cpuid, s); |
| if (ret) { |
| return ret; |
| } |
| |
| #ifdef TARGET_AARCH64 |
| if (cpu_isar_feature(aa64_sve, cpu)) { |
| ret = aarch64_write_elf64_sve(f, env, cpuid, s); |
| } |
| #endif |
| |
| return ret; |
| } |
| |
| /* struct pt_regs from arch/arm/include/asm/ptrace.h */ |
| struct arm_user_regs { |
| uint32_t regs[17]; |
| char pad[4]; |
| } QEMU_PACKED; |
| |
| QEMU_BUILD_BUG_ON(sizeof(struct arm_user_regs) != 72); |
| |
| /* struct elf_prstatus from include/uapi/linux/elfcore.h */ |
| struct arm_elf_prstatus { |
| char pad1[24]; /* 24 == offsetof(struct elf_prstatus, pr_pid) */ |
| uint32_t pr_pid; |
| char pad2[44]; /* 44 == offsetof(struct elf_prstatus, pr_reg) - |
| offsetof(struct elf_prstatus, pr_ppid) */ |
| struct arm_user_regs pr_reg; |
| uint32_t pr_fpvalid; |
| } QEMU_PACKED arm_elf_prstatus; |
| |
| QEMU_BUILD_BUG_ON(sizeof(struct arm_elf_prstatus) != 148); |
| |
| /* struct user_vfp from arch/arm/include/asm/user.h */ |
| struct arm_user_vfp_state { |
| uint64_t vregs[32]; |
| uint32_t fpscr; |
| } QEMU_PACKED; |
| |
| QEMU_BUILD_BUG_ON(sizeof(struct arm_user_vfp_state) != 260); |
| |
| struct arm_note { |
| Elf32_Nhdr hdr; |
| char name[8]; /* align_up(sizeof("LINUX"), 4) */ |
| union { |
| struct arm_elf_prstatus prstatus; |
| struct arm_user_vfp_state vfp; |
| }; |
| } QEMU_PACKED; |
| |
| #define ARM_NOTE_HEADER_SIZE offsetof(struct arm_note, prstatus) |
| #define ARM_PRSTATUS_NOTE_SIZE \ |
| (ARM_NOTE_HEADER_SIZE + sizeof(struct arm_elf_prstatus)) |
| #define ARM_VFP_NOTE_SIZE \ |
| (ARM_NOTE_HEADER_SIZE + sizeof(struct arm_user_vfp_state)) |
| |
| static void arm_note_init(struct arm_note *note, DumpState *s, |
| const char *name, Elf32_Word namesz, |
| Elf32_Word type, Elf32_Word descsz) |
| { |
| memset(note, 0, sizeof(*note)); |
| |
| note->hdr.n_namesz = cpu_to_dump32(s, namesz); |
| note->hdr.n_descsz = cpu_to_dump32(s, descsz); |
| note->hdr.n_type = cpu_to_dump32(s, type); |
| |
| memcpy(note->name, name, namesz); |
| } |
| |
| static int arm_write_elf32_vfp(WriteCoreDumpFunction f, CPUARMState *env, |
| int cpuid, DumpState *s) |
| { |
| struct arm_note note; |
| int ret, i; |
| |
| arm_note_init(¬e, s, "LINUX", 6, NT_ARM_VFP, sizeof(note.vfp)); |
| |
| for (i = 0; i < 32; ++i) { |
| note.vfp.vregs[i] = cpu_to_dump64(s, *aa32_vfp_dreg(env, i)); |
| } |
| |
| note.vfp.fpscr = cpu_to_dump32(s, vfp_get_fpscr(env)); |
| |
| ret = f(¬e, ARM_VFP_NOTE_SIZE, s); |
| if (ret < 0) { |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs, |
| int cpuid, void *opaque) |
| { |
| struct arm_note note; |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| DumpState *s = opaque; |
| int ret, i; |
| bool fpvalid = cpu_isar_feature(aa32_vfp_simd, cpu); |
| |
