system: Rename softmmu/ directory as system/

The softmmu/ directory contains files specific to system
emulation. Rename it as system/. Update meson rules, the
MAINTAINERS file and all the documentation and comments.

Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-ID: <20231004090629.37473-14-philmd@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
diff --git a/system/physmem.c b/system/physmem.c
new file mode 100644
index 0000000..edc3ed8
--- /dev/null
+++ b/system/physmem.c
@@ -0,0 +1,3796 @@
+/*
+ * RAM allocation and memory access
+ *
+ *  Copyright (c) 2003 Fabrice Bellard
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include "qemu/osdep.h"
+#include "exec/page-vary.h"
+#include "qapi/error.h"
+
+#include "qemu/cutils.h"
+#include "qemu/cacheflush.h"
+#include "qemu/hbitmap.h"
+#include "qemu/madvise.h"
+
+#ifdef CONFIG_TCG
+#include "hw/core/tcg-cpu-ops.h"
+#endif /* CONFIG_TCG */
+
+#include "exec/exec-all.h"
+#include "exec/target_page.h"
+#include "hw/qdev-core.h"
+#include "hw/qdev-properties.h"
+#include "hw/boards.h"
+#include "hw/xen/xen.h"
+#include "sysemu/kvm.h"
+#include "sysemu/tcg.h"
+#include "sysemu/qtest.h"
+#include "qemu/timer.h"
+#include "qemu/config-file.h"
+#include "qemu/error-report.h"
+#include "qemu/qemu-print.h"
+#include "qemu/log.h"
+#include "qemu/memalign.h"
+#include "exec/memory.h"
+#include "exec/ioport.h"
+#include "sysemu/dma.h"
+#include "sysemu/hostmem.h"
+#include "sysemu/hw_accel.h"
+#include "sysemu/xen-mapcache.h"
+#include "trace/trace-root.h"
+
+#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
+#include <linux/falloc.h>
+#endif
+
+#include "qemu/rcu_queue.h"
+#include "qemu/main-loop.h"
+#include "exec/translate-all.h"
+#include "sysemu/replay.h"
+
+#include "exec/memory-internal.h"
+#include "exec/ram_addr.h"
+
+#include "qemu/pmem.h"
+
+#include "migration/vmstate.h"
+
+#include "qemu/range.h"
+#ifndef _WIN32
+#include "qemu/mmap-alloc.h"
+#endif
+
+#include "monitor/monitor.h"
+
+#ifdef CONFIG_LIBDAXCTL
+#include <daxctl/libdaxctl.h>
+#endif
+
+//#define DEBUG_SUBPAGE
+
+/* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
+ * are protected by the ramlist lock.
+ */
+RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
+
+static MemoryRegion *system_memory;
+static MemoryRegion *system_io;
+
+AddressSpace address_space_io;
+AddressSpace address_space_memory;
+
+static MemoryRegion io_mem_unassigned;
+
+typedef struct PhysPageEntry PhysPageEntry;
+
+struct PhysPageEntry {
+    /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
+    uint32_t skip : 6;
+     /* index into phys_sections (!skip) or phys_map_nodes (skip) */
+    uint32_t ptr : 26;
+};
+
+#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
+
+/* Size of the L2 (and L3, etc) page tables.  */
+#define ADDR_SPACE_BITS 64
+
+#define P_L2_BITS 9
+#define P_L2_SIZE (1 << P_L2_BITS)
+
+#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
+
+typedef PhysPageEntry Node[P_L2_SIZE];
+
+typedef struct PhysPageMap {
+    struct rcu_head rcu;
+
+    unsigned sections_nb;
+    unsigned sections_nb_alloc;
+    unsigned nodes_nb;
+    unsigned nodes_nb_alloc;
+    Node *nodes;
+    MemoryRegionSection *sections;
+} PhysPageMap;
+
+struct AddressSpaceDispatch {
+    MemoryRegionSection *mru_section;
+    /* This is a multi-level map on the physical address space.
+     * The bottom level has pointers to MemoryRegionSections.
+     */
+    PhysPageEntry phys_map;
+    PhysPageMap map;
+};
+
+#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
+typedef struct subpage_t {
+    MemoryRegion iomem;
+    FlatView *fv;
+    hwaddr base;
+    uint16_t sub_section[];
+} subpage_t;
+
+#define PHYS_SECTION_UNASSIGNED 0
+
+static void io_mem_init(void);
+static void memory_map_init(void);
+static void tcg_log_global_after_sync(MemoryListener *listener);
+static void tcg_commit(MemoryListener *listener);
+
+/**
+ * CPUAddressSpace: all the information a CPU needs about an AddressSpace
+ * @cpu: the CPU whose AddressSpace this is
+ * @as: the AddressSpace itself
+ * @memory_dispatch: its dispatch pointer (cached, RCU protected)
+ * @tcg_as_listener: listener for tracking changes to the AddressSpace
+ */
+struct CPUAddressSpace {
+    CPUState *cpu;
+    AddressSpace *as;
+    struct AddressSpaceDispatch *memory_dispatch;
+    MemoryListener tcg_as_listener;
+};
+
+struct DirtyBitmapSnapshot {
+    ram_addr_t start;
+    ram_addr_t end;
+    unsigned long dirty[];
+};
+
+static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
+{
+    static unsigned alloc_hint = 16;
+    if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
+        map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
+        map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
+        alloc_hint = map->nodes_nb_alloc;
+    }
+}
+
+static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
+{
+    unsigned i;
+    uint32_t ret;
+    PhysPageEntry e;
+    PhysPageEntry *p;
+
+    ret = map->nodes_nb++;
+    p = map->nodes[ret];
+    assert(ret != PHYS_MAP_NODE_NIL);
+    assert(ret != map->nodes_nb_alloc);
+
+    e.skip = leaf ? 0 : 1;
+    e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
+    for (i = 0; i < P_L2_SIZE; ++i) {
+        memcpy(&p[i], &e, sizeof(e));
+    }
+    return ret;
+}
+
+static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
+                                hwaddr *index, uint64_t *nb, uint16_t leaf,
+                                int level)
+{
+    PhysPageEntry *p;
+    hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
+
+    if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
+        lp->ptr = phys_map_node_alloc(map, level == 0);
+    }
+    p = map->nodes[lp->ptr];
+    lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
+
+    while (*nb && lp < &p[P_L2_SIZE]) {
+        if ((*index & (step - 1)) == 0 && *nb >= step) {
+            lp->skip = 0;
+            lp->ptr = leaf;
+            *index += step;
+            *nb -= step;
+        } else {
+            phys_page_set_level(map, lp, index, nb, leaf, level - 1);
+        }
+        ++lp;
+    }
+}
+
+static void phys_page_set(AddressSpaceDispatch *d,
+                          hwaddr index, uint64_t nb,
+                          uint16_t leaf)
+{
+    /* Wildly overreserve - it doesn't matter much. */
+    phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
+
+    phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
+}
+
+/* Compact a non leaf page entry. Simply detect that the entry has a single child,
+ * and update our entry so we can skip it and go directly to the destination.
+ */
+static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
+{
+    unsigned valid_ptr = P_L2_SIZE;
+    int valid = 0;
+    PhysPageEntry *p;
+    int i;
+
+    if (lp->ptr == PHYS_MAP_NODE_NIL) {
+        return;
+    }
+
+    p = nodes[lp->ptr];
+    for (i = 0; i < P_L2_SIZE; i++) {
+        if (p[i].ptr == PHYS_MAP_NODE_NIL) {
+            continue;
+        }
+
+        valid_ptr = i;
+        valid++;
+        if (p[i].skip) {
+            phys_page_compact(&p[i], nodes);
+        }
+    }
+
+    /* We can only compress if there's only one child. */
+    if (valid != 1) {
+        return;
+    }
+
+    assert(valid_ptr < P_L2_SIZE);
+
+    /* Don't compress if it won't fit in the # of bits we have. */
+    if (P_L2_LEVELS >= (1 << 6) &&
+        lp->skip + p[valid_ptr].skip >= (1 << 6)) {
+        return;
+    }
+
+    lp->ptr = p[valid_ptr].ptr;
+    if (!p[valid_ptr].skip) {
+        /* If our only child is a leaf, make this a leaf. */
+        /* By design, we should have made this node a leaf to begin with so we
+         * should never reach here.
+         * But since it's so simple to handle this, let's do it just in case we
+         * change this rule.
+         */
+        lp->skip = 0;
+    } else {
+        lp->skip += p[valid_ptr].skip;
+    }
+}
+
+void address_space_dispatch_compact(AddressSpaceDispatch *d)
+{
+    if (d->phys_map.skip) {
+        phys_page_compact(&d->phys_map, d->map.nodes);
+    }
+}
+
+static inline bool section_covers_addr(const MemoryRegionSection *section,
+                                       hwaddr addr)
+{
+    /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
+     * the section must cover the entire address space.
+     */
+    return int128_gethi(section->size) ||
+           range_covers_byte(section->offset_within_address_space,
+                             int128_getlo(section->size), addr);
+}
+
+static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
+{
+    PhysPageEntry lp = d->phys_map, *p;
+    Node *nodes = d->map.nodes;
+    MemoryRegionSection *sections = d->map.sections;
+    hwaddr index = addr >> TARGET_PAGE_BITS;
+    int i;
+
+    for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
+        if (lp.ptr == PHYS_MAP_NODE_NIL) {
+            return &sections[PHYS_SECTION_UNASSIGNED];
+        }
+        p = nodes[lp.ptr];
+        lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
+    }
+
+    if (section_covers_addr(&sections[lp.ptr], addr)) {
+        return &sections[lp.ptr];
+    } else {
+        return &sections[PHYS_SECTION_UNASSIGNED];
+    }
+}
+
+/* Called from RCU critical section */
+static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
+                                                        hwaddr addr,
+                                                        bool resolve_subpage)
+{
+    MemoryRegionSection *section = qatomic_read(&d->mru_section);
+    subpage_t *subpage;
+
+    if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
+        !section_covers_addr(section, addr)) {
+        section = phys_page_find(d, addr);
+        qatomic_set(&d->mru_section, section);
+    }
+    if (resolve_subpage && section->mr->subpage) {
+        subpage = container_of(section->mr, subpage_t, iomem);
+        section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
+    }
+    return section;
+}
+
+/* Called from RCU critical section */
+static MemoryRegionSection *
+address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
+                                 hwaddr *plen, bool resolve_subpage)
+{
+    MemoryRegionSection *section;
+    MemoryRegion *mr;
+    Int128 diff;
+
+    section = address_space_lookup_region(d, addr, resolve_subpage);
+    /* Compute offset within MemoryRegionSection */
+    addr -= section->offset_within_address_space;
+
+    /* Compute offset within MemoryRegion */
+    *xlat = addr + section->offset_within_region;
+
+    mr = section->mr;
+
+    /* MMIO registers can be expected to perform full-width accesses based only
+     * on their address, without considering adjacent registers that could
+     * decode to completely different MemoryRegions.  When such registers
+     * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
+     * regions overlap wildly.  For this reason we cannot clamp the accesses
+     * here.
+     *
+     * If the length is small (as is the case for address_space_ldl/stl),
+     * everything works fine.  If the incoming length is large, however,
+     * the caller really has to do the clamping through memory_access_size.
+     */
+    if (memory_region_is_ram(mr)) {
+        diff = int128_sub(section->size, int128_make64(addr));
+        *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
+    }
+    return section;
+}
+
+/**
+ * address_space_translate_iommu - translate an address through an IOMMU
+ * memory region and then through the target address space.
+ *
+ * @iommu_mr: the IOMMU memory region that we start the translation from
+ * @addr: the address to be translated through the MMU
+ * @xlat: the translated address offset within the destination memory region.
+ *        It cannot be %NULL.
+ * @plen_out: valid read/write length of the translated address. It
+ *            cannot be %NULL.
+ * @page_mask_out: page mask for the translated address. This
+ *            should only be meaningful for IOMMU translated
+ *            addresses, since there may be huge pages that this bit
+ *            would tell. It can be %NULL if we don't care about it.
+ * @is_write: whether the translation operation is for write
+ * @is_mmio: whether this can be MMIO, set true if it can
+ * @target_as: the address space targeted by the IOMMU
+ * @attrs: transaction attributes
+ *
+ * This function is called from RCU critical section.  It is the common
+ * part of flatview_do_translate and address_space_translate_cached.
+ */
+static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
+                                                         hwaddr *xlat,
+                                                         hwaddr *plen_out,
+                                                         hwaddr *page_mask_out,
+                                                         bool is_write,
+                                                         bool is_mmio,
+                                                         AddressSpace **target_as,
+                                                         MemTxAttrs attrs)
+{
+    MemoryRegionSection *section;
+    hwaddr page_mask = (hwaddr)-1;
+
+    do {
+        hwaddr addr = *xlat;
+        IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
+        int iommu_idx = 0;
+        IOMMUTLBEntry iotlb;
+
+        if (imrc->attrs_to_index) {
+            iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
+        }
+
+        iotlb = imrc->translate(iommu_mr, addr, is_write ?
+                                IOMMU_WO : IOMMU_RO, iommu_idx);
+
+        if (!(iotlb.perm & (1 << is_write))) {
+            goto unassigned;
+        }
+
+        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
+                | (addr & iotlb.addr_mask));
+        page_mask &= iotlb.addr_mask;
+        *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
+        *target_as = iotlb.target_as;
+
+        section = address_space_translate_internal(
+                address_space_to_dispatch(iotlb.target_as), addr, xlat,
+                plen_out, is_mmio);
+
+        iommu_mr = memory_region_get_iommu(section->mr);
+    } while (unlikely(iommu_mr));
+
+    if (page_mask_out) {
+        *page_mask_out = page_mask;
+    }
+    return *section;
+
+unassigned:
+    return (MemoryRegionSection) { .mr = &io_mem_unassigned };
+}
+
+/**
+ * flatview_do_translate - translate an address in FlatView
+ *
+ * @fv: the flat view that we want to translate on
+ * @addr: the address to be translated in above address space
+ * @xlat: the translated address offset within memory region. It
+ *        cannot be @NULL.
