| /* |
| * MIPS emulation helpers for qemu. |
| * |
| * Copyright (c) 2004-2005 Jocelyn Mayer |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| #include <stdlib.h> |
| #include "exec.h" |
| |
| #include "host-utils.h" |
| |
| #ifdef __s390__ |
| # define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL)) |
| #else |
| # define GETPC() (__builtin_return_address(0)) |
| #endif |
| |
| /*****************************************************************************/ |
| /* Exceptions processing helpers */ |
| |
| void do_raise_exception_err (uint32_t exception, int error_code) |
| { |
| #if 1 |
| if (logfile && exception < 0x100) |
| fprintf(logfile, "%s: %d %d\n", __func__, exception, error_code); |
| #endif |
| env->exception_index = exception; |
| env->error_code = error_code; |
| T0 = 0; |
| cpu_loop_exit(); |
| } |
| |
| void do_raise_exception (uint32_t exception) |
| { |
| do_raise_exception_err(exception, 0); |
| } |
| |
| void do_restore_state (void *pc_ptr) |
| { |
| TranslationBlock *tb; |
| unsigned long pc = (unsigned long) pc_ptr; |
| |
| tb = tb_find_pc (pc); |
| cpu_restore_state (tb, env, pc, NULL); |
| } |
| |
| void do_raise_exception_direct_err (uint32_t exception, int error_code) |
| { |
| do_restore_state (GETPC ()); |
| do_raise_exception_err (exception, error_code); |
| } |
| |
| void do_raise_exception_direct (uint32_t exception) |
| { |
| do_raise_exception_direct_err (exception, 0); |
| } |
| |
| #if defined(TARGET_MIPS64) |
| #if TARGET_LONG_BITS > HOST_LONG_BITS |
| /* Those might call libgcc functions. */ |
| void do_dsll (void) |
| { |
| T0 = T0 << T1; |
| } |
| |
| void do_dsll32 (void) |
| { |
| T0 = T0 << (T1 + 32); |
| } |
| |
| void do_dsra (void) |
| { |
| T0 = (int64_t)T0 >> T1; |
| } |
| |
| void do_dsra32 (void) |
| { |
| T0 = (int64_t)T0 >> (T1 + 32); |
| } |
| |
| void do_dsrl (void) |
| { |
| T0 = T0 >> T1; |
| } |
| |
| void do_dsrl32 (void) |
| { |
| T0 = T0 >> (T1 + 32); |
| } |
| |
| void do_drotr (void) |
| { |
| target_ulong tmp; |
| |
| if (T1) { |
| tmp = T0 << (0x40 - T1); |
| T0 = (T0 >> T1) | tmp; |
| } |
| } |
| |
| void do_drotr32 (void) |
| { |
| target_ulong tmp; |
| |
| if (T1) { |
| tmp = T0 << (0x40 - (32 + T1)); |
| T0 = (T0 >> (32 + T1)) | tmp; |
| } |
| } |
| |
| void do_dsllv (void) |
| { |
| T0 = T1 << (T0 & 0x3F); |
| } |
| |
| void do_dsrav (void) |
| { |
| T0 = (int64_t)T1 >> (T0 & 0x3F); |
| } |
| |
| void do_dsrlv (void) |
| { |
| T0 = T1 >> (T0 & 0x3F); |
| } |
| |
| void do_drotrv (void) |
| { |
| target_ulong tmp; |
| |
| T0 &= 0x3F; |
| if (T0) { |
| tmp = T1 << (0x40 - T0); |
| T0 = (T1 >> T0) | tmp; |
| } else |
| T0 = T1; |
| } |
| |
| void do_dclo (void) |
| { |
| T0 = clo64(T0); |
| } |
| |
| void do_dclz (void) |
| { |
| T0 = clz64(T0); |
| } |
| |
| #endif /* TARGET_LONG_BITS > HOST_LONG_BITS */ |
| #endif /* TARGET_MIPS64 */ |
| |
| /* 64 bits arithmetic for 32 bits hosts */ |
| #if TARGET_LONG_BITS > HOST_LONG_BITS |
| static always_inline uint64_t get_HILO (void) |
| { |
| return (env->HI[0][env->current_tc] << 32) | (uint32_t)env->LO[0][env->current_tc]; |
| } |
| |
| static always_inline void set_HILO (uint64_t HILO) |
| { |
| env->LO[0][env->current_tc] = (int32_t)HILO; |
| env->HI[0][env->current_tc] = (int32_t)(HILO >> 32); |
| } |
| |
| void do_mult (void) |
| { |
| set_HILO((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1); |
| } |
| |
| void do_multu (void) |
| { |
| set_HILO((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1); |
| } |
| |
| void do_madd (void) |
| { |
| int64_t tmp; |
| |
| tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1); |
| set_HILO((int64_t)get_HILO() + tmp); |
| } |
| |
| void do_maddu (void) |
| { |
| uint64_t tmp; |
| |
| tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1); |
| set_HILO(get_HILO() + tmp); |
| } |
| |
| void do_msub (void) |
| { |
| int64_t tmp; |
| |
| tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1); |
| set_HILO((int64_t)get_HILO() - tmp); |
| } |
| |
| void do_msubu (void) |
| { |
| uint64_t tmp; |
| |
| tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1); |
| set_HILO(get_HILO() - tmp); |
| } |
| #endif |
| |
| #if HOST_LONG_BITS < 64 |
| void do_div (void) |
| { |
| /* 64bit datatypes because we may see overflow/underflow. */ |
| if (T1 != 0) { |
| env->LO[0][env->current_tc] = (int32_t)((int64_t)(int32_t)T0 / (int32_t)T1); |
| env->HI[0][env->current_tc] = (int32_t)((int64_t)(int32_t)T0 % (int32_t)T1); |
| } |
| } |
| #endif |
| |
| #if defined(TARGET_MIPS64) |
| void do_ddiv (void) |
| { |
| if (T1 != 0) { |
| lldiv_t res = lldiv((int64_t)T0, (int64_t)T1); |
| env->LO[0][env->current_tc] = res.quot; |
| env->HI[0][env->current_tc] = res.rem; |
| } |
| } |
| |
| #if TARGET_LONG_BITS > HOST_LONG_BITS |
| void do_ddivu (void) |
| { |
| if (T1 != 0) { |
| env->LO[0][env->current_tc] = T0 / T1; |
| env->HI[0][env->current_tc] = T0 % T1; |
| } |
| } |
| #endif |
| #endif /* TARGET_MIPS64 */ |
| |
| #if defined(CONFIG_USER_ONLY) |
| void do_mfc0_random (void) |
| { |
| cpu_abort(env, "mfc0 random\n"); |
