| /* |
| * QEMU AHCI Emulation |
| * |
| * Copyright (c) 2010 qiaochong@loongson.cn |
| * Copyright (c) 2010 Roland Elek <elek.roland@gmail.com> |
| * Copyright (c) 2010 Sebastian Herbszt <herbszt@gmx.de> |
| * Copyright (c) 2010 Alexander Graf <agraf@suse.de> |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| * |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "hw/irq.h" |
| #include "hw/pci/msi.h" |
| #include "hw/pci/pci.h" |
| #include "hw/qdev-properties.h" |
| #include "migration/vmstate.h" |
| |
| #include "qemu/error-report.h" |
| #include "qemu/log.h" |
| #include "qemu/main-loop.h" |
| #include "qemu/module.h" |
| #include "sysemu/block-backend.h" |
| #include "sysemu/dma.h" |
| #include "hw/ide/pci.h" |
| #include "hw/ide/ahci-pci.h" |
| #include "hw/ide/ahci-sysbus.h" |
| #include "ahci_internal.h" |
| #include "ide-internal.h" |
| |
| #include "trace.h" |
| |
| static void check_cmd(AHCIState *s, int port); |
| static void handle_cmd(AHCIState *s, int port, uint8_t slot); |
| static void ahci_reset_port(AHCIState *s, int port); |
| static bool ahci_write_fis_d2h(AHCIDevice *ad, bool d2h_fis_i); |
| static void ahci_clear_cmd_issue(AHCIDevice *ad, uint8_t slot); |
| static void ahci_init_d2h(AHCIDevice *ad); |
| static int ahci_dma_prepare_buf(const IDEDMA *dma, int32_t limit); |
| static bool ahci_map_clb_address(AHCIDevice *ad); |
| static bool ahci_map_fis_address(AHCIDevice *ad); |
| static void ahci_unmap_clb_address(AHCIDevice *ad); |
| static void ahci_unmap_fis_address(AHCIDevice *ad); |
| |
| static const char *AHCIHostReg_lookup[AHCI_HOST_REG__COUNT] = { |
| [AHCI_HOST_REG_CAP] = "CAP", |
| [AHCI_HOST_REG_CTL] = "GHC", |
| [AHCI_HOST_REG_IRQ_STAT] = "IS", |
| [AHCI_HOST_REG_PORTS_IMPL] = "PI", |
| [AHCI_HOST_REG_VERSION] = "VS", |
| [AHCI_HOST_REG_CCC_CTL] = "CCC_CTL", |
| [AHCI_HOST_REG_CCC_PORTS] = "CCC_PORTS", |
| [AHCI_HOST_REG_EM_LOC] = "EM_LOC", |
| [AHCI_HOST_REG_EM_CTL] = "EM_CTL", |
| [AHCI_HOST_REG_CAP2] = "CAP2", |
| [AHCI_HOST_REG_BOHC] = "BOHC", |
| }; |
| |
| static const char *AHCIPortReg_lookup[AHCI_PORT_REG__COUNT] = { |
| [AHCI_PORT_REG_LST_ADDR] = "PxCLB", |
| [AHCI_PORT_REG_LST_ADDR_HI] = "PxCLBU", |
| [AHCI_PORT_REG_FIS_ADDR] = "PxFB", |
| [AHCI_PORT_REG_FIS_ADDR_HI] = "PxFBU", |
| [AHCI_PORT_REG_IRQ_STAT] = "PxIS", |
| [AHCI_PORT_REG_IRQ_MASK] = "PXIE", |
| [AHCI_PORT_REG_CMD] = "PxCMD", |
| [7] = "Reserved", |
| [AHCI_PORT_REG_TFDATA] = "PxTFD", |
| [AHCI_PORT_REG_SIG] = "PxSIG", |
| [AHCI_PORT_REG_SCR_STAT] = "PxSSTS", |
| [AHCI_PORT_REG_SCR_CTL] = "PxSCTL", |
| [AHCI_PORT_REG_SCR_ERR] = "PxSERR", |
| [AHCI_PORT_REG_SCR_ACT] = "PxSACT", |
| [AHCI_PORT_REG_CMD_ISSUE] = "PxCI", |
| [AHCI_PORT_REG_SCR_NOTIF] = "PxSNTF", |
| [AHCI_PORT_REG_FIS_CTL] = "PxFBS", |
| [AHCI_PORT_REG_DEV_SLEEP] = "PxDEVSLP", |