+ * @plen_out: valid read/write length of the translated address. It
+ *            can be @NULL when we don't care about it.
+ * @page_mask_out: page mask for the translated address. This
+ *            should only be meaningful for IOMMU translated
+ *            addresses, since there may be huge pages that this bit
+ *            would tell. It can be @NULL if we don't care about it.
+ * @is_write: whether the translation operation is for write
+ * @is_mmio: whether this can be MMIO, set true if it can
+ * @target_as: the address space targeted by the IOMMU
+ * @attrs: memory transaction attributes
+ *
+ * This function is called from RCU critical section
+ */
+static MemoryRegionSection flatview_do_translate(FlatView *fv,
+                                                 hwaddr addr,
+                                                 hwaddr *xlat,
+                                                 hwaddr *plen_out,
+                                                 hwaddr *page_mask_out,
+                                                 bool is_write,
+                                                 bool is_mmio,
+                                                 AddressSpace **target_as,
+                                                 MemTxAttrs attrs)
+{
+    MemoryRegionSection *section;
+    IOMMUMemoryRegion *iommu_mr;
+    hwaddr plen = (hwaddr)(-1);
+
+    if (!plen_out) {
+        plen_out = &plen;
+    }
+
+    section = address_space_translate_internal(
+            flatview_to_dispatch(fv), addr, xlat,
+            plen_out, is_mmio);
+
+    iommu_mr = memory_region_get_iommu(section->mr);
+    if (unlikely(iommu_mr)) {
+        return address_space_translate_iommu(iommu_mr, xlat,
+                                             plen_out, page_mask_out,
+                                             is_write, is_mmio,
+                                             target_as, attrs);
+    }
+    if (page_mask_out) {
+        /* Not behind an IOMMU, use default page size. */
+        *page_mask_out = ~TARGET_PAGE_MASK;
+    }
+
+    return *section;
+}
+
+/* Called from RCU critical section */
+IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
+                                            bool is_write, MemTxAttrs attrs)
+{
+    MemoryRegionSection section;
+    hwaddr xlat, page_mask;
+
+    /*
+     * This can never be MMIO, and we don't really care about plen,
+     * but page mask.
+     */
+    section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
+                                    NULL, &page_mask, is_write, false, &as,
+                                    attrs);
+
+    /* Illegal translation */
+    if (section.mr == &io_mem_unassigned) {
+        goto iotlb_fail;
+    }
+
+    /* Convert memory region offset into address space offset */
+    xlat += section.offset_within_address_space -
+        section.offset_within_region;
+
+    return (IOMMUTLBEntry) {
+        .target_as = as,
+        .iova = addr & ~page_mask,
+        .translated_addr = xlat & ~page_mask,
+        .addr_mask = page_mask,
+        /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
+        .perm = IOMMU_RW,
+    };
+
+iotlb_fail:
+    return (IOMMUTLBEntry) {0};
+}
+
+/* Called from RCU critical section */
+MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
+                                 hwaddr *plen, bool is_write,
+                                 MemTxAttrs attrs)
+{
+    MemoryRegion *mr;
+    MemoryRegionSection section;
+    AddressSpace *as = NULL;
+
+    /* This can be MMIO, so setup MMIO bit. */
+    section = flatview_do_translate(fv, addr, xlat, plen, NULL,
+                                    is_write, true, &as, attrs);
+    mr = section.mr;
+
+    if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
+        hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
+        *plen = MIN(page, *plen);
+    }
+
+    return mr;
+}
+
+typedef struct TCGIOMMUNotifier {
+    IOMMUNotifier n;
+    MemoryRegion *mr;
+    CPUState *cpu;
+    int iommu_idx;
+    bool active;
+} TCGIOMMUNotifier;
+
+static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
+{
+    TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
+
+    if (!notifier->active) {
+        return;
+    }
+    tlb_flush(notifier->cpu);
+    notifier->active = false;
+    /* We leave the notifier struct on the list to avoid reallocating it later.
+     * Generally the number of IOMMUs a CPU deals with will be small.
+     * In any case we can't unregister the iommu notifier from a notify
+     * callback.
+     */
+}
+
+static void tcg_register_iommu_notifier(CPUState *cpu,
+                                        IOMMUMemoryRegion *iommu_mr,
+                                        int iommu_idx)
+{
+    /* Make sure this CPU has an IOMMU notifier registered for this
+     * IOMMU/IOMMU index combination, so that we can flush its TLB
+     * when the IOMMU tells us the mappings we've cached have changed.
+     */
+    MemoryRegion *mr = MEMORY_REGION(iommu_mr);
+    TCGIOMMUNotifier *notifier = NULL;
+    int i;
+
+    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
+        notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
+        if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
+            break;
+        }
+    }
+    if (i == cpu->iommu_notifiers->len) {
+        /* Not found, add a new entry at the end of the array */
+        cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
+        notifier = g_new0(TCGIOMMUNotifier, 1);
+        g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
+
+        notifier->mr = mr;
+        notifier->iommu_idx = iommu_idx;
+        notifier->cpu = cpu;
+        /* Rather than trying to register interest in the specific part
+         * of the iommu's address space that we've accessed and then
+         * expand it later as subsequent accesses touch more of it, we
+         * just register interest in the whole thing, on the assumption
+         * that iommu reconfiguration will be rare.
+         */
+        iommu_notifier_init(&notifier->n,
+                            tcg_iommu_unmap_notify,
+                            IOMMU_NOTIFIER_UNMAP,
+                            0,
+                            HWADDR_MAX,
+                            iommu_idx);
+        memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
+                                              &error_fatal);
+    }
+
+    if (!notifier->active) {
+        notifier->active = true;
+    }
+}
+
+void tcg_iommu_free_notifier_list(CPUState *cpu)
+{
+    /* Destroy the CPU's notifier list */
+    int i;
+    TCGIOMMUNotifier *notifier;
+
+    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
+        notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
+        memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
+        g_free(notifier);
+    }
+    g_array_free(cpu->iommu_notifiers, true);
+}
+
+void tcg_iommu_init_notifier_list(CPUState *cpu)
+{
+    cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
+}
+
+/* Called from RCU critical section */
+MemoryRegionSection *
+address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr,
+                                  hwaddr *xlat, hwaddr *plen,
+                                  MemTxAttrs attrs, int *prot)
+{
+    MemoryRegionSection *section;
+    IOMMUMemoryRegion *iommu_mr;
+    IOMMUMemoryRegionClass *imrc;
+    IOMMUTLBEntry iotlb;
+    int iommu_idx;
+    hwaddr addr = orig_addr;
+    AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
+
+    for (;;) {
+        section = address_space_translate_internal(d, addr, &addr, plen, false);
+
+        iommu_mr = memory_region_get_iommu(section->mr);
+        if (!iommu_mr) {
+            break;
+        }
+
+        imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
+
+        iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
+        tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
+        /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
+         * doesn't short-cut its translation table walk.
+         */
+        iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
+        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
+                | (addr & iotlb.addr_mask));
+        /* Update the caller's prot bits to remove permissions the IOMMU
+         * is giving us a failure response for. If we get down to no
+         * permissions left at all we can give up now.
+         */
+        if (!(iotlb.perm & IOMMU_RO)) {
+            *prot &= ~(PAGE_READ | PAGE_EXEC);
+        }
+        if (!(iotlb.perm & IOMMU_WO)) {
+            *prot &= ~PAGE_WRITE;
+        }
+
+        if (!*prot) {
+            goto translate_fail;
+        }
+
+        d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
+    }
+
+    assert(!memory_region_is_iommu(section->mr));
+    *xlat = addr;
+    return section;
+
+translate_fail:
+    /*
+     * We should be given a page-aligned address -- certainly
+     * tlb_set_page_with_attrs() does so.  The page offset of xlat
+     * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0.
+     * The page portion of xlat will be logged by memory_region_access_valid()
+     * when this memory access is rejected, so use the original untranslated
+     * physical address.
+     */
+    assert((orig_addr & ~TARGET_PAGE_MASK) == 0);
+    *xlat = orig_addr;
+    return &d->map.sections[PHYS_SECTION_UNASSIGNED];
+}
+
+void cpu_address_space_init(CPUState *cpu, int asidx,
+                            const char *prefix, MemoryRegion *mr)
+{
+    CPUAddressSpace *newas;
+    AddressSpace *as = g_new0(AddressSpace, 1);
+    char *as_name;
+
+    assert(mr);
+    as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
+    address_space_init(as, mr, as_name);
+    g_free(as_name);
+
+    /* Target code should have set num_ases before calling us */
+    assert(asidx < cpu->num_ases);
+
+    if (asidx == 0) {
+        /* address space 0 gets the convenience alias */
+        cpu->as = as;
+    }
+
+    /* KVM cannot currently support multiple address spaces. */
+    assert(asidx == 0 || !kvm_enabled());
+
+    if (!cpu->cpu_ases) {
+        cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
+    }
+
+    newas = &cpu->cpu_ases[asidx];
+    newas->cpu = cpu;
+    newas->as = as;
+    if (tcg_enabled()) {
+        newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
+        newas->tcg_as_listener.commit = tcg_commit;
+        newas->tcg_as_listener.name = "tcg";
+        memory_listener_register(&newas->tcg_as_listener, as);
+    }
+}
+
+AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
+{
+    /* Return the AddressSpace corresponding to the specified index */
+    return cpu->cpu_ases[asidx].as;
+}
+
+/* Called from RCU critical section */
+static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
+{
+    RAMBlock *block;
+
+    block = qatomic_rcu_read(&ram_list.mru_block);
+    if (block && addr - block->offset < block->max_length) {
+        return block;
+    }
+    RAMBLOCK_FOREACH(block) {
+        if (addr - block->offset < block->max_length) {
+            goto found;
+        }
+    }
+
+    fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
+    abort();
+
+found:
+    /* It is safe to write mru_block outside the iothread lock.  This
+     * is what happens:
+     *
+     *     mru_block = xxx
+     *     rcu_read_unlock()
+     *                                        xxx removed from list
+     *                  rcu_read_lock()
+     *                  read mru_block
+     *                                        mru_block = NULL;
+     *                                        call_rcu(reclaim_ramblock, xxx);
+     *                  rcu_read_unlock()
+     *
+     * qatomic_rcu_set is not needed here.  The block was already published
+     * when it was placed into the list.  Here we're just making an extra
+     * copy of the pointer.
+     */
+    ram_list.mru_block = block;
+    return block;
+}
+
+static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
+{
+    CPUState *cpu;
+    ram_addr_t start1;
+    RAMBlock *block;
+    ram_addr_t end;
+
+    assert(tcg_enabled());
+    end = TARGET_PAGE_ALIGN(start + length);
+    start &= TARGET_PAGE_MASK;
+
+    RCU_READ_LOCK_GUARD();
+    block = qemu_get_ram_block(start);
+    assert(block == qemu_get_ram_block(end - 1));
+    start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
+    CPU_FOREACH(cpu) {
+        tlb_reset_dirty(cpu, start1, length);
+    }
+}
+
+/* Note: start and end must be within the same ram block.  */
+bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
+                                              ram_addr_t length,
+                                              unsigned client)
+{
+    DirtyMemoryBlocks *blocks;
+    unsigned long end, page, start_page;
+    bool dirty = false;
+    RAMBlock *ramblock;
+    uint64_t mr_offset, mr_size;
+
+    if (length == 0) {
+        return false;
+    }
+
+    end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
+    start_page = start >> TARGET_PAGE_BITS;
+    page = start_page;
+
+    WITH_RCU_READ_LOCK_GUARD() {
+        blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
+        ramblock = qemu_get_ram_block(start);
+        /* Range sanity check on the ramblock */
+        assert(start >= ramblock->offset &&
+               start + length <= ramblock->offset + ramblock->used_length);
+
+        while (page < end) {
+            unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
+            unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
+            unsigned long num = MIN(end - page,
+                                    DIRTY_MEMORY_BLOCK_SIZE - offset);
+
+            dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
+                                                  offset, num);
+            page += num;
+        }
+
+        mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
+        mr_size = (end - start_page) << TARGET_PAGE_BITS;
+        memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
+    }
+
+    if (dirty && tcg_enabled()) {
+        tlb_reset_dirty_range_all(start, length);
+    }
+
+    return dirty;
+}
+
+DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
+    (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
+{
+    DirtyMemoryBlocks *blocks;
+    ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
+    unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
+    ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
+    ram_addr_t last  = QEMU_ALIGN_UP(start + length, align);
+    DirtyBitmapSnapshot *snap;
+    unsigned long page, end, dest;
+
+    snap = g_malloc0(sizeof(*snap) +
+                     ((last - first) >> (TARGET_PAGE_BITS + 3)));
+    snap->start = first;
+    snap->end   = last;
+
+    page = first >> TARGET_PAGE_BITS;
+    end  = last  >> TARGET_PAGE_BITS;
+    dest = 0;
+
+    WITH_RCU_READ_LOCK_GUARD() {
+        blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
+
+        while (page < end) {
+            unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
+            unsigned long ofs = page % DIRTY_MEMORY_BLOCK_SIZE;
+            unsigned long num = MIN(end - page,
+                                    DIRTY_MEMORY_BLOCK_SIZE - ofs);
+
+            assert(QEMU_IS_ALIGNED(ofs, (1 << BITS_PER_LEVEL)));
+            assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
+            ofs >>= BITS_PER_LEVEL;
+
+            bitmap_copy_and_clear_atomic(snap->dirty + dest,
+                                         blocks->blocks[idx] + ofs,
+                                         num);
+            page += num;
+            dest += num >> BITS_PER_LEVEL;
+        }
+    }
+
+    if (tcg_enabled()) {
+        tlb_reset_dirty_range_all(start, length);
+    }
+
+    memory_region_clear_dirty_bitmap(mr, offset, length);
+
+    return snap;
+}
+
+bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
+                                            ram_addr_t start,
+                                            ram_addr_t length)
+{
+    unsigned long page, end;
+
+    assert(start >= snap->start);
+    assert(start + length <= snap->end);
+
+    end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
+    page = (start - snap->start) >> TARGET_PAGE_BITS;
+
+    while (page < end) {
+        if (test_bit(page, snap->dirty)) {
+            return true;
+        }
+        page++;
+    }
+    return false;
+}
+
+/* Called from RCU critical section */
+hwaddr memory_region_section_get_iotlb(CPUState *cpu,
+                                       MemoryRegionSection *section)
+{
+    AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
+    return section - d->map.sections;
+}
+
+static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
+                            uint16_t section);
+static subpage_t *subpage_init(FlatView *fv, hwaddr base);
+
+static uint16_t phys_section_add(PhysPageMap *map,
+                                 MemoryRegionSection *section)
+{
+    /* The physical section number is ORed with a page-aligned
+     * pointer to produce the iotlb entries.  Thus it should
+     * never overflow into the page-aligned value.