| } |
| |
| void do_mfc0_count (void) |
| { |
| cpu_abort(env, "mfc0 count\n"); |
| } |
| |
| void cpu_mips_store_count(CPUState *env, uint32_t value) |
| { |
| cpu_abort(env, "mtc0 count\n"); |
| } |
| |
| void cpu_mips_store_compare(CPUState *env, uint32_t value) |
| { |
| cpu_abort(env, "mtc0 compare\n"); |
| } |
| |
| void cpu_mips_start_count(CPUState *env) |
| { |
| cpu_abort(env, "start count\n"); |
| } |
| |
| void cpu_mips_stop_count(CPUState *env) |
| { |
| cpu_abort(env, "stop count\n"); |
| } |
| |
| void cpu_mips_update_irq(CPUState *env) |
| { |
| cpu_abort(env, "mtc0 status / mtc0 cause\n"); |
| } |
| |
| void do_mtc0_status_debug(uint32_t old, uint32_t val) |
| { |
| cpu_abort(env, "mtc0 status debug\n"); |
| } |
| |
| void do_mtc0_status_irqraise_debug (void) |
| { |
| cpu_abort(env, "mtc0 status irqraise debug\n"); |
| } |
| |
| void cpu_mips_tlb_flush (CPUState *env, int flush_global) |
| { |
| cpu_abort(env, "mips_tlb_flush\n"); |
| } |
| |
| #else |
| |
| /* CP0 helpers */ |
| void do_mfc0_random (void) |
| { |
| T0 = (int32_t)cpu_mips_get_random(env); |
| } |
| |
| void do_mfc0_count (void) |
| { |
| T0 = (int32_t)cpu_mips_get_count(env); |
| } |
| |
| void do_mtc0_status_debug(uint32_t old, uint32_t val) |
| { |
| fprintf(logfile, "Status %08x (%08x) => %08x (%08x) Cause %08x", |
| old, old & env->CP0_Cause & CP0Ca_IP_mask, |
| val, val & env->CP0_Cause & CP0Ca_IP_mask, |
| env->CP0_Cause); |
| switch (env->hflags & MIPS_HFLAG_KSU) { |
| case MIPS_HFLAG_UM: fputs(", UM\n", logfile); break; |
| case MIPS_HFLAG_SM: fputs(", SM\n", logfile); break; |
| case MIPS_HFLAG_KM: fputs("\n", logfile); break; |
| default: cpu_abort(env, "Invalid MMU mode!\n"); break; |
| } |
| } |
| |
| void do_mtc0_status_irqraise_debug(void) |
| { |
| fprintf(logfile, "Raise pending IRQs\n"); |
| } |
| |
| void fpu_handle_exception(void) |
| { |
| #ifdef CONFIG_SOFTFLOAT |
| int flags = get_float_exception_flags(&env->fpu->fp_status); |
| unsigned int cpuflags = 0, enable, cause = 0; |
| |
| enable = GET_FP_ENABLE(env->fpu->fcr31); |
| |
| /* determine current flags */ |
| if (flags & float_flag_invalid) { |
| cpuflags |= FP_INVALID; |
| cause |= FP_INVALID & enable; |
| } |
| if (flags & float_flag_divbyzero) { |
| cpuflags |= FP_DIV0; |
| cause |= FP_DIV0 & enable; |
| } |
| if (flags & float_flag_overflow) { |
| cpuflags |= FP_OVERFLOW; |
| cause |= FP_OVERFLOW & enable; |
| } |
| if (flags & float_flag_underflow) { |
| cpuflags |= FP_UNDERFLOW; |
| cause |= FP_UNDERFLOW & enable; |
| } |
| if (flags & float_flag_inexact) { |
| cpuflags |= FP_INEXACT; |
| cause |= FP_INEXACT & enable; |
| } |
| SET_FP_FLAGS(env->fpu->fcr31, cpuflags); |
| SET_FP_CAUSE(env->fpu->fcr31, cause); |
| #else |
| SET_FP_FLAGS(env->fpu->fcr31, 0); |
| SET_FP_CAUSE(env->fpu->fcr31, 0); |
| #endif |
| } |
| |
| /* TLB management */ |
| void cpu_mips_tlb_flush (CPUState *env, int flush_global) |
| { |
| /* Flush qemu's TLB and discard all shadowed entries. */ |
| tlb_flush (env, flush_global); |
| env->tlb->tlb_in_use = env->tlb->nb_tlb; |
| } |
| |
| static void r4k_mips_tlb_flush_extra (CPUState *env, int first) |
| { |
| /* Discard entries from env->tlb[first] onwards. */ |
| while (env->tlb->tlb_in_use > first) { |
| r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0); |
| } |
| } |
| |
| static void r4k_fill_tlb (int idx) |
| { |
| r4k_tlb_t *tlb; |
| |
| /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */ |
| tlb = &env->tlb->mmu.r4k.tlb[idx]; |
| tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1); |
| #if defined(TARGET_MIPS64) |
| tlb->VPN &= env->SEGMask; |
| #endif |
| tlb->ASID = env->CP0_EntryHi & 0xFF; |
| tlb->PageMask = env->CP0_PageMask; |
| tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1; |
| tlb->V0 = (env->CP0_EntryLo0 & 2) != 0; |
| tlb->D0 = (env->CP0_EntryLo0 & 4) != 0; |
| tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7; |
| tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12; |
| tlb->V1 = (env->CP0_EntryLo1 & 2) != 0; |
| tlb->D1 = (env->CP0_EntryLo1 & 4) != 0; |
| tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7; |
| tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12; |
| } |
| |
| void r4k_do_tlbwi (void) |
| { |
| /* Discard cached TLB entries. We could avoid doing this if the |
| tlbwi is just upgrading access permissions on the current entry; |
| that might be a further win. */ |
| r4k_mips_tlb_flush_extra (env, env->tlb->nb_tlb); |
| |
| r4k_invalidate_tlb(env, env->CP0_Index % env->tlb->nb_tlb, 0); |
| r4k_fill_tlb(env->CP0_Index % env->tlb->nb_tlb); |
| } |
| |
| void r4k_do_tlbwr (void) |
| { |
| int r = cpu_mips_get_random(env); |
| |
| r4k_invalidate_tlb(env, r, 1); |
| r4k_fill_tlb(r); |
| } |
| |
| void r4k_do_tlbp (void) |
| { |
| r4k_tlb_t *tlb; |
| target_ulong mask; |
| target_ulong tag; |
| target_ulong VPN; |
| uint8_t ASID; |
| int i; |
| |
| ASID = env->CP0_EntryHi & 0xFF; |
| for (i = 0; i < env->tlb->nb_tlb; i++) { |
| tlb = &env->tlb->mmu.r4k.tlb[i]; |
| /* 1k pages are not supported. */ |
| mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1); |
| tag = env->CP0_EntryHi & ~mask; |
| VPN = tlb->VPN & ~mask; |
| /* Check ASID, virtual page number & size */ |
| if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) { |
| /* TLB match */ |
| env->CP0_Index = i; |
| break; |
| } |
| } |
| if (i == env->tlb->nb_tlb) { |
| /* No match. Discard any shadow entries, if any of them match. */ |
| for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) { |
| tlb = &env->tlb->mmu.r4k.tlb[i]; |
| /* 1k pages are not supported. */ |
| mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1); |
| tag = env->CP0_EntryHi & ~mask; |
| VPN = tlb->VPN & ~mask; |
| /* Check ASID, virtual page number & size */ |
| if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) { |
| r4k_mips_tlb_flush_extra (env, i); |
| break; |
| } |
| } |
| |
| env->CP0_Index |= 0x80000000; |
| } |
| } |
| |
| void r4k_do_tlbr (void) |
| { |
| r4k_tlb_t *tlb; |
| uint8_t ASID; |
| |
| ASID = env->CP0_EntryHi & 0xFF; |
| tlb = &env->tlb->mmu.r4k.tlb[env->CP0_Index % env->tlb->nb_tlb]; |
| |
| /* If this will change the current ASID, flush qemu's TLB. */ |
| if (ASID != tlb->ASID) |
| cpu_mips_tlb_flush (env, 1); |
| |
| r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb); |
| |
| env->CP0_EntryHi = tlb->VPN | tlb->ASID; |
| env->CP0_PageMask = tlb->PageMask; |
| env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) | |
| (tlb->C0 << 3) | (tlb->PFN[0] >> 6); |
| env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) | |
| (tlb->C1 << 3) | (tlb->PFN[1] >> 6); |
| } |
| |
| #endif /* !CONFIG_USER_ONLY */ |
| |
| void dump_ldst (const unsigned char *func) |
| { |
| if (loglevel) |
| fprintf(logfile, "%s => " TARGET_FMT_lx " " TARGET_FMT_lx "\n", __func__, T0, T1); |
| } |
| |
| void dump_sc (void) |
| { |
| if (loglevel) { |
| fprintf(logfile, "%s " TARGET_FMT_lx " at " TARGET_FMT_lx " (" TARGET_FMT_lx ")\n", __func__, |
| T1, T0, env->CP0_LLAddr); |
| } |
| } |
| |
| void debug_pre_eret (void) |
| { |
| fprintf(logfile, "ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx, |
| env->PC[env->current_tc], env->CP0_EPC); |
| if (env->CP0_Status & (1 << CP0St_ERL)) |
| fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC); |
| if (env->hflags & MIPS_HFLAG_DM) |
| fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC); |
| fputs("\n", logfile); |
| } |
| |
| void debug_post_eret (void) |
| { |
| fprintf(logfile, " => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx, |
| env->PC[env->current_tc], env->CP0_EPC); |
| if (env->CP0_Status & (1 << CP0St_ERL)) |
| fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC); |
| if (env->hflags & MIPS_HFLAG_DM) |
| fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC); |
| switch (env->hflags & MIPS_HFLAG_KSU) { |
| case MIPS_HFLAG_UM: fputs(", UM\n", logfile); break; |
| case MIPS_HFLAG_SM: fputs(", SM\n", logfile); break; |
| case MIPS_HFLAG_KM: fputs("\n", logfile); break; |
| default: cpu_abort(env, "Invalid MMU mode!\n"); break; |
| } |
| } |
| |
| void do_pmon (int function) |
| { |
| function /= 2; |
| switch (function) { |
| case 2: /* TODO: char inbyte(int waitflag); */ |
| if (env->gpr[4][env->current_tc] == 0) |
| env->gpr[2][env->current_tc] = -1; |
| /* Fall through */ |
| case 11: /* TODO: char inbyte (void); */ |
| env->gpr[2][env->current_tc] = -1; |
| break; |
| case 3: |
| case 12: |
| printf("%c", (char)(env->gpr[4][env->current_tc] & 0xFF)); |
| break; |
| case 17: |
| break; |
| case 158: |
| { |
| unsigned char *fmt = (void *)(unsigned long)env->gpr[4][env->current_tc]; |
| printf("%s", fmt); |
| } |
| break; |
| } |
| } |
| |
| #if !defined(CONFIG_USER_ONLY) |
| |
| static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr); |
| |
| #define MMUSUFFIX _mmu |
| #define ALIGNED_ONLY |
| |
| #define SHIFT 0 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 1 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 2 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 3 |
| #include "softmmu_template.h" |
| |
| static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr) |
| { |
| env->CP0_BadVAddr = addr; |
| do_restore_state (retaddr); |
| do_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL); |
| } |
| |
| void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr) |
| { |
| TranslationBlock *tb; |
| CPUState *saved_env; |
| unsigned long pc; |
| int ret; |
| |
| /* XXX: hack to restore env in all cases, even if not called from |
| generated code */ |
| saved_env = env; |
| env = cpu_single_env; |
| ret = cpu_mips_handle_mmu_fault(env, addr, is_write, mmu_idx, 1); |
| if (ret) { |
| if (retaddr) { |
| /* now we have a real cpu fault */ |
| pc = (unsigned long)retaddr; |
| tb = tb_find_pc(pc); |
| if (tb) { |
| /* the PC is inside the translated code. It means that we have |
| a virtual CPU fault */ |
| cpu_restore_state(tb, env, pc, NULL); |
| } |
| } |
| do_raise_exception_err(env->exception_index, env->error_code); |
| } |
| env = saved_env; |
| } |
| |
| void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec, |