| [18 ... 27] = "Reserved", |
| [AHCI_PORT_REG_VENDOR_1 ... |
| AHCI_PORT_REG_VENDOR_4] = "PxVS", |
| }; |
| |
| static const char *AHCIPortIRQ_lookup[AHCI_PORT_IRQ__COUNT] = { |
| [AHCI_PORT_IRQ_BIT_DHRS] = "DHRS", |
| [AHCI_PORT_IRQ_BIT_PSS] = "PSS", |
| [AHCI_PORT_IRQ_BIT_DSS] = "DSS", |
| [AHCI_PORT_IRQ_BIT_SDBS] = "SDBS", |
| [AHCI_PORT_IRQ_BIT_UFS] = "UFS", |
| [AHCI_PORT_IRQ_BIT_DPS] = "DPS", |
| [AHCI_PORT_IRQ_BIT_PCS] = "PCS", |
| [AHCI_PORT_IRQ_BIT_DMPS] = "DMPS", |
| [8 ... 21] = "RESERVED", |
| [AHCI_PORT_IRQ_BIT_PRCS] = "PRCS", |
| [AHCI_PORT_IRQ_BIT_IPMS] = "IPMS", |
| [AHCI_PORT_IRQ_BIT_OFS] = "OFS", |
| [25] = "RESERVED", |
| [AHCI_PORT_IRQ_BIT_INFS] = "INFS", |
| [AHCI_PORT_IRQ_BIT_IFS] = "IFS", |
| [AHCI_PORT_IRQ_BIT_HBDS] = "HBDS", |
| [AHCI_PORT_IRQ_BIT_HBFS] = "HBFS", |
| [AHCI_PORT_IRQ_BIT_TFES] = "TFES", |
| [AHCI_PORT_IRQ_BIT_CPDS] = "CPDS" |
| }; |
| |
| static uint32_t ahci_port_read(AHCIState *s, int port, int offset) |
| { |
| uint32_t val; |
| AHCIPortRegs *pr = &s->dev[port].port_regs; |
| enum AHCIPortReg regnum = offset / sizeof(uint32_t); |
| assert(regnum < (AHCI_PORT_ADDR_OFFSET_LEN / sizeof(uint32_t))); |
| |
| switch (regnum) { |
| case AHCI_PORT_REG_LST_ADDR: |
| val = pr->lst_addr; |
| break; |
| case AHCI_PORT_REG_LST_ADDR_HI: |
| val = pr->lst_addr_hi; |
| break; |
| case AHCI_PORT_REG_FIS_ADDR: |
| val = pr->fis_addr; |
| break; |
| case AHCI_PORT_REG_FIS_ADDR_HI: |
| val = pr->fis_addr_hi; |
| break; |
| case AHCI_PORT_REG_IRQ_STAT: |
| val = pr->irq_stat; |
| break; |
| case AHCI_PORT_REG_IRQ_MASK: |
| val = pr->irq_mask; |
| break; |
| case AHCI_PORT_REG_CMD: |
| val = pr->cmd; |
| break; |
| case AHCI_PORT_REG_TFDATA: |
| val = pr->tfdata; |
| break; |
| case AHCI_PORT_REG_SIG: |
| val = pr->sig; |
| break; |
| case AHCI_PORT_REG_SCR_STAT: |
| if (s->dev[port].port.ifs[0].blk) { |
| val = SATA_SCR_SSTATUS_DET_DEV_PRESENT_PHY_UP | |
| SATA_SCR_SSTATUS_SPD_GEN1 | SATA_SCR_SSTATUS_IPM_ACTIVE; |
| } else { |
| val = SATA_SCR_SSTATUS_DET_NODEV; |
| } |
| break; |
| case AHCI_PORT_REG_SCR_CTL: |
| val = pr->scr_ctl; |
| break; |
| case AHCI_PORT_REG_SCR_ERR: |
| val = pr->scr_err; |
| break; |
| case AHCI_PORT_REG_SCR_ACT: |
| val = pr->scr_act; |
| break; |
| case AHCI_PORT_REG_CMD_ISSUE: |
| val = pr->cmd_issue; |
| break; |
| default: |
| trace_ahci_port_read_default(s, port, AHCIPortReg_lookup[regnum], |
| offset); |
| val = 0; |
| } |
| |
| trace_ahci_port_read(s, port, AHCIPortReg_lookup[regnum], offset, val); |
| return val; |
| } |
| |
| static void ahci_irq_raise(AHCIState *s) |
| { |
| DeviceState *dev_state = s->container; |
| PCIDevice *pci_dev = (PCIDevice *) object_dynamic_cast(OBJECT(dev_state), |
| TYPE_PCI_DEVICE); |
| |
| trace_ahci_irq_raise(s); |
| |
| if (pci_dev && msi_enabled(pci_dev)) { |