+     */
+    assert(map->sections_nb < TARGET_PAGE_SIZE);
+
+    if (map->sections_nb == map->sections_nb_alloc) {
+        map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
+        map->sections = g_renew(MemoryRegionSection, map->sections,
+                                map->sections_nb_alloc);
+    }
+    map->sections[map->sections_nb] = *section;
+    memory_region_ref(section->mr);
+    return map->sections_nb++;
+}
+
+static void phys_section_destroy(MemoryRegion *mr)
+{
+    bool have_sub_page = mr->subpage;
+
+    memory_region_unref(mr);
+
+    if (have_sub_page) {
+        subpage_t *subpage = container_of(mr, subpage_t, iomem);
+        object_unref(OBJECT(&subpage->iomem));
+        g_free(subpage);
+    }
+}
+
+static void phys_sections_free(PhysPageMap *map)
+{
+    while (map->sections_nb > 0) {
+        MemoryRegionSection *section = &map->sections[--map->sections_nb];
+        phys_section_destroy(section->mr);
+    }
+    g_free(map->sections);
+    g_free(map->nodes);
+}
+
+static void register_subpage(FlatView *fv, MemoryRegionSection *section)
+{
+    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
+    subpage_t *subpage;
+    hwaddr base = section->offset_within_address_space
+        & TARGET_PAGE_MASK;
+    MemoryRegionSection *existing = phys_page_find(d, base);
+    MemoryRegionSection subsection = {
+        .offset_within_address_space = base,
+        .size = int128_make64(TARGET_PAGE_SIZE),
+    };
+    hwaddr start, end;
+
+    assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
+
+    if (!(existing->mr->subpage)) {
+        subpage = subpage_init(fv, base);
+        subsection.fv = fv;
+        subsection.mr = &subpage->iomem;
+        phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
+                      phys_section_add(&d->map, &subsection));
+    } else {
+        subpage = container_of(existing->mr, subpage_t, iomem);
+    }
+    start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
+    end = start + int128_get64(section->size) - 1;
+    subpage_register(subpage, start, end,
+                     phys_section_add(&d->map, section));
+}
+
+
+static void register_multipage(FlatView *fv,
+                               MemoryRegionSection *section)
+{
+    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
+    hwaddr start_addr = section->offset_within_address_space;
+    uint16_t section_index = phys_section_add(&d->map, section);
+    uint64_t num_pages = int128_get64(int128_rshift(section->size,
+                                                    TARGET_PAGE_BITS));
+
+    assert(num_pages);
+    phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
+}
+
+/*
+ * The range in *section* may look like this:
+ *
+ *      |s|PPPPPPP|s|
+ *
+ * where s stands for subpage and P for page.
+ */
+void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
+{
+    MemoryRegionSection remain = *section;
+    Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
+
+    /* register first subpage */
+    if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
+        uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
+                        - remain.offset_within_address_space;
+
+        MemoryRegionSection now = remain;
+        now.size = int128_min(int128_make64(left), now.size);
+        register_subpage(fv, &now);
+        if (int128_eq(remain.size, now.size)) {
+            return;
+        }
+        remain.size = int128_sub(remain.size, now.size);
+        remain.offset_within_address_space += int128_get64(now.size);
+        remain.offset_within_region += int128_get64(now.size);
+    }
+
+    /* register whole pages */
+    if (int128_ge(remain.size, page_size)) {
+        MemoryRegionSection now = remain;
+        now.size = int128_and(now.size, int128_neg(page_size));
+        register_multipage(fv, &now);
+        if (int128_eq(remain.size, now.size)) {
+            return;
+        }
+        remain.size = int128_sub(remain.size, now.size);
+        remain.offset_within_address_space += int128_get64(now.size);
+        remain.offset_within_region += int128_get64(now.size);
+    }
+
+    /* register last subpage */
+    register_subpage(fv, &remain);
+}
+
+void qemu_flush_coalesced_mmio_buffer(void)
+{
+    if (kvm_enabled())
+        kvm_flush_coalesced_mmio_buffer();
+}
+
+void qemu_mutex_lock_ramlist(void)
+{
+    qemu_mutex_lock(&ram_list.mutex);
+}
+
+void qemu_mutex_unlock_ramlist(void)
+{
+    qemu_mutex_unlock(&ram_list.mutex);
+}
+
+GString *ram_block_format(void)
+{
+    RAMBlock *block;
+    char *psize;
+    GString *buf = g_string_new("");
+
+    RCU_READ_LOCK_GUARD();
+    g_string_append_printf(buf, "%24s %8s  %18s %18s %18s %18s %3s\n",
+                           "Block Name", "PSize", "Offset", "Used", "Total",
+                           "HVA", "RO");
+
+    RAMBLOCK_FOREACH(block) {
+        psize = size_to_str(block->page_size);
+        g_string_append_printf(buf, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
+                               " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n",
+                               block->idstr, psize,
+                               (uint64_t)block->offset,
+                               (uint64_t)block->used_length,
+                               (uint64_t)block->max_length,
+                               (uint64_t)(uintptr_t)block->host,
+                               block->mr->readonly ? "ro" : "rw");
+
+        g_free(psize);
+    }
+
+    return buf;
+}
+
+static int find_min_backend_pagesize(Object *obj, void *opaque)
+{
+    long *hpsize_min = opaque;
+
+    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
+        HostMemoryBackend *backend = MEMORY_BACKEND(obj);
+        long hpsize = host_memory_backend_pagesize(backend);
+
+        if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
+            *hpsize_min = hpsize;
+        }
+    }
+
+    return 0;
+}
+
+static int find_max_backend_pagesize(Object *obj, void *opaque)
+{
+    long *hpsize_max = opaque;
+
+    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
+        HostMemoryBackend *backend = MEMORY_BACKEND(obj);
+        long hpsize = host_memory_backend_pagesize(backend);
+
+        if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
+            *hpsize_max = hpsize;
+        }
+    }
+
+    return 0;
+}
+
+/*
+ * TODO: We assume right now that all mapped host memory backends are
+ * used as RAM, however some might be used for different purposes.
+ */
+long qemu_minrampagesize(void)
+{
+    long hpsize = LONG_MAX;
+    Object *memdev_root = object_resolve_path("/objects", NULL);
+
+    object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
+    return hpsize;
+}
+
+long qemu_maxrampagesize(void)
+{
+    long pagesize = 0;
+    Object *memdev_root = object_resolve_path("/objects", NULL);
+
+    object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
+    return pagesize;
+}
+
+#ifdef CONFIG_POSIX
+static int64_t get_file_size(int fd)
+{
+    int64_t size;
+#if defined(__linux__)
+    struct stat st;
+
+    if (fstat(fd, &st) < 0) {
+        return -errno;
+    }
+
+    /* Special handling for devdax character devices */
+    if (S_ISCHR(st.st_mode)) {
+        g_autofree char *subsystem_path = NULL;
+        g_autofree char *subsystem = NULL;
+
+        subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
+                                         major(st.st_rdev), minor(st.st_rdev));
+        subsystem = g_file_read_link(subsystem_path, NULL);
+
+        if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
+            g_autofree char *size_path = NULL;
+            g_autofree char *size_str = NULL;
+
+            size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
+                                    major(st.st_rdev), minor(st.st_rdev));
+
+            if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
+                return g_ascii_strtoll(size_str, NULL, 0);
+            }
+        }
+    }
+#endif /* defined(__linux__) */
+
+    /* st.st_size may be zero for special files yet lseek(2) works */
+    size = lseek(fd, 0, SEEK_END);
+    if (size < 0) {
+        return -errno;
+    }
+    return size;
+}
+
+static int64_t get_file_align(int fd)
+{
+    int64_t align = -1;
+#if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
+    struct stat st;
+
+    if (fstat(fd, &st) < 0) {
+        return -errno;
+    }
+
+    /* Special handling for devdax character devices */
+    if (S_ISCHR(st.st_mode)) {
+        g_autofree char *path = NULL;
+        g_autofree char *rpath = NULL;
+        struct daxctl_ctx *ctx;
+        struct daxctl_region *region;
+        int rc = 0;
+
+        path = g_strdup_printf("/sys/dev/char/%d:%d",
+                    major(st.st_rdev), minor(st.st_rdev));
+        rpath = realpath(path, NULL);
+        if (!rpath) {
+            return -errno;
+        }
+
+        rc = daxctl_new(&ctx);
+        if (rc) {
+            return -1;
+        }
+
+        daxctl_region_foreach(ctx, region) {
+            if (strstr(rpath, daxctl_region_get_path(region))) {
+                align = daxctl_region_get_align(region);
+                break;
+            }
+        }
+        daxctl_unref(ctx);
+    }
+#endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
+
+    return align;
+}
+
+static int file_ram_open(const char *path,
+                         const char *region_name,
+                         bool readonly,
+                         bool *created)
+{
+    char *filename;
+    char *sanitized_name;
+    char *c;
+    int fd = -1;
+
+    *created = false;
+    for (;;) {
+        fd = open(path, readonly ? O_RDONLY : O_RDWR);
+        if (fd >= 0) {
+            /*
+             * open(O_RDONLY) won't fail with EISDIR. Check manually if we
+             * opened a directory and fail similarly to how we fail ENOENT
+             * in readonly mode. Note that mkstemp() would imply O_RDWR.
+             */
+            if (readonly) {
+                struct stat file_stat;
+
+                if (fstat(fd, &file_stat)) {
+                    close(fd);
+                    if (errno == EINTR) {
+                        continue;
+                    }
+                    return -errno;
+                } else if (S_ISDIR(file_stat.st_mode)) {
+                    close(fd);
+                    return -EISDIR;
+                }
+            }
+            /* @path names an existing file, use it */
+            break;
+        }
+        if (errno == ENOENT) {
+            if (readonly) {
+                /* Refuse to create new, readonly files. */
+                return -ENOENT;
+            }
+            /* @path names a file that doesn't exist, create it */
+            fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
+            if (fd >= 0) {
+                *created = true;
+                break;
+            }
+        } else if (errno == EISDIR) {
+            /* @path names a directory, create a file there */
+            /* Make name safe to use with mkstemp by replacing '/' with '_'. */
+            sanitized_name = g_strdup(region_name);
+            for (c = sanitized_name; *c != '\0'; c++) {
+                if (*c == '/') {
+                    *c = '_';
+                }
+            }
+
+            filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
+                                       sanitized_name);
+            g_free(sanitized_name);
+
+            fd = mkstemp(filename);
+            if (fd >= 0) {
+                unlink(filename);
+                g_free(filename);
+                break;
+            }
+            g_free(filename);
+        }
+        if (errno != EEXIST && errno != EINTR) {
+            return -errno;
+        }
+        /*
+         * Try again on EINTR and EEXIST.  The latter happens when
+         * something else creates the file between our two open().
+         */
+    }
+
+    return fd;
+}
+
+static void *file_ram_alloc(RAMBlock *block,
+                            ram_addr_t memory,
+                            int fd,
+                            bool truncate,
+                            off_t offset,
+                            Error **errp)
+{
+    uint32_t qemu_map_flags;
+    void *area;
+
+    block->page_size = qemu_fd_getpagesize(fd);
+    if (block->mr->align % block->page_size) {
+        error_setg(errp, "alignment 0x%" PRIx64
+                   " must be multiples of page size 0x%zx",
+                   block->mr->align, block->page_size);
+        return NULL;
+    } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
+        error_setg(errp, "alignment 0x%" PRIx64
+                   " must be a power of two", block->mr->align);
+        return NULL;
+    } else if (offset % block->page_size) {
+        error_setg(errp, "offset 0x%" PRIx64
+                   " must be multiples of page size 0x%zx",
+                   offset, block->page_size);
+        return NULL;
+    }
+    block->mr->align = MAX(block->page_size, block->mr->align);
+#if defined(__s390x__)
+    if (kvm_enabled()) {
+        block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
+    }
+#endif
+
+    if (memory < block->page_size) {
+        error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
+                   "or larger than page size 0x%zx",
+                   memory, block->page_size);
+        return NULL;
+    }
+
+    memory = ROUND_UP(memory, block->page_size);
+
+    /*
+     * ftruncate is not supported by hugetlbfs in older
+     * hosts, so don't bother bailing out on errors.