| int unused) |
| { |
| if (is_exec) |
| do_raise_exception(EXCP_IBE); |
| else |
| do_raise_exception(EXCP_DBE); |
| } |
| #endif |
| |
| /* Complex FPU operations which may need stack space. */ |
| |
| #define FLOAT_ONE32 (0x3f8 << 20) |
| #define FLOAT_ONE64 (0x3ffULL << 52) |
| #define FLOAT_TWO32 (1 << 30) |
| #define FLOAT_TWO64 (1ULL << 62) |
| #define FLOAT_QNAN32 0x7fbfffff |
| #define FLOAT_QNAN64 0x7ff7ffffffffffffULL |
| #define FLOAT_SNAN32 0x7fffffff |
| #define FLOAT_SNAN64 0x7fffffffffffffffULL |
| |
| /* convert MIPS rounding mode in FCR31 to IEEE library */ |
| unsigned int ieee_rm[] = { |
| float_round_nearest_even, |
| float_round_to_zero, |
| float_round_up, |
| float_round_down |
| }; |
| |
| #define RESTORE_ROUNDING_MODE \ |
| set_float_rounding_mode(ieee_rm[env->fpu->fcr31 & 3], &env->fpu->fp_status) |
| |
| void do_cfc1 (int reg) |
| { |
| switch (reg) { |
| case 0: |
| T0 = (int32_t)env->fpu->fcr0; |
| break; |
| case 25: |
| T0 = ((env->fpu->fcr31 >> 24) & 0xfe) | ((env->fpu->fcr31 >> 23) & 0x1); |
| break; |
| case 26: |
| T0 = env->fpu->fcr31 & 0x0003f07c; |
| break; |
| case 28: |
| T0 = (env->fpu->fcr31 & 0x00000f83) | ((env->fpu->fcr31 >> 22) & 0x4); |
| break; |
| default: |
| T0 = (int32_t)env->fpu->fcr31; |
| break; |
| } |
| } |
| |
| void do_ctc1 (int reg) |
| { |
| switch(reg) { |
| case 25: |
| if (T0 & 0xffffff00) |
| return; |
| env->fpu->fcr31 = (env->fpu->fcr31 & 0x017fffff) | ((T0 & 0xfe) << 24) | |
| ((T0 & 0x1) << 23); |
| break; |
| case 26: |
| if (T0 & 0x007c0000) |
| return; |
| env->fpu->fcr31 = (env->fpu->fcr31 & 0xfffc0f83) | (T0 & 0x0003f07c); |
| break; |
| case 28: |
| if (T0 & 0x007c0000) |
| return; |
| env->fpu->fcr31 = (env->fpu->fcr31 & 0xfefff07c) | (T0 & 0x00000f83) | |
| ((T0 & 0x4) << 22); |
| break; |
| case 31: |
| if (T0 & 0x007c0000) |
| return; |
| env->fpu->fcr31 = T0; |
| break; |
| default: |
| return; |
| } |
| /* set rounding mode */ |
| RESTORE_ROUNDING_MODE; |
| set_float_exception_flags(0, &env->fpu->fp_status); |
| if ((GET_FP_ENABLE(env->fpu->fcr31) | 0x20) & GET_FP_CAUSE(env->fpu->fcr31)) |
| do_raise_exception(EXCP_FPE); |
| } |
| |
| static always_inline char ieee_ex_to_mips(char xcpt) |
| { |
| return (xcpt & float_flag_inexact) >> 5 | |
| (xcpt & float_flag_underflow) >> 3 | |
| (xcpt & float_flag_overflow) >> 1 | |
| (xcpt & float_flag_divbyzero) << 1 | |
| (xcpt & float_flag_invalid) << 4; |
| } |
| |
| static always_inline char mips_ex_to_ieee(char xcpt) |
| { |
| return (xcpt & FP_INEXACT) << 5 | |
| (xcpt & FP_UNDERFLOW) << 3 | |
| (xcpt & FP_OVERFLOW) << 1 | |
| (xcpt & FP_DIV0) >> 1 | |
| (xcpt & FP_INVALID) >> 4; |
| } |
| |
| static always_inline void update_fcr31(void) |
| { |
| int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->fpu->fp_status)); |
| |
| SET_FP_CAUSE(env->fpu->fcr31, tmp); |
| if (GET_FP_ENABLE(env->fpu->fcr31) & tmp) |
| do_raise_exception(EXCP_FPE); |
| else |
| UPDATE_FP_FLAGS(env->fpu->fcr31, tmp); |
| } |
| |
| #define FLOAT_OP(name, p) void do_float_##name##_##p(void) |
| |
| FLOAT_OP(cvtd, s) |
| { |
| set_float_exception_flags(0, &env->fpu->fp_status); |
| FDT2 = float32_to_float64(FST0, &env->fpu->fp_status); |
| update_fcr31(); |
| } |
| FLOAT_OP(cvtd, w) |
| { |
| set_float_exception_flags(0, &env->fpu->fp_status); |
| FDT2 = int32_to_float64(WT0, &env->fpu->fp_status); |
| update_fcr31(); |
| } |
| FLOAT_OP(cvtd, l) |
| { |
| set_float_exception_flags(0, &env->fpu->fp_status); |
| FDT2 = int64_to_float64(DT0, &env->fpu->fp_status); |
| update_fcr31(); |
| } |
| FLOAT_OP(cvtl, d) |
| { |
| set_float_exception_flags(0, &env->fpu->fp_status); |
| DT2 = float64_to_int64(FDT0, &env->fpu->fp_status); |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| DT2 = FLOAT_SNAN64; |
| } |
| FLOAT_OP(cvtl, s) |
| { |
| set_float_exception_flags(0, &env->fpu->fp_status); |
| DT2 = float32_to_int64(FST0, &env->fpu->fp_status); |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| DT2 = FLOAT_SNAN64; |
| } |
| |
| FLOAT_OP(cvtps, pw) |
| { |
| set_float_exception_flags(0, &env->fpu->fp_status); |
| FST2 = int32_to_float32(WT0, &env->fpu->fp_status); |
| FSTH2 = int32_to_float32(WTH0, &env->fpu->fp_status); |
| update_fcr31(); |
| } |
| FLOAT_OP(cvtpw, ps) |
| { |
| set_float_exception_flags(0, &env->fpu->fp_status); |
| WT2 = float32_to_int32(FST0, &env->fpu->fp_status); |
| WTH2 = float32_to_int32(FSTH0, &env->fpu->fp_status); |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| WT2 = FLOAT_SNAN32; |
| } |
| FLOAT_OP(cvts, d) |
| { |
| set_float_exception_flags(0, &env->fpu->fp_status); |
| FST2 = float64_to_float32(FDT0, &env->fpu->fp_status); |
| update_fcr31(); |
| } |
| FLOAT_OP(cvts, w) |
| { |
| set_float_exception_flags(0, &env->fpu->fp_status); |
| FST2 = int32_to_float32(WT0, &env->fpu->fp_status); |
| update_fcr31(); |
| } |
| FLOAT_OP(cvts, l) |
| { |
| set_float_exception_flags(0, &env->fpu->fp_status); |
| FST2 = int64_to_float32(DT0, &env->fpu->fp_status); |
| update_fcr31(); |
| } |
| FLOAT_OP(cvts, pl) |
| { |