| msi_notify(pci_dev, 0); |
| } else { |
| qemu_irq_raise(s->irq); |
| } |
| } |
| |
| static void ahci_irq_lower(AHCIState *s) |
| { |
| DeviceState *dev_state = s->container; |
| PCIDevice *pci_dev = (PCIDevice *) object_dynamic_cast(OBJECT(dev_state), |
| TYPE_PCI_DEVICE); |
| |
| trace_ahci_irq_lower(s); |
| |
| if (!pci_dev || !msi_enabled(pci_dev)) { |
| qemu_irq_lower(s->irq); |
| } |
| } |
| |
| static void ahci_check_irq(AHCIState *s) |
| { |
| int i; |
| uint32_t old_irq = s->control_regs.irqstatus; |
| |
| s->control_regs.irqstatus = 0; |
| for (i = 0; i < s->ports; i++) { |
| AHCIPortRegs *pr = &s->dev[i].port_regs; |
| if (pr->irq_stat & pr->irq_mask) { |
| s->control_regs.irqstatus |= (1 << i); |
| } |
| } |
| trace_ahci_check_irq(s, old_irq, s->control_regs.irqstatus); |
| if (s->control_regs.irqstatus && |
| (s->control_regs.ghc & HOST_CTL_IRQ_EN)) { |
| ahci_irq_raise(s); |
| } else { |
| ahci_irq_lower(s); |
| } |
| } |
| |
| static void ahci_trigger_irq(AHCIState *s, AHCIDevice *d, |
| enum AHCIPortIRQ irqbit) |
| { |
| g_assert((unsigned)irqbit < 32); |
| uint32_t irq = 1U << irqbit; |
| uint32_t irqstat = d->port_regs.irq_stat | irq; |
| |
| trace_ahci_trigger_irq(s, d->port_no, |
| AHCIPortIRQ_lookup[irqbit], irq, |
| d->port_regs.irq_stat, irqstat, |
| irqstat & d->port_regs.irq_mask); |
| |
| d->port_regs.irq_stat = irqstat; |
| ahci_check_irq(s); |
| } |
| |
| static void map_page(AddressSpace *as, uint8_t **ptr, uint64_t addr, |
| uint32_t wanted) |
| { |
| hwaddr len = wanted; |
| |
| if (*ptr) { |
| dma_memory_unmap(as, *ptr, len, DMA_DIRECTION_FROM_DEVICE, len); |
| } |
| |
| *ptr = dma_memory_map(as, addr, &len, DMA_DIRECTION_FROM_DEVICE, |
| MEMTXATTRS_UNSPECIFIED); |
| if (len < wanted && *ptr) { |
| dma_memory_unmap(as, *ptr, len, DMA_DIRECTION_FROM_DEVICE, len); |
| *ptr = NULL; |
| } |
| } |
| |
| /** |
| * Check the cmd register to see if we should start or stop |
| * the DMA or FIS RX engines. |
| * |
| * @ad: Device to dis/engage. |
| * |
| * @return 0 on success, -1 on error. |
| */ |
| static int ahci_cond_start_engines(AHCIDevice *ad) |
| { |
| AHCIPortRegs *pr = &ad->port_regs; |
| bool cmd_start = pr->cmd & PORT_CMD_START; |
| bool cmd_on = pr->cmd & PORT_CMD_LIST_ON; |
| bool fis_start = pr->cmd & PORT_CMD_FIS_RX; |
| bool fis_on = pr->cmd & PORT_CMD_FIS_ON; |
| |
| if (cmd_start && !cmd_on) { |
| if (!ahci_map_clb_address(ad)) { |
| pr->cmd &= ~PORT_CMD_START; |
| error_report("AHCI: Failed to start DMA engine: " |
| "bad command list buffer address"); |
| return -1; |
| } |
| } else if (!cmd_start && cmd_on) { |
| ahci_unmap_clb_address(ad); |
| } |
| |
| if (fis_start && !fis_on) { |
| if (!ahci_map_fis_address(ad)) { |
| pr->cmd &= ~PORT_CMD_FIS_RX; |
| error_report("AHCI: Failed to start FIS receive engine: " |