+     * If anything goes wrong with it under other filesystems,
+     * mmap will fail.
+     *
+     * Do not truncate the non-empty backend file to avoid corrupting
+     * the existing data in the file. Disabling shrinking is not
+     * enough. For example, the current vNVDIMM implementation stores
+     * the guest NVDIMM labels at the end of the backend file. If the
+     * backend file is later extended, QEMU will not be able to find
+     * those labels. Therefore, extending the non-empty backend file
+     * is disabled as well.
+     */
+    if (truncate && ftruncate(fd, offset + memory)) {
+        perror("ftruncate");
+    }
+
+    qemu_map_flags = (block->flags & RAM_READONLY) ? QEMU_MAP_READONLY : 0;
+    qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
+    qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
+    qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
+    area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
+    if (area == MAP_FAILED) {
+        error_setg_errno(errp, errno,
+                         "unable to map backing store for guest RAM");
+        return NULL;
+    }
+
+    block->fd = fd;
+    block->fd_offset = offset;
+    return area;
+}
+#endif
+
+/* Allocate space within the ram_addr_t space that governs the
+ * dirty bitmaps.
+ * Called with the ramlist lock held.
+ */
+static ram_addr_t find_ram_offset(ram_addr_t size)
+{
+    RAMBlock *block, *next_block;
+    ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
+
+    assert(size != 0); /* it would hand out same offset multiple times */
+
+    if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
+        return 0;
+    }
+
+    RAMBLOCK_FOREACH(block) {
+        ram_addr_t candidate, next = RAM_ADDR_MAX;
+
+        /* Align blocks to start on a 'long' in the bitmap
+         * which makes the bitmap sync'ing take the fast path.
+         */
+        candidate = block->offset + block->max_length;
+        candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
+
+        /* Search for the closest following block
+         * and find the gap.
+         */
+        RAMBLOCK_FOREACH(next_block) {
+            if (next_block->offset >= candidate) {
+                next = MIN(next, next_block->offset);
+            }
+        }
+
+        /* If it fits remember our place and remember the size
+         * of gap, but keep going so that we might find a smaller
+         * gap to fill so avoiding fragmentation.
+         */
+        if (next - candidate >= size && next - candidate < mingap) {
+            offset = candidate;
+            mingap = next - candidate;
+        }
+
+        trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
+    }
+
+    if (offset == RAM_ADDR_MAX) {
+        fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
+                (uint64_t)size);
+        abort();
+    }
+
+    trace_find_ram_offset(size, offset);
+
+    return offset;
+}
+
+static unsigned long last_ram_page(void)
+{
+    RAMBlock *block;
+    ram_addr_t last = 0;
+
+    RCU_READ_LOCK_GUARD();
+    RAMBLOCK_FOREACH(block) {
+        last = MAX(last, block->offset + block->max_length);
+    }
+    return last >> TARGET_PAGE_BITS;
+}
+
+static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
+{
+    int ret;
+
+    /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
+    if (!machine_dump_guest_core(current_machine)) {
+        ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
+        if (ret) {
+            perror("qemu_madvise");
+            fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
+                            "but dump_guest_core=off specified\n");
+        }
+    }
+}
+
+const char *qemu_ram_get_idstr(RAMBlock *rb)
+{
+    return rb->idstr;
+}
+
+void *qemu_ram_get_host_addr(RAMBlock *rb)
+{
+    return rb->host;
+}
+
+ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
+{
+    return rb->offset;
+}
+
+ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
+{
+    return rb->used_length;
+}
+
+ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
+{
+    return rb->max_length;
+}
+
+bool qemu_ram_is_shared(RAMBlock *rb)
+{
+    return rb->flags & RAM_SHARED;
+}
+
+bool qemu_ram_is_noreserve(RAMBlock *rb)
+{
+    return rb->flags & RAM_NORESERVE;
+}
+
+/* Note: Only set at the start of postcopy */
+bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
+{
+    return rb->flags & RAM_UF_ZEROPAGE;
+}
+
+void qemu_ram_set_uf_zeroable(RAMBlock *rb)
+{
+    rb->flags |= RAM_UF_ZEROPAGE;
+}
+
+bool qemu_ram_is_migratable(RAMBlock *rb)
+{
+    return rb->flags & RAM_MIGRATABLE;
+}
+
+void qemu_ram_set_migratable(RAMBlock *rb)
+{
+    rb->flags |= RAM_MIGRATABLE;
+}
+
+void qemu_ram_unset_migratable(RAMBlock *rb)
+{
+    rb->flags &= ~RAM_MIGRATABLE;
+}
+
+bool qemu_ram_is_named_file(RAMBlock *rb)
+{
+    return rb->flags & RAM_NAMED_FILE;
+}
+
+int qemu_ram_get_fd(RAMBlock *rb)
+{
+    return rb->fd;
+}
+
+/* Called with iothread lock held.  */
+void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
+{
+    RAMBlock *block;
+
+    assert(new_block);
+    assert(!new_block->idstr[0]);
+
+    if (dev) {
+        char *id = qdev_get_dev_path(dev);
+        if (id) {
+            snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
+            g_free(id);
+        }
+    }
+    pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
+
+    RCU_READ_LOCK_GUARD();
+    RAMBLOCK_FOREACH(block) {
+        if (block != new_block &&
+            !strcmp(block->idstr, new_block->idstr)) {
+            fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
+                    new_block->idstr);
+            abort();
+        }
+    }
+}
+
+/* Called with iothread lock held.  */
+void qemu_ram_unset_idstr(RAMBlock *block)
+{
+    /* FIXME: arch_init.c assumes that this is not called throughout
+     * migration.  Ignore the problem since hot-unplug during migration
+     * does not work anyway.
+     */
+    if (block) {
+        memset(block->idstr, 0, sizeof(block->idstr));
+    }
+}
+
+size_t qemu_ram_pagesize(RAMBlock *rb)
+{
+    return rb->page_size;
+}
+
+/* Returns the largest size of page in use */
+size_t qemu_ram_pagesize_largest(void)
+{
+    RAMBlock *block;
+    size_t largest = 0;
+
+    RAMBLOCK_FOREACH(block) {
+        largest = MAX(largest, qemu_ram_pagesize(block));
+    }
+
+    return largest;
+}
+
+static int memory_try_enable_merging(void *addr, size_t len)
+{
+    if (!machine_mem_merge(current_machine)) {
+        /* disabled by the user */
+        return 0;
+    }
+
+    return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
+}
+
+/*
+ * Resizing RAM while migrating can result in the migration being canceled.
+ * Care has to be taken if the guest might have already detected the memory.
+ *
+ * As memory core doesn't know how is memory accessed, it is up to
+ * resize callback to update device state and/or add assertions to detect
+ * misuse, if necessary.
+ */
+int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
+{
+    const ram_addr_t oldsize = block->used_length;
+    const ram_addr_t unaligned_size = newsize;
+
+    assert(block);
+
+    newsize = HOST_PAGE_ALIGN(newsize);
+
+    if (block->used_length == newsize) {
+        /*
+         * We don't have to resize the ram block (which only knows aligned
+         * sizes), however, we have to notify if the unaligned size changed.
+         */
+        if (unaligned_size != memory_region_size(block->mr)) {
+            memory_region_set_size(block->mr, unaligned_size);
+            if (block->resized) {
+                block->resized(block->idstr, unaligned_size, block->host);
+            }
+        }
+        return 0;
+    }
+
+    if (!(block->flags & RAM_RESIZEABLE)) {
+        error_setg_errno(errp, EINVAL,
+                         "Size mismatch: %s: 0x" RAM_ADDR_FMT
+                         " != 0x" RAM_ADDR_FMT, block->idstr,
+                         newsize, block->used_length);
+        return -EINVAL;
+    }
+
+    if (block->max_length < newsize) {
+        error_setg_errno(errp, EINVAL,
+                         "Size too large: %s: 0x" RAM_ADDR_FMT
+                         " > 0x" RAM_ADDR_FMT, block->idstr,
+                         newsize, block->max_length);
+        return -EINVAL;
+    }
+
+    /* Notify before modifying the ram block and touching the bitmaps. */
+    if (block->host) {
+        ram_block_notify_resize(block->host, oldsize, newsize);
+    }
+
+    cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
+    block->used_length = newsize;
+    cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
+                                        DIRTY_CLIENTS_ALL);
+    memory_region_set_size(block->mr, unaligned_size);
+    if (block->resized) {
+        block->resized(block->idstr, unaligned_size, block->host);
+    }
+    return 0;
+}
+
+/*
+ * Trigger sync on the given ram block for range [start, start + length]
+ * with the backing store if one is available.
+ * Otherwise no-op.
+ * @Note: this is supposed to be a synchronous op.
+ */
+void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
+{
+    /* The requested range should fit in within the block range */
+    g_assert((start + length) <= block->used_length);
+
+#ifdef CONFIG_LIBPMEM
+    /* The lack of support for pmem should not block the sync */
+    if (ramblock_is_pmem(block)) {
+        void *addr = ramblock_ptr(block, start);
+        pmem_persist(addr, length);
+        return;
+    }
+#endif
+    if (block->fd >= 0) {
+        /**
+         * Case there is no support for PMEM or the memory has not been
+         * specified as persistent (or is not one) - use the msync.
+         * Less optimal but still achieves the same goal
+         */
+        void *addr = ramblock_ptr(block, start);
+        if (qemu_msync(addr, length, block->fd)) {
+            warn_report("%s: failed to sync memory range: start: "
+                    RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
+                    __func__, start, length);
+        }
+    }
+}
+
+/* Called with ram_list.mutex held */
+static void dirty_memory_extend(ram_addr_t old_ram_size,
+                                ram_addr_t new_ram_size)
+{
+    ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
+                                             DIRTY_MEMORY_BLOCK_SIZE);
+    ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
+                                             DIRTY_MEMORY_BLOCK_SIZE);
+    int i;
+
+    /* Only need to extend if block count increased */
+    if (new_num_blocks <= old_num_blocks) {
+        return;
+    }
+
+    for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
+        DirtyMemoryBlocks *old_blocks;
+        DirtyMemoryBlocks *new_blocks;
+        int j;
+
+        old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
+        new_blocks = g_malloc(sizeof(*new_blocks) +
+                              sizeof(new_blocks->blocks[0]) * new_num_blocks);
+
+        if (old_num_blocks) {
+            memcpy(new_blocks->blocks, old_blocks->blocks,
+                   old_num_blocks * sizeof(old_blocks->blocks[0]));
+        }
+
+        for (j = old_num_blocks; j < new_num_blocks; j++) {
+            new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
+        }
+
+        qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
+
+        if (old_blocks) {
+            g_free_rcu(old_blocks, rcu);
+        }
+    }
+}
+
+static void ram_block_add(RAMBlock *new_block, Error **errp)
+{
+    const bool noreserve = qemu_ram_is_noreserve(new_block);
+    const bool shared = qemu_ram_is_shared(new_block);
+    RAMBlock *block;
+    RAMBlock *last_block = NULL;
+    ram_addr_t old_ram_size, new_ram_size;
+    Error *err = NULL;
+
+    old_ram_size = last_ram_page();
+
+    qemu_mutex_lock_ramlist();
+    new_block->offset = find_ram_offset(new_block->max_length);
+
+    if (!new_block->host) {
+        if (xen_enabled()) {
+            xen_ram_alloc(new_block->offset, new_block->max_length,
+                          new_block->mr, &err);
+            if (err) {
+                error_propagate(errp, err);
+                qemu_mutex_unlock_ramlist();
+                return;
+            }
+        } else {
+            new_block->host = qemu_anon_ram_alloc(new_block->max_length,
+                                                  &new_block->mr->align,
+                                                  shared, noreserve);
+            if (!new_block->host) {
+                error_setg_errno(errp, errno,
+                                 "cannot set up guest memory '%s'",
+                                 memory_region_name(new_block->mr));
+                qemu_mutex_unlock_ramlist();
+                return;
+            }
+            memory_try_enable_merging(new_block->host, new_block->max_length);
+        }
+    }
+
+    new_ram_size = MAX(old_ram_size,
+              (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
+    if (new_ram_size > old_ram_size) {
+        dirty_memory_extend(old_ram_size, new_ram_size);
+    }
+    /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
+     * QLIST (which has an RCU-friendly variant) does not have insertion at
+     * tail, so save the last element in last_block.
+     */
+    RAMBLOCK_FOREACH(block) {
+        last_block = block;
+        if (block->max_length < new_block->max_length) {
+            break;
+        }
+    }
+    if (block) {
+        QLIST_INSERT_BEFORE_RCU(block, new_block, next);
+    } else if (last_block) {
+        QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
+    } else { /* list is empty */
+        QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
+    }
+    ram_list.mru_block = NULL;
+
+    /* Write list before version */
+    smp_wmb();
+    ram_list.version++;
+    qemu_mutex_unlock_ramlist();
+
+    cpu_physical_memory_set_dirty_range(new_block->offset,
+                                        new_block->used_length,
+                                        DIRTY_CLIENTS_ALL);
+
+    if (new_block->host) {
+        qemu_ram_setup_dump(new_block->host, new_block->max_length);
+        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
+        /*
+         * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
+         * Configure it unless the machine is a qtest server, in which case
+         * KVM is not used and it may be forked (eg for fuzzing purposes).