| set_float_exception_flags(0, &env->fpu->fp_status); |
| WT2 = WT0; |
| update_fcr31(); |
| } |
| FLOAT_OP(cvts, pu) |
| { |
| set_float_exception_flags(0, &env->fpu->fp_status); |
| WT2 = WTH0; |
| update_fcr31(); |
| } |
| FLOAT_OP(cvtw, s) |
| { |
| set_float_exception_flags(0, &env->fpu->fp_status); |
| WT2 = float32_to_int32(FST0, &env->fpu->fp_status); |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| WT2 = FLOAT_SNAN32; |
| } |
| FLOAT_OP(cvtw, d) |
| { |
| set_float_exception_flags(0, &env->fpu->fp_status); |
| WT2 = float64_to_int32(FDT0, &env->fpu->fp_status); |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| WT2 = FLOAT_SNAN32; |
| } |
| |
| FLOAT_OP(roundl, d) |
| { |
| set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status); |
| DT2 = float64_to_int64(FDT0, &env->fpu->fp_status); |
| RESTORE_ROUNDING_MODE; |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| DT2 = FLOAT_SNAN64; |
| } |
| FLOAT_OP(roundl, s) |
| { |
| set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status); |
| DT2 = float32_to_int64(FST0, &env->fpu->fp_status); |
| RESTORE_ROUNDING_MODE; |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| DT2 = FLOAT_SNAN64; |
| } |
| FLOAT_OP(roundw, d) |
| { |
| set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status); |
| WT2 = float64_to_int32(FDT0, &env->fpu->fp_status); |
| RESTORE_ROUNDING_MODE; |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| WT2 = FLOAT_SNAN32; |
| } |
| FLOAT_OP(roundw, s) |
| { |
| set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status); |
| WT2 = float32_to_int32(FST0, &env->fpu->fp_status); |
| RESTORE_ROUNDING_MODE; |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| WT2 = FLOAT_SNAN32; |
| } |
| |
| FLOAT_OP(truncl, d) |
| { |
| DT2 = float64_to_int64_round_to_zero(FDT0, &env->fpu->fp_status); |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| DT2 = FLOAT_SNAN64; |
| } |
| FLOAT_OP(truncl, s) |
| { |
| DT2 = float32_to_int64_round_to_zero(FST0, &env->fpu->fp_status); |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| DT2 = FLOAT_SNAN64; |
| } |
| FLOAT_OP(truncw, d) |
| { |
| WT2 = float64_to_int32_round_to_zero(FDT0, &env->fpu->fp_status); |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| WT2 = FLOAT_SNAN32; |
| } |
| FLOAT_OP(truncw, s) |
| { |
| WT2 = float32_to_int32_round_to_zero(FST0, &env->fpu->fp_status); |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| WT2 = FLOAT_SNAN32; |
| } |
| |
| FLOAT_OP(ceill, d) |
| { |
| set_float_rounding_mode(float_round_up, &env->fpu->fp_status); |
| DT2 = float64_to_int64(FDT0, &env->fpu->fp_status); |
| RESTORE_ROUNDING_MODE; |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| DT2 = FLOAT_SNAN64; |
| } |
| FLOAT_OP(ceill, s) |
| { |
| set_float_rounding_mode(float_round_up, &env->fpu->fp_status); |
| DT2 = float32_to_int64(FST0, &env->fpu->fp_status); |
| RESTORE_ROUNDING_MODE; |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| DT2 = FLOAT_SNAN64; |
| } |
| FLOAT_OP(ceilw, d) |
| { |
| set_float_rounding_mode(float_round_up, &env->fpu->fp_status); |
| WT2 = float64_to_int32(FDT0, &env->fpu->fp_status); |
| RESTORE_ROUNDING_MODE; |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| WT2 = FLOAT_SNAN32; |
| } |
| FLOAT_OP(ceilw, s) |
| { |
| set_float_rounding_mode(float_round_up, &env->fpu->fp_status); |
| WT2 = float32_to_int32(FST0, &env->fpu->fp_status); |
| RESTORE_ROUNDING_MODE; |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| WT2 = FLOAT_SNAN32; |
| } |
| |
| FLOAT_OP(floorl, d) |
| { |
| set_float_rounding_mode(float_round_down, &env->fpu->fp_status); |
| DT2 = float64_to_int64(FDT0, &env->fpu->fp_status); |
| RESTORE_ROUNDING_MODE; |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| DT2 = FLOAT_SNAN64; |
| } |
| FLOAT_OP(floorl, s) |
| { |
| set_float_rounding_mode(float_round_down, &env->fpu->fp_status); |
| DT2 = float32_to_int64(FST0, &env->fpu->fp_status); |
| RESTORE_ROUNDING_MODE; |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| DT2 = FLOAT_SNAN64; |
| } |
| FLOAT_OP(floorw, d) |
| { |
| set_float_rounding_mode(float_round_down, &env->fpu->fp_status); |
| WT2 = float64_to_int32(FDT0, &env->fpu->fp_status); |
| RESTORE_ROUNDING_MODE; |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| WT2 = FLOAT_SNAN32; |
| } |
| FLOAT_OP(floorw, s) |
| { |
| set_float_rounding_mode(float_round_down, &env->fpu->fp_status); |
| WT2 = float32_to_int32(FST0, &env->fpu->fp_status); |
| RESTORE_ROUNDING_MODE; |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| WT2 = FLOAT_SNAN32; |
| } |
| |
| /* MIPS specific unary operations */ |
| FLOAT_OP(recip, d) |
| { |
| set_float_exception_flags(0, &env->fpu->fp_status); |
| FDT2 = float64_div(FLOAT_ONE64, FDT0, &env->fpu->fp_status); |
| update_fcr31(); |
| } |
| FLOAT_OP(recip, s) |
| { |
| set_float_exception_flags(0, &env->fpu->fp_status); |
| FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status); |
| update_fcr31(); |
| } |
| |
| FLOAT_OP(rsqrt, d) |
| { |
| set_float_exception_flags(0, &env->fpu->fp_status); |