| "bad FIS receive buffer address"); |
| return -1; |
| } |
| } else if (!fis_start && fis_on) { |
| ahci_unmap_fis_address(ad); |
| } |
| |
| return 0; |
| } |
| |
| static void ahci_port_write(AHCIState *s, int port, int offset, uint32_t val) |
| { |
| AHCIPortRegs *pr = &s->dev[port].port_regs; |
| enum AHCIPortReg regnum = offset / sizeof(uint32_t); |
| assert(regnum < (AHCI_PORT_ADDR_OFFSET_LEN / sizeof(uint32_t))); |
| trace_ahci_port_write(s, port, AHCIPortReg_lookup[regnum], offset, val); |
| |
| switch (regnum) { |
| case AHCI_PORT_REG_LST_ADDR: |
| pr->lst_addr = val; |
| break; |
| case AHCI_PORT_REG_LST_ADDR_HI: |
| pr->lst_addr_hi = val; |
| break; |
| case AHCI_PORT_REG_FIS_ADDR: |
| pr->fis_addr = val; |
| break; |
| case AHCI_PORT_REG_FIS_ADDR_HI: |
| pr->fis_addr_hi = val; |
| break; |
| case AHCI_PORT_REG_IRQ_STAT: |
| pr->irq_stat &= ~val; |
| ahci_check_irq(s); |
| break; |
| case AHCI_PORT_REG_IRQ_MASK: |
| pr->irq_mask = val & 0xfdc000ff; |
| ahci_check_irq(s); |
| break; |
| case AHCI_PORT_REG_CMD: |
| if ((pr->cmd & PORT_CMD_START) && !(val & PORT_CMD_START)) { |
| pr->scr_act = 0; |
| pr->cmd_issue = 0; |
| } |
| |
| /* Block any Read-only fields from being set; |
| * including LIST_ON and FIS_ON. |
| * The spec requires to set ICC bits to zero after the ICC change |
| * is done. We don't support ICC state changes, therefore always |
| * force the ICC bits to zero. |
| */ |
| pr->cmd = (pr->cmd & PORT_CMD_RO_MASK) | |
| (val & ~(PORT_CMD_RO_MASK | PORT_CMD_ICC_MASK)); |
| |
| /* Check FIS RX and CLB engines */ |
| ahci_cond_start_engines(&s->dev[port]); |
| |
| /* XXX usually the FIS would be pending on the bus here and |
| issuing deferred until the OS enables FIS receival. |
| Instead, we only submit it once - which works in most |
| cases, but is a hack. */ |
| if ((pr->cmd & PORT_CMD_FIS_ON) && |
| !s->dev[port].init_d2h_sent) { |
| ahci_init_d2h(&s->dev[port]); |
| } |
| |
| check_cmd(s, port); |
| break; |
| case AHCI_PORT_REG_TFDATA: |
| case AHCI_PORT_REG_SIG: |
| case AHCI_PORT_REG_SCR_STAT: |
| /* Read Only */ |
| break; |
| case AHCI_PORT_REG_SCR_CTL: |
| if (((pr->scr_ctl & AHCI_SCR_SCTL_DET) == 1) && |
| ((val & AHCI_SCR_SCTL_DET) == 0)) { |
| ahci_reset_port(s, port); |
| } |
| pr->scr_ctl = val; |
| break; |
| case AHCI_PORT_REG_SCR_ERR: |
| pr->scr_err &= ~val; |
| break; |
| case AHCI_PORT_REG_SCR_ACT: |
| /* RW1 */ |
| pr->scr_act |= val; |
| break; |
| case AHCI_PORT_REG_CMD_ISSUE: |
| pr->cmd_issue |= val; |
| check_cmd(s, port); |
| break; |
| default: |
| trace_ahci_port_write_unimpl(s, port, AHCIPortReg_lookup[regnum], |
| offset, val); |
| qemu_log_mask(LOG_UNIMP, "Attempted write to unimplemented register: " |
| "AHCI port %d register %s, offset 0x%x: 0x%"PRIx32, |