+         */
+        if (!qtest_enabled()) {
+            qemu_madvise(new_block->host, new_block->max_length,
+                         QEMU_MADV_DONTFORK);
+        }
+        ram_block_notify_add(new_block->host, new_block->used_length,
+                             new_block->max_length);
+    }
+}
+
+#ifdef CONFIG_POSIX
+RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
+                                 uint32_t ram_flags, int fd, off_t offset,
+                                 Error **errp)
+{
+    RAMBlock *new_block;
+    Error *local_err = NULL;
+    int64_t file_size, file_align;
+
+    /* Just support these ram flags by now. */
+    assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
+                          RAM_PROTECTED | RAM_NAMED_FILE | RAM_READONLY |
+                          RAM_READONLY_FD)) == 0);
+
+    if (xen_enabled()) {
+        error_setg(errp, "-mem-path not supported with Xen");
+        return NULL;
+    }
+
+    if (kvm_enabled() && !kvm_has_sync_mmu()) {
+        error_setg(errp,
+                   "host lacks kvm mmu notifiers, -mem-path unsupported");
+        return NULL;
+    }
+
+    size = HOST_PAGE_ALIGN(size);
+    file_size = get_file_size(fd);
+    if (file_size > offset && file_size < (offset + size)) {
+        error_setg(errp, "backing store size 0x%" PRIx64
+                   " does not match 'size' option 0x" RAM_ADDR_FMT,
+                   file_size, size);
+        return NULL;
+    }
+
+    file_align = get_file_align(fd);
+    if (file_align > 0 && file_align > mr->align) {
+        error_setg(errp, "backing store align 0x%" PRIx64
+                   " is larger than 'align' option 0x%" PRIx64,
+                   file_align, mr->align);
+        return NULL;
+    }
+
+    new_block = g_malloc0(sizeof(*new_block));
+    new_block->mr = mr;
+    new_block->used_length = size;
+    new_block->max_length = size;
+    new_block->flags = ram_flags;
+    new_block->host = file_ram_alloc(new_block, size, fd, !file_size, offset,
+                                     errp);
+    if (!new_block->host) {
+        g_free(new_block);
+        return NULL;
+    }
+
+    ram_block_add(new_block, &local_err);
+    if (local_err) {
+        g_free(new_block);
+        error_propagate(errp, local_err);
+        return NULL;
+    }
+    return new_block;
+
+}
+
+
+RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
+                                   uint32_t ram_flags, const char *mem_path,
+                                   off_t offset, Error **errp)
+{
+    int fd;
+    bool created;
+    RAMBlock *block;
+
+    fd = file_ram_open(mem_path, memory_region_name(mr),
+                       !!(ram_flags & RAM_READONLY_FD), &created);
+    if (fd < 0) {
+        error_setg_errno(errp, -fd, "can't open backing store %s for guest RAM",
+                         mem_path);
+        if (!(ram_flags & RAM_READONLY_FD) && !(ram_flags & RAM_SHARED) &&
+            fd == -EACCES) {
+            /*
+             * If we can open the file R/O (note: will never create a new file)
+             * and we are dealing with a private mapping, there are still ways
+             * to consume such files and get RAM instead of ROM.
+             */
+            fd = file_ram_open(mem_path, memory_region_name(mr), true,
+                               &created);
+            if (fd < 0) {
+                return NULL;
+            }
+            assert(!created);
+            close(fd);
+            error_append_hint(errp, "Consider opening the backing store"
+                " read-only but still creating writable RAM using"
+                " '-object memory-backend-file,readonly=on,rom=off...'"
+                " (see \"VM templating\" documentation)\n");
+        }
+        return NULL;
+    }
+
+    block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, errp);
+    if (!block) {
+        if (created) {
+            unlink(mem_path);
+        }
+        close(fd);
+        return NULL;
+    }
+
+    return block;
+}
+#endif
+
+static
+RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
+                                  void (*resized)(const char*,
+                                                  uint64_t length,
+                                                  void *host),
+                                  void *host, uint32_t ram_flags,
+                                  MemoryRegion *mr, Error **errp)
+{
+    RAMBlock *new_block;
+    Error *local_err = NULL;
+
+    assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
+                          RAM_NORESERVE)) == 0);
+    assert(!host ^ (ram_flags & RAM_PREALLOC));
+
+    size = HOST_PAGE_ALIGN(size);
+    max_size = HOST_PAGE_ALIGN(max_size);
+    new_block = g_malloc0(sizeof(*new_block));
+    new_block->mr = mr;
+    new_block->resized = resized;
+    new_block->used_length = size;
+    new_block->max_length = max_size;
+    assert(max_size >= size);
+    new_block->fd = -1;
+    new_block->page_size = qemu_real_host_page_size();
+    new_block->host = host;
+    new_block->flags = ram_flags;
+    ram_block_add(new_block, &local_err);
+    if (local_err) {
+        g_free(new_block);
+        error_propagate(errp, local_err);
+        return NULL;
+    }
+    return new_block;
+}
+
+RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
+                                   MemoryRegion *mr, Error **errp)
+{
+    return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
+                                   errp);
+}
+
+RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
+                         MemoryRegion *mr, Error **errp)
+{
+    assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0);
+    return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
+}
+
+RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
+                                     void (*resized)(const char*,
+                                                     uint64_t length,
+                                                     void *host),
+                                     MemoryRegion *mr, Error **errp)
+{
+    return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
+                                   RAM_RESIZEABLE, mr, errp);
+}
+
+static void reclaim_ramblock(RAMBlock *block)
+{
+    if (block->flags & RAM_PREALLOC) {
+        ;
+    } else if (xen_enabled()) {
+        xen_invalidate_map_cache_entry(block->host);
+#ifndef _WIN32
+    } else if (block->fd >= 0) {
+        qemu_ram_munmap(block->fd, block->host, block->max_length);
+        close(block->fd);
+#endif
+    } else {
+        qemu_anon_ram_free(block->host, block->max_length);
+    }
+    g_free(block);
+}
+
+void qemu_ram_free(RAMBlock *block)
+{
+    if (!block) {
+        return;
+    }
+
+    if (block->host) {
+        ram_block_notify_remove(block->host, block->used_length,
+                                block->max_length);
+    }
+
+    qemu_mutex_lock_ramlist();
+    QLIST_REMOVE_RCU(block, next);
+    ram_list.mru_block = NULL;
+    /* Write list before version */
+    smp_wmb();
+    ram_list.version++;
+    call_rcu(block, reclaim_ramblock, rcu);
+    qemu_mutex_unlock_ramlist();
+}
+
+#ifndef _WIN32
+void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
+{
+    RAMBlock *block;
+    ram_addr_t offset;
+    int flags;
+    void *area, *vaddr;
+    int prot;
+
+    RAMBLOCK_FOREACH(block) {
+        offset = addr - block->offset;
+        if (offset < block->max_length) {
+            vaddr = ramblock_ptr(block, offset);
+            if (block->flags & RAM_PREALLOC) {
+                ;
+            } else if (xen_enabled()) {
+                abort();
+            } else {
+                flags = MAP_FIXED;
+                flags |= block->flags & RAM_SHARED ?
+                         MAP_SHARED : MAP_PRIVATE;
+                flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
+                prot = PROT_READ;
+                prot |= block->flags & RAM_READONLY ? 0 : PROT_WRITE;
+                if (block->fd >= 0) {
+                    area = mmap(vaddr, length, prot, flags, block->fd,
+                                offset + block->fd_offset);
+                } else {
+                    flags |= MAP_ANONYMOUS;
+                    area = mmap(vaddr, length, prot, flags, -1, 0);
+                }
+                if (area != vaddr) {
+                    error_report("Could not remap addr: "
+                                 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
+                                 length, addr);
+                    exit(1);
+                }
+                memory_try_enable_merging(vaddr, length);
+                qemu_ram_setup_dump(vaddr, length);
+            }
+        }
+    }
+}
+#endif /* !_WIN32 */
+
+/* Return a host pointer to ram allocated with qemu_ram_alloc.
+ * This should not be used for general purpose DMA.  Use address_space_map
+ * or address_space_rw instead. For local memory (e.g. video ram) that the
+ * device owns, use memory_region_get_ram_ptr.
+ *
+ * Called within RCU critical section.
+ */
+void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
+{
+    RAMBlock *block = ram_block;
+
+    if (block == NULL) {
+        block = qemu_get_ram_block(addr);
+        addr -= block->offset;
+    }
+
+    if (xen_enabled() && block->host == NULL) {
+        /* We need to check if the requested address is in the RAM
+         * because we don't want to map the entire memory in QEMU.
+         * In that case just map until the end of the page.
+         */
+        if (block->offset == 0) {
+            return xen_map_cache(addr, 0, 0, false);
+        }
+
+        block->host = xen_map_cache(block->offset, block->max_length, 1, false);
+    }
+    return ramblock_ptr(block, addr);
+}
+
+/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
+ * but takes a size argument.
+ *
+ * Called within RCU critical section.
+ */
+static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
+                                 hwaddr *size, bool lock)
+{
+    RAMBlock *block = ram_block;
+    if (*size == 0) {
+        return NULL;
+    }
+
+    if (block == NULL) {
+        block = qemu_get_ram_block(addr);
+        addr -= block->offset;
+    }
+    *size = MIN(*size, block->max_length - addr);
+
+    if (xen_enabled() && block->host == NULL) {
+        /* We need to check if the requested address is in the RAM
+         * because we don't want to map the entire memory in QEMU.
+         * In that case just map the requested area.
+         */
+        if (block->offset == 0) {
+            return xen_map_cache(addr, *size, lock, lock);
+        }
+
+        block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
+    }
+
+    return ramblock_ptr(block, addr);
+}
+
+/* Return the offset of a hostpointer within a ramblock */
+ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
+{
+    ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
+    assert((uintptr_t)host >= (uintptr_t)rb->host);
+    assert(res < rb->max_length);
+
+    return res;
+}
+
+/*
+ * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
+ * in that RAMBlock.
+ *
+ * ptr: Host pointer to look up
+ * round_offset: If true round the result offset down to a page boundary
+ * *ram_addr: set to result ram_addr
+ * *offset: set to result offset within the RAMBlock
+ *
+ * Returns: RAMBlock (or NULL if not found)
+ *
+ * By the time this function returns, the returned pointer is not protected
+ * by RCU anymore.  If the caller is not within an RCU critical section and
+ * does not hold the iothread lock, it must have other means of protecting the
+ * pointer, such as a reference to the region that includes the incoming
+ * ram_addr_t.
+ */
+RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
+                                   ram_addr_t *offset)
+{
+    RAMBlock *block;
+    uint8_t *host = ptr;
+
+    if (xen_enabled()) {
+        ram_addr_t ram_addr;
+        RCU_READ_LOCK_GUARD();
+        ram_addr = xen_ram_addr_from_mapcache(ptr);
+        block = qemu_get_ram_block(ram_addr);
+        if (block) {
+            *offset = ram_addr - block->offset;
+        }
+        return block;
+    }
+
+    RCU_READ_LOCK_GUARD();
+    block = qatomic_rcu_read(&ram_list.mru_block);
+    if (block && block->host && host - block->host < block->max_length) {
+        goto found;
+    }
+
+    RAMBLOCK_FOREACH(block) {
+        /* This case append when the block is not mapped. */
+        if (block->host == NULL) {
+            continue;
+        }
+        if (host - block->host < block->max_length) {
+            goto found;
+        }
+    }
+
+    return NULL;
+
+found:
+    *offset = (host - block->host);
+    if (round_offset) {
+        *offset &= TARGET_PAGE_MASK;
+    }
+    return block;
+}
+
+/*
+ * Finds the named RAMBlock
+ *
+ * name: The name of RAMBlock to find
+ *
+ * Returns: RAMBlock (or NULL if not found)
+ */
+RAMBlock *qemu_ram_block_by_name(const char *name)
+{
+    RAMBlock *block;
+
+    RAMBLOCK_FOREACH(block) {
+        if (!strcmp(name, block->idstr)) {
+            return block;
+        }
+    }
+
+    return NULL;
+}
+
+/*
+ * Some of the system routines need to translate from a host pointer
+ * (typically a TLB entry) back to a ram offset.