| FDT2 = float64_sqrt(FDT0, &env->fpu->fp_status); |
| FDT2 = float64_div(FLOAT_ONE64, FDT2, &env->fpu->fp_status); |
| update_fcr31(); |
| } |
| FLOAT_OP(rsqrt, s) |
| { |
| set_float_exception_flags(0, &env->fpu->fp_status); |
| FST2 = float32_sqrt(FST0, &env->fpu->fp_status); |
| FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status); |
| update_fcr31(); |
| } |
| |
| FLOAT_OP(recip1, d) |
| { |
| set_float_exception_flags(0, &env->fpu->fp_status); |
| FDT2 = float64_div(FLOAT_ONE64, FDT0, &env->fpu->fp_status); |
| update_fcr31(); |
| } |
| FLOAT_OP(recip1, s) |
| { |
| set_float_exception_flags(0, &env->fpu->fp_status); |
| FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status); |
| update_fcr31(); |
| } |
| FLOAT_OP(recip1, ps) |
| { |
| set_float_exception_flags(0, &env->fpu->fp_status); |
| FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status); |
| FSTH2 = float32_div(FLOAT_ONE32, FSTH0, &env->fpu->fp_status); |
| update_fcr31(); |
| } |
| |
| FLOAT_OP(rsqrt1, d) |
| { |
| set_float_exception_flags(0, &env->fpu->fp_status); |
| FDT2 = float64_sqrt(FDT0, &env->fpu->fp_status); |
| FDT2 = float64_div(FLOAT_ONE64, FDT2, &env->fpu->fp_status); |
| update_fcr31(); |
| } |
| FLOAT_OP(rsqrt1, s) |
| { |
| set_float_exception_flags(0, &env->fpu->fp_status); |
| FST2 = float32_sqrt(FST0, &env->fpu->fp_status); |
| FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status); |
| update_fcr31(); |
| } |
| FLOAT_OP(rsqrt1, ps) |
| { |
| set_float_exception_flags(0, &env->fpu->fp_status); |
| FST2 = float32_sqrt(FST0, &env->fpu->fp_status); |
| FSTH2 = float32_sqrt(FSTH0, &env->fpu->fp_status); |
| FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status); |
| FSTH2 = float32_div(FLOAT_ONE32, FSTH2, &env->fpu->fp_status); |
| update_fcr31(); |
| } |
| |
| /* binary operations */ |
| #define FLOAT_BINOP(name) \ |
| FLOAT_OP(name, d) \ |
| { \ |
| set_float_exception_flags(0, &env->fpu->fp_status); \ |
| FDT2 = float64_ ## name (FDT0, FDT1, &env->fpu->fp_status); \ |
| update_fcr31(); \ |
| if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID) \ |
| DT2 = FLOAT_QNAN64; \ |
| } \ |
| FLOAT_OP(name, s) \ |
| { \ |
| set_float_exception_flags(0, &env->fpu->fp_status); \ |
| FST2 = float32_ ## name (FST0, FST1, &env->fpu->fp_status); \ |
| update_fcr31(); \ |
| if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID) \ |
| WT2 = FLOAT_QNAN32; \ |
| } \ |
| FLOAT_OP(name, ps) \ |
| { \ |
| set_float_exception_flags(0, &env->fpu->fp_status); \ |
| FST2 = float32_ ## name (FST0, FST1, &env->fpu->fp_status); \ |
| FSTH2 = float32_ ## name (FSTH0, FSTH1, &env->fpu->fp_status); \ |
| update_fcr31(); \ |
| if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID) { \ |
| WT2 = FLOAT_QNAN32; \ |
| WTH2 = FLOAT_QNAN32; \ |
| } \ |
| } |
| FLOAT_BINOP(add) |
| FLOAT_BINOP(sub) |
| FLOAT_BINOP(mul) |
| FLOAT_BINOP(div) |
| #undef FLOAT_BINOP |
| |
| /* MIPS specific binary operations */ |
| FLOAT_OP(recip2, d) |
| { |
| set_float_exception_flags(0, &env->fpu->fp_status); |
| FDT2 = float64_mul(FDT0, FDT2, &env->fpu->fp_status); |
| FDT2 = float64_chs(float64_sub(FDT2, FLOAT_ONE64, &env->fpu->fp_status)); |
| update_fcr31(); |
| } |
| FLOAT_OP(recip2, s) |
| { |
| set_float_exception_flags(0, &env->fpu->fp_status); |
| FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status); |
| FST2 = float32_chs(float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status)); |
| update_fcr31(); |
| } |
| FLOAT_OP(recip2, ps) |
| { |
| set_float_exception_flags(0, &env->fpu->fp_status); |
| FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status); |
| FSTH2 = float32_mul(FSTH0, FSTH2, &env->fpu->fp_status); |
| FST2 = float32_chs(float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status)); |
| FSTH2 = float32_chs(float32_sub(FSTH2, FLOAT_ONE32, &env->fpu->fp_status)); |
| update_fcr31(); |
| } |
| |
| FLOAT_OP(rsqrt2, d) |
| { |
| set_float_exception_flags(0, &env->fpu->fp_status); |
| FDT2 = float64_mul(FDT0, FDT2, &env->fpu->fp_status); |
| FDT2 = float64_sub(FDT2, FLOAT_ONE64, &env->fpu->fp_status); |
| FDT2 = float64_chs(float64_div(FDT2, FLOAT_TWO64, &env->fpu->fp_status)); |
| update_fcr31(); |
| } |
| FLOAT_OP(rsqrt2, s) |
| { |
| set_float_exception_flags(0, &env->fpu->fp_status); |
| FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status); |
| FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status); |
| FST2 = float32_chs(float32_div(FST2, FLOAT_TWO32, &env->fpu->fp_status)); |
| update_fcr31(); |
| } |
| FLOAT_OP(rsqrt2, ps) |
| { |
| set_float_exception_flags(0, &env->fpu->fp_status); |
| FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status); |
| FSTH2 = float32_mul(FSTH0, FSTH2, &env->fpu->fp_status); |
| FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status); |
| FSTH2 = float32_sub(FSTH2, FLOAT_ONE32, &env->fpu->fp_status); |
| FST2 = float32_chs(float32_div(FST2, FLOAT_TWO32, &env->fpu->fp_status)); |
| FSTH2 = float32_chs(float32_div(FSTH2, FLOAT_TWO32, &env->fpu->fp_status)); |
| update_fcr31(); |
| } |
| |
| FLOAT_OP(addr, ps) |