| port, AHCIPortReg_lookup[regnum], offset, val); |
| break; |
| } |
| } |
| |
| static uint64_t ahci_mem_read_32(void *opaque, hwaddr addr) |
| { |
| AHCIState *s = opaque; |
| uint32_t val = 0; |
| |
| if (addr < AHCI_GENERIC_HOST_CONTROL_REGS_MAX_ADDR) { |
| enum AHCIHostReg regnum = addr / 4; |
| assert(regnum < AHCI_HOST_REG__COUNT); |
| |
| switch (regnum) { |
| case AHCI_HOST_REG_CAP: |
| val = s->control_regs.cap; |
| break; |
| case AHCI_HOST_REG_CTL: |
| val = s->control_regs.ghc; |
| break; |
| case AHCI_HOST_REG_IRQ_STAT: |
| val = s->control_regs.irqstatus; |
| break; |
| case AHCI_HOST_REG_PORTS_IMPL: |
| val = s->control_regs.impl; |
| break; |
| case AHCI_HOST_REG_VERSION: |
| val = s->control_regs.version; |
| break; |
| default: |
| trace_ahci_mem_read_32_host_default(s, AHCIHostReg_lookup[regnum], |
| addr); |
| } |
| trace_ahci_mem_read_32_host(s, AHCIHostReg_lookup[regnum], addr, val); |
| } else if ((addr >= AHCI_PORT_REGS_START_ADDR) && |
| (addr < (AHCI_PORT_REGS_START_ADDR + |
| (s->ports * AHCI_PORT_ADDR_OFFSET_LEN)))) { |
| val = ahci_port_read(s, (addr - AHCI_PORT_REGS_START_ADDR) >> 7, |
| addr & AHCI_PORT_ADDR_OFFSET_MASK); |
| } else { |
| trace_ahci_mem_read_32_default(s, addr, val); |
| } |
| |
| trace_ahci_mem_read_32(s, addr, val); |
| return val; |
| } |
| |
| |
| /** |
| * AHCI 1.3 section 3 ("HBA Memory Registers") |
| * Support unaligned 8/16/32 bit reads, and 64 bit aligned reads. |
| * Caller is responsible for masking unwanted higher order bytes. |
| */ |
| static uint64_t ahci_mem_read(void *opaque, hwaddr addr, unsigned size) |
| { |
| hwaddr aligned = addr & ~0x3; |
| int ofst = addr - aligned; |
| uint64_t lo = ahci_mem_read_32(opaque, aligned); |
| uint64_t hi; |
| uint64_t val; |
| |
| /* if < 8 byte read does not cross 4 byte boundary */ |
| if (ofst + size <= 4) { |
| val = lo >> (ofst * 8); |
| } else { |
| g_assert(size > 1); |
| |
| /* If the 64bit read is unaligned, we will produce undefined |
| * results. AHCI does not support unaligned 64bit reads. */ |
| hi = ahci_mem_read_32(opaque, aligned + 4); |
| val = (hi << 32 | lo) >> (ofst * 8); |
| } |
| |
| trace_ahci_mem_read(opaque, size, addr, val); |
| return val; |
| } |
| |
| |
| static void ahci_mem_write(void *opaque, hwaddr addr, |
| uint64_t val, unsigned size) |
| { |
| AHCIState *s = opaque; |
| |
| trace_ahci_mem_write(s, size, addr, val); |
| |
| /* Only aligned reads are allowed on AHCI */ |
| if (addr & 3) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "ahci: Mis-aligned write to addr 0x%03" HWADDR_PRIX "\n", |
| addr); |
| return; |
| } |
| |
| if (addr < AHCI_GENERIC_HOST_CONTROL_REGS_MAX_ADDR) { |
| enum AHCIHostReg regnum = addr / 4; |
| assert(regnum < AHCI_HOST_REG__COUNT); |
| |
| switch (regnum) { |
| case AHCI_HOST_REG_CAP: /* R/WO, RO */ |