+ */
+ram_addr_t qemu_ram_addr_from_host(void *ptr)
+{
+    RAMBlock *block;
+    ram_addr_t offset;
+
+    block = qemu_ram_block_from_host(ptr, false, &offset);
+    if (!block) {
+        return RAM_ADDR_INVALID;
+    }
+
+    return block->offset + offset;
+}
+
+ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
+{
+    ram_addr_t ram_addr;
+
+    ram_addr = qemu_ram_addr_from_host(ptr);
+    if (ram_addr == RAM_ADDR_INVALID) {
+        error_report("Bad ram pointer %p", ptr);
+        abort();
+    }
+    return ram_addr;
+}
+
+static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
+                                 MemTxAttrs attrs, void *buf, hwaddr len);
+static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
+                                  const void *buf, hwaddr len);
+static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
+                                  bool is_write, MemTxAttrs attrs);
+
+static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
+                                unsigned len, MemTxAttrs attrs)
+{
+    subpage_t *subpage = opaque;
+    uint8_t buf[8];
+    MemTxResult res;
+
+#if defined(DEBUG_SUBPAGE)
+    printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__,
+           subpage, len, addr);
+#endif
+    res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
+    if (res) {
+        return res;
+    }
+    *data = ldn_p(buf, len);
+    return MEMTX_OK;
+}
+
+static MemTxResult subpage_write(void *opaque, hwaddr addr,
+                                 uint64_t value, unsigned len, MemTxAttrs attrs)
+{
+    subpage_t *subpage = opaque;
+    uint8_t buf[8];
+
+#if defined(DEBUG_SUBPAGE)
+    printf("%s: subpage %p len %u addr " HWADDR_FMT_plx
+           " value %"PRIx64"\n",
+           __func__, subpage, len, addr, value);
+#endif
+    stn_p(buf, len, value);
+    return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
+}
+
+static bool subpage_accepts(void *opaque, hwaddr addr,
+                            unsigned len, bool is_write,
+                            MemTxAttrs attrs)
+{
+    subpage_t *subpage = opaque;
+#if defined(DEBUG_SUBPAGE)
+    printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n",
+           __func__, subpage, is_write ? 'w' : 'r', len, addr);
+#endif
+
+    return flatview_access_valid(subpage->fv, addr + subpage->base,
+                                 len, is_write, attrs);
+}
+
+static const MemoryRegionOps subpage_ops = {
+    .read_with_attrs = subpage_read,
+    .write_with_attrs = subpage_write,
+    .impl.min_access_size = 1,
+    .impl.max_access_size = 8,
+    .valid.min_access_size = 1,
+    .valid.max_access_size = 8,
+    .valid.accepts = subpage_accepts,
+    .endianness = DEVICE_NATIVE_ENDIAN,
+};
+
+static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
+                            uint16_t section)
+{
+    int idx, eidx;
+
+    if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
+        return -1;
+    idx = SUBPAGE_IDX(start);
+    eidx = SUBPAGE_IDX(end);
+#if defined(DEBUG_SUBPAGE)
+    printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
+           __func__, mmio, start, end, idx, eidx, section);
+#endif
+    for (; idx <= eidx; idx++) {
+        mmio->sub_section[idx] = section;
+    }
+
+    return 0;
+}
+
+static subpage_t *subpage_init(FlatView *fv, hwaddr base)
+{
+    subpage_t *mmio;
+
+    /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
+    mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
+    mmio->fv = fv;
+    mmio->base = base;
+    memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
+                          NULL, TARGET_PAGE_SIZE);
+    mmio->iomem.subpage = true;
+#if defined(DEBUG_SUBPAGE)
+    printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__,
+           mmio, base, TARGET_PAGE_SIZE);
+#endif
+
+    return mmio;
+}
+
+static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
+{
+    assert(fv);
+    MemoryRegionSection section = {
+        .fv = fv,
+        .mr = mr,
+        .offset_within_address_space = 0,
+        .offset_within_region = 0,
+        .size = int128_2_64(),
+    };
+
+    return phys_section_add(map, &section);
+}
+
+MemoryRegionSection *iotlb_to_section(CPUState *cpu,
+                                      hwaddr index, MemTxAttrs attrs)
+{
+    int asidx = cpu_asidx_from_attrs(cpu, attrs);
+    CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
+    AddressSpaceDispatch *d = cpuas->memory_dispatch;
+    int section_index = index & ~TARGET_PAGE_MASK;
+    MemoryRegionSection *ret;
+
+    assert(section_index < d->map.sections_nb);
+    ret = d->map.sections + section_index;
+    assert(ret->mr);
+    assert(ret->mr->ops);
+
+    return ret;
+}
+
+static void io_mem_init(void)
+{
+    memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
+                          NULL, UINT64_MAX);
+}
+
+AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
+{
+    AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
+    uint16_t n;
+
+    n = dummy_section(&d->map, fv, &io_mem_unassigned);
+    assert(n == PHYS_SECTION_UNASSIGNED);
+
+    d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
+
+    return d;
+}
+
+void address_space_dispatch_free(AddressSpaceDispatch *d)
+{
+    phys_sections_free(&d->map);
+    g_free(d);
+}
+
+static void do_nothing(CPUState *cpu, run_on_cpu_data d)
+{
+}
+
+static void tcg_log_global_after_sync(MemoryListener *listener)
+{
+    CPUAddressSpace *cpuas;
+
+    /* Wait for the CPU to end the current TB.  This avoids the following
+     * incorrect race:
+     *
+     *      vCPU                         migration
+     *      ----------------------       -------------------------
+     *      TLB check -> slow path
+     *        notdirty_mem_write
+     *          write to RAM
+     *          mark dirty
+     *                                   clear dirty flag
+     *      TLB check -> fast path
+     *                                   read memory
+     *        write to RAM
+     *
+     * by pushing the migration thread's memory read after the vCPU thread has
+     * written the memory.
+     */
+    if (replay_mode == REPLAY_MODE_NONE) {
+        /*
+         * VGA can make calls to this function while updating the screen.
+         * In record/replay mode this causes a deadlock, because
+         * run_on_cpu waits for rr mutex. Therefore no races are possible
+         * in this case and no need for making run_on_cpu when
+         * record/replay is enabled.
+         */
+        cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
+        run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
+    }
+}
+
+static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data)
+{
+    CPUAddressSpace *cpuas = data.host_ptr;
+
+    cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as);
+    tlb_flush(cpu);
+}
+
+static void tcg_commit(MemoryListener *listener)
+{
+    CPUAddressSpace *cpuas;
+    CPUState *cpu;
+
+    assert(tcg_enabled());
+    /* since each CPU stores ram addresses in its TLB cache, we must
+       reset the modified entries */
+    cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
+    cpu = cpuas->cpu;
+
+    /*
+     * Defer changes to as->memory_dispatch until the cpu is quiescent.
+     * Otherwise we race between (1) other cpu threads and (2) ongoing
+     * i/o for the current cpu thread, with data cached by mmu_lookup().
+     *
+     * In addition, queueing the work function will kick the cpu back to
+     * the main loop, which will end the RCU critical section and reclaim
+     * the memory data structures.
+     *
+     * That said, the listener is also called during realize, before
+     * all of the tcg machinery for run-on is initialized: thus halt_cond.
+     */
+    if (cpu->halt_cond) {
+        async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas));
+    } else {
+        tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas));
+    }
+}
+
+static void memory_map_init(void)
+{
+    system_memory = g_malloc(sizeof(*system_memory));
+
+    memory_region_init(system_memory, NULL, "system", UINT64_MAX);
+    address_space_init(&address_space_memory, system_memory, "memory");
+
+    system_io = g_malloc(sizeof(*system_io));
+    memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
+                          65536);
+    address_space_init(&address_space_io, system_io, "I/O");
+}
+
+MemoryRegion *get_system_memory(void)
+{
+    return system_memory;
+}
+
+MemoryRegion *get_system_io(void)
+{
+    return system_io;
+}
+
+static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
+                                     hwaddr length)
+{
+    uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
+    addr += memory_region_get_ram_addr(mr);
+
+    /* No early return if dirty_log_mask is or becomes 0, because
+     * cpu_physical_memory_set_dirty_range will still call
+     * xen_modified_memory.
+     */
+    if (dirty_log_mask) {
+        dirty_log_mask =
+            cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
+    }
+    if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
+        assert(tcg_enabled());
+        tb_invalidate_phys_range(addr, addr + length - 1);
+        dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
+    }
+    cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
+}
+
+void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
+{
+    /*
+     * In principle this function would work on other memory region types too,
+     * but the ROM device use case is the only one where this operation is
+     * necessary.  Other memory regions should use the
+     * address_space_read/write() APIs.
+     */
+    assert(memory_region_is_romd(mr));
+
+    invalidate_and_set_dirty(mr, addr, size);
+}
+
+int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
+{
+    unsigned access_size_max = mr->ops->valid.max_access_size;
+
+    /* Regions are assumed to support 1-4 byte accesses unless
+       otherwise specified.  */
+    if (access_size_max == 0) {
+        access_size_max = 4;
+    }
+
+    /* Bound the maximum access by the alignment of the address.  */
+    if (!mr->ops->impl.unaligned) {
+        unsigned align_size_max = addr & -addr;
+        if (align_size_max != 0 && align_size_max < access_size_max) {
+            access_size_max = align_size_max;
+        }
+    }
+
+    /* Don't attempt accesses larger than the maximum.  */
+    if (l > access_size_max) {
+        l = access_size_max;
+    }
+    l = pow2floor(l);
+
+    return l;
+}
+
+bool prepare_mmio_access(MemoryRegion *mr)
+{
+    bool release_lock = false;
+
+    if (!qemu_mutex_iothread_locked()) {
+        qemu_mutex_lock_iothread();
+        release_lock = true;
+    }
+    if (mr->flush_coalesced_mmio) {
+        qemu_flush_coalesced_mmio_buffer();
+    }
+
+    return release_lock;
+}
+
+/**
+ * flatview_access_allowed
+ * @mr: #MemoryRegion to be accessed
+ * @attrs: memory transaction attributes
+ * @addr: address within that memory region
+ * @len: the number of bytes to access
+ *
+ * Check if a memory transaction is allowed.
+ *
+ * Returns: true if transaction is allowed, false if denied.
+ */
+static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
+                                    hwaddr addr, hwaddr len)
+{
+    if (likely(!attrs.memory)) {
+        return true;
+    }
+    if (memory_region_is_ram(mr)) {
+        return true;
+    }
+    qemu_log_mask(LOG_GUEST_ERROR,
+                  "Invalid access to non-RAM device at "
+                  "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
+                  "region '%s'\n", addr, len, memory_region_name(mr));
+    return false;
+}
+
+/* Called within RCU critical section.  */
+static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
+                                           MemTxAttrs attrs,
+                                           const void *ptr,
+                                           hwaddr len, hwaddr addr1,
+                                           hwaddr l, MemoryRegion *mr)
+{
+    uint8_t *ram_ptr;
+    uint64_t val;
+    MemTxResult result = MEMTX_OK;
+    bool release_lock = false;
+    const uint8_t *buf = ptr;
+
+    for (;;) {
+        if (!flatview_access_allowed(mr, attrs, addr1, l)) {
+            result |= MEMTX_ACCESS_ERROR;
+            /* Keep going. */
+        } else if (!memory_access_is_direct(mr, true)) {
+            release_lock |= prepare_mmio_access(mr);
+            l = memory_access_size(mr, l, addr1);
+            /* XXX: could force current_cpu to NULL to avoid
+               potential bugs */
+            val = ldn_he_p(buf, l);
+            result |= memory_region_dispatch_write(mr, addr1, val,
+                                                   size_memop(l), attrs);
+        } else {
+            /* RAM case */
+            ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
+            memmove(ram_ptr, buf, l);
+            invalidate_and_set_dirty(mr, addr1, l);
+        }
+
+        if (release_lock) {
+            qemu_mutex_unlock_iothread();
+            release_lock = false;
+        }
+
+        len -= l;
+        buf += l;
+        addr += l;
+
+        if (!len) {
+            break;
+        }
+
+        l = len;
+        mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
+    }
+
+    return result;
+}
+
+/* Called from RCU critical section.  */
+static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
+                                  const void *buf, hwaddr len)
+{
+    hwaddr l;
+    hwaddr addr1;
+    MemoryRegion *mr;
+
+    l = len;
+    mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
+    if (!flatview_access_allowed(mr, attrs, addr, len)) {
+        return MEMTX_ACCESS_ERROR;
+    }
+    return flatview_write_continue(fv, addr, attrs, buf, len,
+                                   addr1, l, mr);
+}
+
+/* Called within RCU critical section.  */
+MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
+                                   MemTxAttrs attrs, void *ptr,
+                                   hwaddr len, hwaddr addr1, hwaddr l,
+                                   MemoryRegion *mr)
+{
+    uint8_t *ram_ptr;
+    uint64_t val;
+    MemTxResult result = MEMTX_OK;
+    bool release_lock = false;
+    uint8_t *buf = ptr;
+
+    fuzz_dma_read_cb(addr, len, mr);
+    for (;;) {
+        if (!flatview_access_allowed(mr, attrs, addr1, l)) {
+            result |= MEMTX_ACCESS_ERROR;
+            /* Keep going. */
+        } else if (!memory_access_is_direct(mr, false)) {
+            /* I/O case */
+            release_lock |= prepare_mmio_access(mr);
+            l = memory_access_size(mr, l, addr1);
+            result |= memory_region_dispatch_read(mr, addr1, &val,
+                                                  size_memop(l), attrs);
+            stn_he_p(buf, l, val);
+        } else {
+            /* RAM case */
+            ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
+            memcpy(buf, ram_ptr, l);
+        }
+
+        if (release_lock) {
+            qemu_mutex_unlock_iothread();
+            release_lock = false;
+        }
+
+        len -= l;
+        buf += l;
+        addr += l;
+
+        if (!len) {
+            break;
+        }
+
+        l = len;
+        mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
+    }
+
+    return result;
+}
+
+/* Called from RCU critical section.  */
+static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
+                                 MemTxAttrs attrs, void *buf, hwaddr len)
+{
+    hwaddr l;
+    hwaddr addr1;
+    MemoryRegion *mr;
+
+    l = len;
+    mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
+    if (!flatview_access_allowed(mr, attrs, addr, len)) {
+        return MEMTX_ACCESS_ERROR;
+    }
+    return flatview_read_continue(fv, addr, attrs, buf, len,
+                                  addr1, l, mr);
+}
+
+MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
+                                    MemTxAttrs attrs, void *buf, hwaddr len)
+{
+    MemTxResult result = MEMTX_OK;
+    FlatView *fv;
+
+    if (len > 0) {
+        RCU_READ_LOCK_GUARD();
+        fv = address_space_to_flatview(as);
+        result = flatview_read(fv, addr, attrs, buf, len);
+    }
+
+    return result;
+}
+
+MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
+                                MemTxAttrs attrs,
+                                const void *buf, hwaddr len)
+{
+    MemTxResult result = MEMTX_OK;
+    FlatView *fv;
+
+    if (len > 0) {
+        RCU_READ_LOCK_GUARD();
+        fv = address_space_to_flatview(as);
+        result = flatview_write(fv, addr, attrs, buf, len);
+    }
+
+    return result;
+}
+
+MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
+                             void *buf, hwaddr len, bool is_write)
+{
+    if (is_write) {
+        return address_space_write(as, addr, attrs, buf, len);
+    } else {
+        return address_space_read_full(as, addr, attrs, buf, len);
+    }
+}
+
+MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
+                              uint8_t c, hwaddr len, MemTxAttrs attrs)
+{
+#define FILLBUF_SIZE 512
+    uint8_t fillbuf[FILLBUF_SIZE];
+    int l;
+    MemTxResult error = MEMTX_OK;
+
+    memset(fillbuf, c, FILLBUF_SIZE);
+    while (len > 0) {
+        l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
+        error |= address_space_write(as, addr, attrs, fillbuf, l);
+        len -= l;
+        addr += l;
+    }
+
+    return error;
+}
+
+void cpu_physical_memory_rw(hwaddr addr, void *buf,
+                            hwaddr len, bool is_write)
+{
+    address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
+                     buf, len, is_write);
+}
+
+enum write_rom_type {
+    WRITE_DATA,
+    FLUSH_CACHE,
+};
+
+static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
+                                                           hwaddr addr,
+                                                           MemTxAttrs attrs,
+                                                           const void *ptr,
+                                                           hwaddr len,
+                                                           enum write_rom_type type)
+{
+    hwaddr l;
+    uint8_t *ram_ptr;
+    hwaddr addr1;
+    MemoryRegion *mr;
+    const uint8_t *buf = ptr;
+
+    RCU_READ_LOCK_GUARD();
+    while (len > 0) {
+        l = len;
+        mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
+
+        if (!(memory_region_is_ram(mr) ||
+              memory_region_is_romd(mr))) {
+            l = memory_access_size(mr, l, addr1);
+        } else {
+            /* ROM/RAM case */
+            ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
+            switch (type) {
+            case WRITE_DATA:
+                memcpy(ram_ptr, buf, l);
+                invalidate_and_set_dirty(mr, addr1, l);
+                break;
+            case FLUSH_CACHE:
+                flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
+                break;
+            }
+        }
+        len -= l;
+        buf += l;
+        addr += l;
+    }
+    return MEMTX_OK;
+}
+
+/* used for ROM loading : can write in RAM and ROM */
+MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
+                                    MemTxAttrs attrs,
+                                    const void *buf, hwaddr len)
+{
+    return address_space_write_rom_internal(as, addr, attrs,
+                                            buf, len, WRITE_DATA);
+}
+
+void cpu_flush_icache_range(hwaddr start, hwaddr len)
+{
+    /*
+     * This function should do the same thing as an icache flush that was
+     * triggered from within the guest. For TCG we are always cache coherent,
+     * so there is no need to flush anything. For KVM / Xen we need to flush
+     * the host's instruction cache at least.