| arm_note_init(¬e, s, "CORE", 5, NT_PRSTATUS, sizeof(note.prstatus)); |
| |
| note.prstatus.pr_pid = cpu_to_dump32(s, cpuid); |
| note.prstatus.pr_fpvalid = cpu_to_dump32(s, fpvalid); |
| |
| for (i = 0; i < 16; ++i) { |
| note.prstatus.pr_reg.regs[i] = cpu_to_dump32(s, env->regs[i]); |
| } |
| note.prstatus.pr_reg.regs[16] = cpu_to_dump32(s, cpsr_read(env)); |
| |
| ret = f(¬e, ARM_PRSTATUS_NOTE_SIZE, s); |
| if (ret < 0) { |
| return -1; |
| } else if (fpvalid) { |
| return arm_write_elf32_vfp(f, env, cpuid, s); |
| } |
| |
| return 0; |
| } |
| |
| int cpu_get_dump_info(ArchDumpInfo *info, |
| const GuestPhysBlockList *guest_phys_blocks) |
| { |
| ARMCPU *cpu; |
| CPUARMState *env; |
| GuestPhysBlock *block; |
| hwaddr lowest_addr = ULLONG_MAX; |
| |
| if (first_cpu == NULL) { |
| return -1; |
| } |
| |
| cpu = ARM_CPU(first_cpu); |
| env = &cpu->env; |
| |
| /* Take a best guess at the phys_base. If we get it wrong then crash |
| * will need '--machdep phys_offset=<phys-offset>' added to its command |
| * line, which isn't any worse than assuming we can use zero, but being |
| * wrong. This is the same algorithm the crash utility uses when |
| * attempting to guess as it loads non-dumpfile formatted files. |
| */ |
| QTAILQ_FOREACH(block, &guest_phys_blocks->head, next) { |
| if (block->target_start < lowest_addr) { |
| lowest_addr = block->target_start; |
| } |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
| info->d_machine = EM_AARCH64; |
| info->d_class = ELFCLASS64; |
| info->page_size = (1 << 16); /* aarch64 max pagesize */ |
| if (lowest_addr != ULLONG_MAX) { |
| info->phys_base = lowest_addr; |
| } |
| } else { |
| info->d_machine = EM_ARM; |
| info->d_class = ELFCLASS32; |
| info->page_size = (1 << 12); |
| if (lowest_addr < UINT_MAX) { |
| info->phys_base = lowest_addr; |
| } |
| } |
| |
| /* We assume the relevant endianness is that of EL1; this is right |
| * for kernels, but might give the wrong answer if you're trying to |
| * dump a hypervisor that happens to be running an opposite-endian |
| * kernel. |
| */ |
| info->d_endian = (env->cp15.sctlr_el[1] & SCTLR_EE) != 0 |
| ? ELFDATA2MSB : ELFDATA2LSB; |
| |
| return 0; |
| } |
| |
| ssize_t cpu_get_note_size(int class, int machine, int nr_cpus) |
| { |
| ARMCPU *cpu = ARM_CPU(first_cpu); |
| size_t note_size; |
| |
| if (class == ELFCLASS64) { |
| note_size = AARCH64_PRSTATUS_NOTE_SIZE; |
| note_size += AARCH64_PRFPREG_NOTE_SIZE; |
| #ifdef TARGET_AARCH64 |
| if (cpu_isar_feature(aa64_sve, cpu)) { |
| note_size += AARCH64_SVE_NOTE_SIZE(&cpu->env); |
| } |
| #endif |
| } else { |
| note_size = ARM_PRSTATUS_NOTE_SIZE; |
| if (cpu_isar_feature(aa32_vfp_simd, cpu)) { |
| note_size += ARM_VFP_NOTE_SIZE; |
| } |
| } |
| |
| return note_size * nr_cpus; |
| } |