| /* FIXME handle R/WO */ |
| break; |
| case AHCI_HOST_REG_CTL: /* R/W */ |
| if (val & HOST_CTL_RESET) { |
| ahci_reset(s); |
| } else { |
| s->control_regs.ghc = (val & 0x3) | HOST_CTL_AHCI_EN; |
| ahci_check_irq(s); |
| } |
| break; |
| case AHCI_HOST_REG_IRQ_STAT: /* R/WC, RO */ |
| s->control_regs.irqstatus &= ~val; |
| ahci_check_irq(s); |
| break; |
| case AHCI_HOST_REG_PORTS_IMPL: /* R/WO, RO */ |
| /* FIXME handle R/WO */ |
| break; |
| case AHCI_HOST_REG_VERSION: /* RO */ |
| /* FIXME report write? */ |
| break; |
| default: |
| qemu_log_mask(LOG_UNIMP, |
| "Attempted write to unimplemented register: " |
| "AHCI host register %s, " |
| "offset 0x%"PRIx64": 0x%"PRIx64, |
| AHCIHostReg_lookup[regnum], addr, val); |
| trace_ahci_mem_write_host_unimpl(s, size, |
| AHCIHostReg_lookup[regnum], addr); |
| } |
| trace_ahci_mem_write_host(s, size, AHCIHostReg_lookup[regnum], |
| addr, val); |
| } else if ((addr >= AHCI_PORT_REGS_START_ADDR) && |
| (addr < (AHCI_PORT_REGS_START_ADDR + |
| (s->ports * AHCI_PORT_ADDR_OFFSET_LEN)))) { |
| ahci_port_write(s, (addr - AHCI_PORT_REGS_START_ADDR) >> 7, |
| addr & AHCI_PORT_ADDR_OFFSET_MASK, val); |
| } else { |
| qemu_log_mask(LOG_UNIMP, "Attempted write to unimplemented register: " |
| "AHCI global register at offset 0x%"PRIx64": 0x%"PRIx64, |
| addr, val); |
| trace_ahci_mem_write_unimpl(s, size, addr, val); |
| } |
| } |
| |
| static const MemoryRegionOps ahci_mem_ops = { |
| .read = ahci_mem_read, |
| .write = ahci_mem_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static uint64_t ahci_idp_read(void *opaque, hwaddr addr, |
| unsigned size) |
| { |
| AHCIState *s = opaque; |
| |
| if (addr == s->idp_offset) { |
| /* index register */ |
| return s->idp_index; |
| } else if (addr == s->idp_offset + 4) { |
| /* data register - do memory read at location selected by index */ |
| return ahci_mem_read(opaque, s->idp_index, size); |
| } else { |
| return 0; |
| } |
| } |
| |
| static void ahci_idp_write(void *opaque, hwaddr addr, |
| uint64_t val, unsigned size) |
| { |
| AHCIState *s = opaque; |
| |
| if (addr == s->idp_offset) { |
| /* index register - mask off reserved bits */ |
| s->idp_index = (uint32_t)val & ((AHCI_MEM_BAR_SIZE - 1) & ~3); |
| } else if (addr == s->idp_offset + 4) { |
| /* data register - do memory write at location selected by index */ |
| ahci_mem_write(opaque, s->idp_index, val, size); |
| } |
| } |
| |
| static const MemoryRegionOps ahci_idp_ops = { |
| .read = ahci_idp_read, |
| .write = ahci_idp_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| |
| static void ahci_reg_init(AHCIState *s) |
| { |
| int i; |
| |
| s->control_regs.cap = (s->ports - 1) | |
| (AHCI_NUM_COMMAND_SLOTS << 8) | |
| (AHCI_SUPPORTED_SPEED_GEN1 << AHCI_SUPPORTED_SPEED) | |