+     */
+    if (tcg_enabled()) {
+        return;
+    }
+
+    address_space_write_rom_internal(&address_space_memory,
+                                     start, MEMTXATTRS_UNSPECIFIED,
+                                     NULL, len, FLUSH_CACHE);
+}
+
+typedef struct {
+    MemoryRegion *mr;
+    void *buffer;
+    hwaddr addr;
+    hwaddr len;
+    bool in_use;
+} BounceBuffer;
+
+static BounceBuffer bounce;
+
+typedef struct MapClient {
+    QEMUBH *bh;
+    QLIST_ENTRY(MapClient) link;
+} MapClient;
+
+QemuMutex map_client_list_lock;
+static QLIST_HEAD(, MapClient) map_client_list
+    = QLIST_HEAD_INITIALIZER(map_client_list);
+
+static void cpu_unregister_map_client_do(MapClient *client)
+{
+    QLIST_REMOVE(client, link);
+    g_free(client);
+}
+
+static void cpu_notify_map_clients_locked(void)
+{
+    MapClient *client;
+
+    while (!QLIST_EMPTY(&map_client_list)) {
+        client = QLIST_FIRST(&map_client_list);
+        qemu_bh_schedule(client->bh);
+        cpu_unregister_map_client_do(client);
+    }
+}
+
+void cpu_register_map_client(QEMUBH *bh)
+{
+    MapClient *client = g_malloc(sizeof(*client));
+
+    qemu_mutex_lock(&map_client_list_lock);
+    client->bh = bh;
+    QLIST_INSERT_HEAD(&map_client_list, client, link);
+    /* Write map_client_list before reading in_use.  */
+    smp_mb();
+    if (!qatomic_read(&bounce.in_use)) {
+        cpu_notify_map_clients_locked();
+    }
+    qemu_mutex_unlock(&map_client_list_lock);
+}
+
+void cpu_exec_init_all(void)
+{
+    qemu_mutex_init(&ram_list.mutex);
+    /* The data structures we set up here depend on knowing the page size,
+     * so no more changes can be made after this point.
+     * In an ideal world, nothing we did before we had finished the
+     * machine setup would care about the target page size, and we could
+     * do this much later, rather than requiring board models to state
+     * up front what their requirements are.
+     */
+    finalize_target_page_bits();
+    io_mem_init();
+    memory_map_init();
+    qemu_mutex_init(&map_client_list_lock);
+}
+
+void cpu_unregister_map_client(QEMUBH *bh)
+{
+    MapClient *client;
+
+    qemu_mutex_lock(&map_client_list_lock);
+    QLIST_FOREACH(client, &map_client_list, link) {
+        if (client->bh == bh) {
+            cpu_unregister_map_client_do(client);
+            break;
+        }
+    }
+    qemu_mutex_unlock(&map_client_list_lock);
+}
+
+static void cpu_notify_map_clients(void)
+{
+    qemu_mutex_lock(&map_client_list_lock);
+    cpu_notify_map_clients_locked();
+    qemu_mutex_unlock(&map_client_list_lock);
+}
+
+static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
+                                  bool is_write, MemTxAttrs attrs)
+{
+    MemoryRegion *mr;
+    hwaddr l, xlat;
+
+    while (len > 0) {
+        l = len;
+        mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
+        if (!memory_access_is_direct(mr, is_write)) {
+            l = memory_access_size(mr, l, addr);
+            if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
+                return false;
+            }
+        }
+
+        len -= l;
+        addr += l;
+    }
+    return true;
+}
+
+bool address_space_access_valid(AddressSpace *as, hwaddr addr,
+                                hwaddr len, bool is_write,
+                                MemTxAttrs attrs)
+{
+    FlatView *fv;
+
+    RCU_READ_LOCK_GUARD();
+    fv = address_space_to_flatview(as);
+    return flatview_access_valid(fv, addr, len, is_write, attrs);
+}
+
+static hwaddr
+flatview_extend_translation(FlatView *fv, hwaddr addr,
+                            hwaddr target_len,
+                            MemoryRegion *mr, hwaddr base, hwaddr len,
+                            bool is_write, MemTxAttrs attrs)
+{
+    hwaddr done = 0;
+    hwaddr xlat;
+    MemoryRegion *this_mr;
+
+    for (;;) {
+        target_len -= len;
+        addr += len;
+        done += len;
+        if (target_len == 0) {
+            return done;
+        }
+
+        len = target_len;
+        this_mr = flatview_translate(fv, addr, &xlat,
+                                     &len, is_write, attrs);
+        if (this_mr != mr || xlat != base + done) {
+            return done;
+        }
+    }
+}
+
+/* Map a physical memory region into a host virtual address.
+ * May map a subset of the requested range, given by and returned in *plen.
+ * May return NULL if resources needed to perform the mapping are exhausted.
+ * Use only for reads OR writes - not for read-modify-write operations.
+ * Use cpu_register_map_client() to know when retrying the map operation is
+ * likely to succeed.
+ */
+void *address_space_map(AddressSpace *as,
+                        hwaddr addr,
+                        hwaddr *plen,
+                        bool is_write,
+                        MemTxAttrs attrs)
+{
+    hwaddr len = *plen;
+    hwaddr l, xlat;
+    MemoryRegion *mr;
+    FlatView *fv;
+
+    if (len == 0) {
+        return NULL;
+    }
+
+    l = len;
+    RCU_READ_LOCK_GUARD();
+    fv = address_space_to_flatview(as);
+    mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
+
+    if (!memory_access_is_direct(mr, is_write)) {
+        if (qatomic_xchg(&bounce.in_use, true)) {
+            *plen = 0;
+            return NULL;
+        }
+        /* Avoid unbounded allocations */
+        l = MIN(l, TARGET_PAGE_SIZE);
+        bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
+        bounce.addr = addr;
+        bounce.len = l;
+
+        memory_region_ref(mr);
+        bounce.mr = mr;
+        if (!is_write) {
+            flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
+                               bounce.buffer, l);
+        }
+
+        *plen = l;
+        return bounce.buffer;
+    }
+
+
+    memory_region_ref(mr);
+    *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
+                                        l, is_write, attrs);
+    fuzz_dma_read_cb(addr, *plen, mr);
+    return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
+}
+
+/* Unmaps a memory region previously mapped by address_space_map().
+ * Will also mark the memory as dirty if is_write is true.  access_len gives
+ * the amount of memory that was actually read or written by the caller.
+ */
+void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
+                         bool is_write, hwaddr access_len)
+{
+    if (buffer != bounce.buffer) {
+        MemoryRegion *mr;
+        ram_addr_t addr1;
+
+        mr = memory_region_from_host(buffer, &addr1);
+        assert(mr != NULL);
+        if (is_write) {
+            invalidate_and_set_dirty(mr, addr1, access_len);
+        }
+        if (xen_enabled()) {
+            xen_invalidate_map_cache_entry(buffer);
+        }
+        memory_region_unref(mr);
+        return;
+    }
+    if (is_write) {
+        address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
+                            bounce.buffer, access_len);
+    }
+    qemu_vfree(bounce.buffer);
+    bounce.buffer = NULL;
+    memory_region_unref(bounce.mr);
+    /* Clear in_use before reading map_client_list.  */
+    qatomic_set_mb(&bounce.in_use, false);
+    cpu_notify_map_clients();
+}
+
+void *cpu_physical_memory_map(hwaddr addr,
+                              hwaddr *plen,
+                              bool is_write)
+{
+    return address_space_map(&address_space_memory, addr, plen, is_write,
+                             MEMTXATTRS_UNSPECIFIED);
+}
+
+void cpu_physical_memory_unmap(void *buffer, hwaddr len,
+                               bool is_write, hwaddr access_len)
+{
+    return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
+}
+
+#define ARG1_DECL                AddressSpace *as
+#define ARG1                     as
+#define SUFFIX
+#define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
+#define RCU_READ_LOCK(...)       rcu_read_lock()
+#define RCU_READ_UNLOCK(...)     rcu_read_unlock()
+#include "memory_ldst.c.inc"
+
+int64_t address_space_cache_init(MemoryRegionCache *cache,
+                                 AddressSpace *as,
+                                 hwaddr addr,
+                                 hwaddr len,
+                                 bool is_write)
+{
+    AddressSpaceDispatch *d;
+    hwaddr l;
+    MemoryRegion *mr;
+    Int128 diff;
+
+    assert(len > 0);
+
+    l = len;
+    cache->fv = address_space_get_flatview(as);
+    d = flatview_to_dispatch(cache->fv);
+    cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
+
+    /*
+     * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
+     * Take that into account to compute how many bytes are there between
+     * cache->xlat and the end of the section.
+     */
+    diff = int128_sub(cache->mrs.size,
+                      int128_make64(cache->xlat - cache->mrs.offset_within_region));
+    l = int128_get64(int128_min(diff, int128_make64(l)));
+
+    mr = cache->mrs.mr;
+    memory_region_ref(mr);
+    if (memory_access_is_direct(mr, is_write)) {
+        /* We don't care about the memory attributes here as we're only
+         * doing this if we found actual RAM, which behaves the same
+         * regardless of attributes; so UNSPECIFIED is fine.
+         */
+        l = flatview_extend_translation(cache->fv, addr, len, mr,
+                                        cache->xlat, l, is_write,
+                                        MEMTXATTRS_UNSPECIFIED);
+        cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
+    } else {
+        cache->ptr = NULL;
+    }
+
+    cache->len = l;
+    cache->is_write = is_write;
+    return l;
+}
+
+void address_space_cache_invalidate(MemoryRegionCache *cache,
+                                    hwaddr addr,
+                                    hwaddr access_len)
+{
+    assert(cache->is_write);
+    if (likely(cache->ptr)) {
+        invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
+    }
+}
+
+void address_space_cache_destroy(MemoryRegionCache *cache)
+{
+    if (!cache->mrs.mr) {
+        return;
+    }
+
+    if (xen_enabled()) {
+        xen_invalidate_map_cache_entry(cache->ptr);
+    }
+    memory_region_unref(cache->mrs.mr);
+    flatview_unref(cache->fv);
+    cache->mrs.mr = NULL;
+    cache->fv = NULL;
+}
+
+/* Called from RCU critical section.  This function has the same
+ * semantics as address_space_translate, but it only works on a
+ * predefined range of a MemoryRegion that was mapped with
+ * address_space_cache_init.
+ */
+static inline MemoryRegion *address_space_translate_cached(
+    MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
+    hwaddr *plen, bool is_write, MemTxAttrs attrs)
+{
+    MemoryRegionSection section;
+    MemoryRegion *mr;
+    IOMMUMemoryRegion *iommu_mr;
+    AddressSpace *target_as;
+
+    assert(!cache->ptr);
+    *xlat = addr + cache->xlat;
+
+    mr = cache->mrs.mr;
+    iommu_mr = memory_region_get_iommu(mr);
+    if (!iommu_mr) {
+        /* MMIO region.  */
+        return mr;
+    }
+
+    section = address_space_translate_iommu(iommu_mr, xlat, plen,
+                                            NULL, is_write, true,
+                                            &target_as, attrs);
+    return section.mr;
+}
+
+/* Called from RCU critical section. address_space_read_cached uses this
+ * out of line function when the target is an MMIO or IOMMU region.