| { |
| set_float_exception_flags(0, &env->fpu->fp_status); |
| FST2 = float32_add (FST0, FSTH0, &env->fpu->fp_status); |
| FSTH2 = float32_add (FST1, FSTH1, &env->fpu->fp_status); |
| update_fcr31(); |
| } |
| |
| FLOAT_OP(mulr, ps) |
| { |
| set_float_exception_flags(0, &env->fpu->fp_status); |
| FST2 = float32_mul (FST0, FSTH0, &env->fpu->fp_status); |
| FSTH2 = float32_mul (FST1, FSTH1, &env->fpu->fp_status); |
| update_fcr31(); |
| } |
| |
| /* compare operations */ |
| #define FOP_COND_D(op, cond) \ |
| void do_cmp_d_ ## op (long cc) \ |
| { \ |
| int c = cond; \ |
| update_fcr31(); \ |
| if (c) \ |
| SET_FP_COND(cc, env->fpu); \ |
| else \ |
| CLEAR_FP_COND(cc, env->fpu); \ |
| } \ |
| void do_cmpabs_d_ ## op (long cc) \ |
| { \ |
| int c; \ |
| FDT0 = float64_chs(FDT0); \ |
| FDT1 = float64_chs(FDT1); \ |
| c = cond; \ |
| update_fcr31(); \ |
| if (c) \ |
| SET_FP_COND(cc, env->fpu); \ |
| else \ |
| CLEAR_FP_COND(cc, env->fpu); \ |
| } |
| |
| int float64_is_unordered(int sig, float64 a, float64 b STATUS_PARAM) |
| { |
| if (float64_is_signaling_nan(a) || |
| float64_is_signaling_nan(b) || |
| (sig && (float64_is_nan(a) || float64_is_nan(b)))) { |
| float_raise(float_flag_invalid, status); |
| return 1; |
| } else if (float64_is_nan(a) || float64_is_nan(b)) { |
| return 1; |
| } else { |
| return 0; |
| } |
| } |
| |
| /* NOTE: the comma operator will make "cond" to eval to false, |
| * but float*_is_unordered() is still called. */ |
| FOP_COND_D(f, (float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status), 0)) |
| FOP_COND_D(un, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status)) |
| FOP_COND_D(eq, !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_eq(FDT0, FDT1, &env->fpu->fp_status)) |
| FOP_COND_D(ueq, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) || float64_eq(FDT0, FDT1, &env->fpu->fp_status)) |
| FOP_COND_D(olt, !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_lt(FDT0, FDT1, &env->fpu->fp_status)) |
| FOP_COND_D(ult, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) || float64_lt(FDT0, FDT1, &env->fpu->fp_status)) |
| FOP_COND_D(ole, !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_le(FDT0, FDT1, &env->fpu->fp_status)) |
| FOP_COND_D(ule, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) || float64_le(FDT0, FDT1, &env->fpu->fp_status)) |
| /* NOTE: the comma operator will make "cond" to eval to false, |
| * but float*_is_unordered() is still called. */ |
| FOP_COND_D(sf, (float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status), 0)) |
| FOP_COND_D(ngle,float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status)) |
| FOP_COND_D(seq, !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_eq(FDT0, FDT1, &env->fpu->fp_status)) |
| FOP_COND_D(ngl, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) || float64_eq(FDT0, FDT1, &env->fpu->fp_status)) |
| FOP_COND_D(lt, !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_lt(FDT0, FDT1, &env->fpu->fp_status)) |
| FOP_COND_D(nge, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) || float64_lt(FDT0, FDT1, &env->fpu->fp_status)) |
| FOP_COND_D(le, !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_le(FDT0, FDT1, &env->fpu->fp_status)) |
| FOP_COND_D(ngt, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) || float64_le(FDT0, FDT1, &env->fpu->fp_status)) |
| |
| #define FOP_COND_S(op, cond) \ |
| void do_cmp_s_ ## op (long cc) \ |
| { \ |
| int c = cond; \ |
| update_fcr31(); \ |
| if (c) \ |
| SET_FP_COND(cc, env->fpu); \ |
| else \ |
| CLEAR_FP_COND(cc, env->fpu); \ |
| } \ |
| void do_cmpabs_s_ ## op (long cc) \ |
| { \ |
| int c; \ |
| FST0 = float32_abs(FST0); \ |
| FST1 = float32_abs(FST1); \ |
| c = cond; \ |
| update_fcr31(); \ |
| if (c) \ |
| SET_FP_COND(cc, env->fpu); \ |
| else \ |
| CLEAR_FP_COND(cc, env->fpu); \ |
| } |
| |
| flag float32_is_unordered(int sig, float32 a, float32 b STATUS_PARAM) |
| { |
| if (float32_is_signaling_nan(a) || |
| float32_is_signaling_nan(b) || |
| (sig && (float32_is_nan(a) || float32_is_nan(b)))) { |
| float_raise(float_flag_invalid, status); |
| return 1; |
| } else if (float32_is_nan(a) || float32_is_nan(b)) { |
| return 1; |
| } else { |
| return 0; |
| } |
| } |
| |
| /* NOTE: the comma operator will make "cond" to eval to false, |
| * but float*_is_unordered() is still called. */ |
| FOP_COND_S(f, (float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status), 0)) |
| FOP_COND_S(un, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)) |
| FOP_COND_S(eq, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status)) |
| FOP_COND_S(ueq, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_eq(FST0, FST1, &env->fpu->fp_status)) |
| FOP_COND_S(olt, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status)) |
| FOP_COND_S(ult, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_lt(FST0, FST1, &env->fpu->fp_status)) |
| FOP_COND_S(ole, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status)) |
| FOP_COND_S(ule, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_le(FST0, FST1, &env->fpu->fp_status)) |