| HOST_CAP_NCQ | HOST_CAP_AHCI | HOST_CAP_64; |
| |
| s->control_regs.impl = (1 << s->ports) - 1; |
| |
| s->control_regs.version = AHCI_VERSION_1_0; |
| |
| for (i = 0; i < s->ports; i++) { |
| s->dev[i].port_state = STATE_RUN; |
| } |
| } |
| |
| static void check_cmd(AHCIState *s, int port) |
| { |
| AHCIPortRegs *pr = &s->dev[port].port_regs; |
| uint8_t slot; |
| |
| if ((pr->cmd & PORT_CMD_START) && pr->cmd_issue) { |
| for (slot = 0; (slot < 32) && pr->cmd_issue; slot++) { |
| if (pr->cmd_issue & (1U << slot)) { |
| handle_cmd(s, port, slot); |
| } |
| } |
| } |
| } |
| |
| static void ahci_check_cmd_bh(void *opaque) |
| { |
| AHCIDevice *ad = opaque; |
| |
| qemu_bh_delete(ad->check_bh); |
| ad->check_bh = NULL; |
| |
| check_cmd(ad->hba, ad->port_no); |
| } |
| |
| static void ahci_init_d2h(AHCIDevice *ad) |
| { |
| IDEState *ide_state = &ad->port.ifs[0]; |
| AHCIPortRegs *pr = &ad->port_regs; |
| |
| if (ad->init_d2h_sent) { |
| return; |
| } |
| |
| /* |
| * For simplicity, do not call ahci_clear_cmd_issue() for this |
| * ahci_write_fis_d2h(). (The reset value for PxCI is 0.) |
| */ |
| if (ahci_write_fis_d2h(ad, true)) { |
| ad->init_d2h_sent = true; |
| /* We're emulating receiving the first Reg D2H FIS from the device; |
| * Update the SIG register, but otherwise proceed as normal. */ |
| pr->sig = ((uint32_t)ide_state->hcyl << 24) | |
| (ide_state->lcyl << 16) | |
| (ide_state->sector << 8) | |
| (ide_state->nsector & 0xFF); |
| } |
| } |
| |
| static void ahci_set_signature(AHCIDevice *ad, uint32_t sig) |
| { |
| IDEState *s = &ad->port.ifs[0]; |
| s->hcyl = sig >> 24 & 0xFF; |
| s->lcyl = sig >> 16 & 0xFF; |
| s->sector = sig >> 8 & 0xFF; |
| s->nsector = sig & 0xFF; |
| |
| trace_ahci_set_signature(ad->hba, ad->port_no, s->nsector, s->sector, |
| s->lcyl, s->hcyl, sig); |
| } |
| |
| static void ahci_reset_port(AHCIState *s, int port) |
| { |
| AHCIDevice *d = &s->dev[port]; |
| AHCIPortRegs *pr = &d->port_regs; |
| IDEState *ide_state = &d->port.ifs[0]; |
| int i; |
| |
| trace_ahci_reset_port(s, port); |
| |
| ide_bus_reset(&d->port); |
| ide_state->ncq_queues = AHCI_MAX_CMDS; |
| |
| pr->scr_stat = 0; |
| pr->scr_err = 0; |
| pr->scr_act = 0; |
| pr->tfdata = 0x7F; |
| pr->sig = 0xFFFFFFFF; |
| pr->cmd_issue = 0; |
| d->busy_slot = -1; |
| d->init_d2h_sent = false; |
| |
| ide_state = &s->dev[port].port.ifs[0]; |
| if (!ide_state->blk) { |
| return; |
| } |
| |
| /* reset ncq queue */ |
| for (i = 0; i < AHCI_MAX_CMDS; i++) { |
| NCQTransferState *ncq_tfs = &s->dev[port].ncq_tfs[i]; |
| ncq_tfs->halt = false; |
| if (!ncq_tfs->used) { |
| continue; |
| } |
| |
| if (ncq_tfs->aiocb) { |
| blk_aio_cancel(ncq_tfs->aiocb); |
| ncq_tfs->aiocb = NULL; |
| } |
| |
| /* Maybe we just finished the request thanks to blk_aio_cancel() */ |
| if (!ncq_tfs->used) { |