+ */
+MemTxResult
+address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
+                                   void *buf, hwaddr len)
+{
+    hwaddr addr1, l;
+    MemoryRegion *mr;
+
+    l = len;
+    mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
+                                        MEMTXATTRS_UNSPECIFIED);
+    return flatview_read_continue(cache->fv,
+                                  addr, MEMTXATTRS_UNSPECIFIED, buf, len,
+                                  addr1, l, mr);
+}
+
+/* Called from RCU critical section. address_space_write_cached uses this
+ * out of line function when the target is an MMIO or IOMMU region.
+ */
+MemTxResult
+address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
+                                    const void *buf, hwaddr len)
+{
+    hwaddr addr1, l;
+    MemoryRegion *mr;
+
+    l = len;
+    mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
+                                        MEMTXATTRS_UNSPECIFIED);
+    return flatview_write_continue(cache->fv,
+                                   addr, MEMTXATTRS_UNSPECIFIED, buf, len,
+                                   addr1, l, mr);
+}
+
+#define ARG1_DECL                MemoryRegionCache *cache
+#define ARG1                     cache
+#define SUFFIX                   _cached_slow
+#define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
+#define RCU_READ_LOCK()          ((void)0)
+#define RCU_READ_UNLOCK()        ((void)0)
+#include "memory_ldst.c.inc"
+
+/* virtual memory access for debug (includes writing to ROM) */
+int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
+                        void *ptr, size_t len, bool is_write)
+{
+    hwaddr phys_addr;
+    vaddr l, page;
+    uint8_t *buf = ptr;
+
+    cpu_synchronize_state(cpu);
+    while (len > 0) {
+        int asidx;
+        MemTxAttrs attrs;
+        MemTxResult res;
+
+        page = addr & TARGET_PAGE_MASK;
+        phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
+        asidx = cpu_asidx_from_attrs(cpu, attrs);
+        /* if no physical page mapped, return an error */
+        if (phys_addr == -1)
+            return -1;
+        l = (page + TARGET_PAGE_SIZE) - addr;
+        if (l > len)
+            l = len;
+        phys_addr += (addr & ~TARGET_PAGE_MASK);
+        if (is_write) {
+            res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
+                                          attrs, buf, l);
+        } else {
+            res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
+                                     attrs, buf, l);
+        }
+        if (res != MEMTX_OK) {
+            return -1;
+        }
+        len -= l;
+        buf += l;
+        addr += l;
+    }
+    return 0;
+}
+
+/*
+ * Allows code that needs to deal with migration bitmaps etc to still be built
+ * target independent.
+ */
+size_t qemu_target_page_size(void)
+{
+    return TARGET_PAGE_SIZE;
+}
+
+int qemu_target_page_mask(void)
+{
+    return TARGET_PAGE_MASK;
+}
+
+int qemu_target_page_bits(void)
+{
+    return TARGET_PAGE_BITS;
+}
+
+int qemu_target_page_bits_min(void)
+{
+    return TARGET_PAGE_BITS_MIN;
+}
+
+/* Convert target pages to MiB (2**20). */
+size_t qemu_target_pages_to_MiB(size_t pages)
+{
+    int page_bits = TARGET_PAGE_BITS;
+
+    /* So far, the largest (non-huge) page size is 64k, i.e. 16 bits. */
+    g_assert(page_bits < 20);
+
+    return pages >> (20 - page_bits);
+}
+
+bool cpu_physical_memory_is_io(hwaddr phys_addr)
+{
+    MemoryRegion*mr;
+    hwaddr l = 1;
+
+    RCU_READ_LOCK_GUARD();
+    mr = address_space_translate(&address_space_memory,
+                                 phys_addr, &phys_addr, &l, false,
+                                 MEMTXATTRS_UNSPECIFIED);
+
+    return !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
+}
+
+int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
+{
+    RAMBlock *block;
+    int ret = 0;
+
+    RCU_READ_LOCK_GUARD();
+    RAMBLOCK_FOREACH(block) {
+        ret = func(block, opaque);
+        if (ret) {
+            break;
+        }
+    }
+    return ret;
+}
+
+/*
+ * Unmap pages of memory from start to start+length such that
+ * they a) read as 0, b) Trigger whatever fault mechanism
+ * the OS provides for postcopy.
+ * The pages must be unmapped by the end of the function.
+ * Returns: 0 on success, none-0 on failure
+ *
+ */
+int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
+{
+    int ret = -1;
+
+    uint8_t *host_startaddr = rb->host + start;
+
+    if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
+        error_report("ram_block_discard_range: Unaligned start address: %p",
+                     host_startaddr);
+        goto err;
+    }
+
+    if ((start + length) <= rb->max_length) {
+        bool need_madvise, need_fallocate;
+        if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
+            error_report("ram_block_discard_range: Unaligned length: %zx",
+                         length);
+            goto err;
+        }
+
+        errno = ENOTSUP; /* If we are missing MADVISE etc */
+
+        /* The logic here is messy;
+         *    madvise DONTNEED fails for hugepages
+         *    fallocate works on hugepages and shmem
+         *    shared anonymous memory requires madvise REMOVE
+         */
+        need_madvise = (rb->page_size == qemu_host_page_size);
+        need_fallocate = rb->fd != -1;
+        if (need_fallocate) {
+            /* For a file, this causes the area of the file to be zero'd
+             * if read, and for hugetlbfs also causes it to be unmapped
+             * so a userfault will trigger.
+             */
+#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
+            /*
+             * fallocate() will fail with readonly files. Let's print a
+             * proper error message.
+             */
+            if (rb->flags & RAM_READONLY_FD) {
+                error_report("ram_block_discard_range: Discarding RAM"
+                             " with readonly files is not supported");
+                goto err;
+
+            }
+            /*
+             * We'll discard data from the actual file, even though we only
+             * have a MAP_PRIVATE mapping, possibly messing with other
+             * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to
+             * change that behavior whithout violating the promised
+             * semantics of ram_block_discard_range().
+             *
+             * Only warn, because it works as long as nobody else uses that
+             * file.
+             */
+            if (!qemu_ram_is_shared(rb)) {
+                warn_report_once("ram_block_discard_range: Discarding RAM"
+                                 " in private file mappings is possibly"
+                                 " dangerous, because it will modify the"
+                                 " underlying file and will affect other"
+                                 " users of the file");
+            }
+
+            ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
+                            start, length);
+            if (ret) {
+                ret = -errno;
+                error_report("ram_block_discard_range: Failed to fallocate "
+                             "%s:%" PRIx64 " +%zx (%d)",
+                             rb->idstr, start, length, ret);
+                goto err;
+            }
+#else
+            ret = -ENOSYS;
+            error_report("ram_block_discard_range: fallocate not available/file"
+                         "%s:%" PRIx64 " +%zx (%d)",
+                         rb->idstr, start, length, ret);
+            goto err;
+#endif
+        }
+        if (need_madvise) {
+            /* For normal RAM this causes it to be unmapped,
+             * for shared memory it causes the local mapping to disappear
+             * and to fall back on the file contents (which we just
+             * fallocate'd away).
+             */
+#if defined(CONFIG_MADVISE)
+            if (qemu_ram_is_shared(rb) && rb->fd < 0) {
+                ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
+            } else {
+                ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
+            }
+            if (ret) {
+                ret = -errno;
+                error_report("ram_block_discard_range: Failed to discard range "
+                             "%s:%" PRIx64 " +%zx (%d)",
+                             rb->idstr, start, length, ret);
+                goto err;
+            }
+#else
+            ret = -ENOSYS;
+            error_report("ram_block_discard_range: MADVISE not available"
+                         "%s:%" PRIx64 " +%zx (%d)",
+                         rb->idstr, start, length, ret);
+            goto err;
+#endif
+        }
+        trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
+                                      need_madvise, need_fallocate, ret);
+    } else {
+        error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
+                     "/%zx/" RAM_ADDR_FMT")",
+                     rb->idstr, start, length, rb->max_length);
+    }
+
+err:
+    return ret;
+}
+
+bool ramblock_is_pmem(RAMBlock *rb)
+{
+    return rb->flags & RAM_PMEM;
+}
+
+static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
+{
+    if (start == end - 1) {
+        qemu_printf("\t%3d      ", start);
+    } else {
+        qemu_printf("\t%3d..%-3d ", start, end - 1);
+    }
+    qemu_printf(" skip=%d ", skip);
+    if (ptr == PHYS_MAP_NODE_NIL) {
+        qemu_printf(" ptr=NIL");
+    } else if (!skip) {
+        qemu_printf(" ptr=#%d", ptr);
+    } else {
+        qemu_printf(" ptr=[%d]", ptr);
+    }
+    qemu_printf("\n");
+}
+
+#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
+                           int128_sub((size), int128_one())) : 0)
+
+void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
+{
+    int i;
+
+    qemu_printf("  Dispatch\n");
+    qemu_printf("    Physical sections\n");
+
+    for (i = 0; i < d->map.sections_nb; ++i) {
+        MemoryRegionSection *s = d->map.sections + i;
+        const char *names[] = { " [unassigned]", " [not dirty]",
+                                " [ROM]", " [watch]" };
+
+        qemu_printf("      #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx
+                    " %s%s%s%s%s",
+            i,
+            s->offset_within_address_space,
+            s->offset_within_address_space + MR_SIZE(s->size),
+            s->mr->name ? s->mr->name : "(noname)",
+            i < ARRAY_SIZE(names) ? names[i] : "",
+            s->mr == root ? " [ROOT]" : "",
+            s == d->mru_section ? " [MRU]" : "",
+            s->mr->is_iommu ? " [iommu]" : "");
+
+        if (s->mr->alias) {
+            qemu_printf(" alias=%s", s->mr->alias->name ?
+                    s->mr->alias->name : "noname");
+        }
+        qemu_printf("\n");
+    }
+
+    qemu_printf("    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
+               P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
+    for (i = 0; i < d->map.nodes_nb; ++i) {
+        int j, jprev;
+        PhysPageEntry prev;
+        Node *n = d->map.nodes + i;
+
+        qemu_printf("      [%d]\n", i);
+
+        for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
+            PhysPageEntry *pe = *n + j;
+
+            if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
+                continue;
+            }
+
+            mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
+
+            jprev = j;
+            prev = *pe;
+        }
+
+        if (jprev != ARRAY_SIZE(*n)) {
+            mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
+        }
+    }
+}
+
+/* Require any discards to work. */
+static unsigned int ram_block_discard_required_cnt;
+/* Require only coordinated discards to work. */
+static unsigned int ram_block_coordinated_discard_required_cnt;
+/* Disable any discards. */
+static unsigned int ram_block_discard_disabled_cnt;
+/* Disable only uncoordinated discards. */
+static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
+static QemuMutex ram_block_discard_disable_mutex;
+
+static void ram_block_discard_disable_mutex_lock(void)
+{
+    static gsize initialized;
+
+    if (g_once_init_enter(&initialized)) {
+        qemu_mutex_init(&ram_block_discard_disable_mutex);
+        g_once_init_leave(&initialized, 1);
+    }
+    qemu_mutex_lock(&ram_block_discard_disable_mutex);
+}
+
+static void ram_block_discard_disable_mutex_unlock(void)
+{
+    qemu_mutex_unlock(&ram_block_discard_disable_mutex);
+}
+
+int ram_block_discard_disable(bool state)
+{
+    int ret = 0;
+
+    ram_block_discard_disable_mutex_lock();
+    if (!state) {
+        ram_block_discard_disabled_cnt--;
+    } else if (ram_block_discard_required_cnt ||
+               ram_block_coordinated_discard_required_cnt) {
+        ret = -EBUSY;
+    } else {
+        ram_block_discard_disabled_cnt++;
+    }
+    ram_block_discard_disable_mutex_unlock();
+    return ret;
+}
+
+int ram_block_uncoordinated_discard_disable(bool state)
+{
+    int ret = 0;
+
+    ram_block_discard_disable_mutex_lock();
+    if (!state) {
+        ram_block_uncoordinated_discard_disabled_cnt--;
+    } else if (ram_block_discard_required_cnt) {
+        ret = -EBUSY;
+    } else {
+        ram_block_uncoordinated_discard_disabled_cnt++;
+    }
+    ram_block_discard_disable_mutex_unlock();
+    return ret;
+}
+
+int ram_block_discard_require(bool state)
+{
+    int ret = 0;
+
+    ram_block_discard_disable_mutex_lock();
+    if (!state) {
+        ram_block_discard_required_cnt--;
+    } else if (ram_block_discard_disabled_cnt ||
+               ram_block_uncoordinated_discard_disabled_cnt) {
+        ret = -EBUSY;
+    } else {
+        ram_block_discard_required_cnt++;
+    }
+    ram_block_discard_disable_mutex_unlock();
+    return ret;
+}
+
+int ram_block_coordinated_discard_require(bool state)
+{
+    int ret = 0;
+
+    ram_block_discard_disable_mutex_lock();
+    if (!state) {
+        ram_block_coordinated_discard_required_cnt--;
+    } else if (ram_block_discard_disabled_cnt) {
+        ret = -EBUSY;
+    } else {
+        ram_block_coordinated_discard_required_cnt++;
+    }
+    ram_block_discard_disable_mutex_unlock();
+    return ret;
+}
+
+bool ram_block_discard_is_disabled(void)
+{
+    return qatomic_read(&ram_block_discard_disabled_cnt) ||
+           qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
+}
+
+bool ram_block_discard_is_required(void)
+{
+    return qatomic_read(&ram_block_discard_required_cnt) ||
+           qatomic_read(&ram_block_coordinated_discard_required_cnt);
+}