| /* NOTE: the comma operator will make "cond" to eval to false, |
| * but float*_is_unordered() is still called. */ |
| FOP_COND_S(sf, (float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status), 0)) |
| FOP_COND_S(ngle,float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)) |
| FOP_COND_S(seq, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status)) |
| FOP_COND_S(ngl, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_eq(FST0, FST1, &env->fpu->fp_status)) |
| FOP_COND_S(lt, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status)) |
| FOP_COND_S(nge, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_lt(FST0, FST1, &env->fpu->fp_status)) |
| FOP_COND_S(le, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status)) |
| FOP_COND_S(ngt, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_le(FST0, FST1, &env->fpu->fp_status)) |
| |
| #define FOP_COND_PS(op, condl, condh) \ |
| void do_cmp_ps_ ## op (long cc) \ |
| { \ |
| int cl = condl; \ |
| int ch = condh; \ |
| update_fcr31(); \ |
| if (cl) \ |
| SET_FP_COND(cc, env->fpu); \ |
| else \ |
| CLEAR_FP_COND(cc, env->fpu); \ |
| if (ch) \ |
| SET_FP_COND(cc + 1, env->fpu); \ |
| else \ |
| CLEAR_FP_COND(cc + 1, env->fpu); \ |
| } \ |
| void do_cmpabs_ps_ ## op (long cc) \ |
| { \ |
| int cl, ch; \ |
| FST0 = float32_abs(FST0); \ |
| FSTH0 = float32_abs(FSTH0); \ |
| FST1 = float32_abs(FST1); \ |
| FSTH1 = float32_abs(FSTH1); \ |
| cl = condl; \ |
| ch = condh; \ |
| update_fcr31(); \ |
| if (cl) \ |
| SET_FP_COND(cc, env->fpu); \ |
| else \ |
| CLEAR_FP_COND(cc, env->fpu); \ |
| if (ch) \ |
| SET_FP_COND(cc + 1, env->fpu); \ |
| else \ |
| CLEAR_FP_COND(cc + 1, env->fpu); \ |
| } |
| |
| /* NOTE: the comma operator will make "cond" to eval to false, |
| * but float*_is_unordered() is still called. */ |
| FOP_COND_PS(f, (float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status), 0), |
| (float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status), 0)) |
| FOP_COND_PS(un, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status), |
| float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status)) |
| FOP_COND_PS(eq, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status), |
| !float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_eq(FSTH0, FSTH1, &env->fpu->fp_status)) |
| FOP_COND_PS(ueq, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_eq(FST0, FST1, &env->fpu->fp_status), |
| float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) || float32_eq(FSTH0, FSTH1, &env->fpu->fp_status)) |
| FOP_COND_PS(olt, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status), |
| !float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_lt(FSTH0, FSTH1, &env->fpu->fp_status)) |
| FOP_COND_PS(ult, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_lt(FST0, FST1, &env->fpu->fp_status), |
| float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) || float32_lt(FSTH0, FSTH1, &env->fpu->fp_status)) |
| FOP_COND_PS(ole, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status), |
| !float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_le(FSTH0, FSTH1, &env->fpu->fp_status)) |
| FOP_COND_PS(ule, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_le(FST0, FST1, &env->fpu->fp_status), |
| float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) || float32_le(FSTH0, FSTH1, &env->fpu->fp_status)) |
| /* NOTE: the comma operator will make "cond" to eval to false, |
| * but float*_is_unordered() is still called. */ |
| FOP_COND_PS(sf, (float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status), 0), |
| (float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status), 0)) |
| FOP_COND_PS(ngle,float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status), |
| float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status)) |
| FOP_COND_PS(seq, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status), |
| !float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_eq(FSTH0, FSTH1, &env->fpu->fp_status)) |
| FOP_COND_PS(ngl, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_eq(FST0, FST1, &env->fpu->fp_status), |
| float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) || float32_eq(FSTH0, FSTH1, &env->fpu->fp_status)) |
| FOP_COND_PS(lt, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status), |
| !float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_lt(FSTH0, FSTH1, &env->fpu->fp_status)) |
| FOP_COND_PS(nge, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_lt(FST0, FST1, &env->fpu->fp_status), |
| float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) || float32_lt(FSTH0, FSTH1, &env->fpu->fp_status)) |
| FOP_COND_PS(le, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status), |
| !float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_le(FSTH0, FSTH1, &env->fpu->fp_status)) |
| FOP_COND_PS(ngt, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_le(FST0, FST1, &env->fpu->fp_status), |
| float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) || float32_le(FSTH0, FSTH1, &env->fpu->fp_status)) |