| continue; |
| } |
| |
| qemu_sglist_destroy(&ncq_tfs->sglist); |
| ncq_tfs->used = 0; |
| } |
| |
| s->dev[port].port_state = STATE_RUN; |
| if (ide_state->drive_kind == IDE_CD) { |
| ahci_set_signature(d, SATA_SIGNATURE_CDROM); |
| ide_state->status = SEEK_STAT | WRERR_STAT | READY_STAT; |
| } else { |
| ahci_set_signature(d, SATA_SIGNATURE_DISK); |
| ide_state->status = SEEK_STAT | WRERR_STAT; |
| } |
| |
| ide_state->error = 1; |
| ahci_init_d2h(d); |
| } |
| |
| /* Buffer pretty output based on a raw FIS structure. */ |
| static char *ahci_pretty_buffer_fis(const uint8_t *fis, int cmd_len) |
| { |
| int i; |
| GString *s = g_string_new("FIS:"); |
| |
| for (i = 0; i < cmd_len; i++) { |
| if ((i & 0xf) == 0) { |
| g_string_append_printf(s, "\n0x%02x: ", i); |
| } |
| g_string_append_printf(s, "%02x ", fis[i]); |
| } |
| g_string_append_c(s, '\n'); |
| |
| return g_string_free(s, FALSE); |
| } |
| |
| static bool ahci_map_fis_address(AHCIDevice *ad) |
| { |
| AHCIPortRegs *pr = &ad->port_regs; |
| map_page(ad->hba->as, &ad->res_fis, |
| ((uint64_t)pr->fis_addr_hi << 32) | pr->fis_addr, 256); |
| if (ad->res_fis != NULL) { |
| pr->cmd |= PORT_CMD_FIS_ON; |
| return true; |
| } |
| |
| pr->cmd &= ~PORT_CMD_FIS_ON; |
| return false; |
| } |
| |
| static void ahci_unmap_fis_address(AHCIDevice *ad) |
| { |
| if (ad->res_fis == NULL) { |
| trace_ahci_unmap_fis_address_null(ad->hba, ad->port_no); |
| return; |
| } |
| ad->port_regs.cmd &= ~PORT_CMD_FIS_ON; |
| dma_memory_unmap(ad->hba->as, ad->res_fis, 256, |
| DMA_DIRECTION_FROM_DEVICE, 256); |
| ad->res_fis = NULL; |
| } |
| |
| static bool ahci_map_clb_address(AHCIDevice *ad) |
| { |
| AHCIPortRegs *pr = &ad->port_regs; |
| ad->cur_cmd = NULL; |
| map_page(ad->hba->as, &ad->lst, |
| ((uint64_t)pr->lst_addr_hi << 32) | pr->lst_addr, 1024); |
| if (ad->lst != NULL) { |
| pr->cmd |= PORT_CMD_LIST_ON; |
| return true; |
| } |
| |
| pr->cmd &= ~PORT_CMD_LIST_ON; |
| return false; |
| } |
| |
| static void ahci_unmap_clb_address(AHCIDevice *ad) |
| { |
| if (ad->lst == NULL) { |
| trace_ahci_unmap_clb_address_null(ad->hba, ad->port_no); |
| return; |
| } |
| ad->port_regs.cmd &= ~PORT_CMD_LIST_ON; |
| dma_memory_unmap(ad->hba->as, ad->lst, 1024, |
| DMA_DIRECTION_FROM_DEVICE, 1024); |
| ad->lst = NULL; |
| } |
| |
| static void ahci_write_fis_sdb(AHCIState *s, NCQTransferState *ncq_tfs) |
| { |
| AHCIDevice *ad = ncq_tfs->drive; |
| AHCIPortRegs *pr = &ad->port_regs; |
| IDEState *ide_state; |
| SDBFIS *sdb_fis; |
| |
| if (!ad->res_fis || |
| !(pr->cmd & PORT_CMD_FIS_RX)) { |
| return; |
| } |
| |
| sdb_fis = (SDBFIS *)&ad->res_fis[RES_FIS_SDBFIS]; |
| ide_state = &ad->port.ifs[0]; |
| |
| sdb_fis->type = SATA_FIS_TYPE_SDB; |
| /* Interrupt pending & Notification bit */ |
| sdb_fis->flags = 0x40; /* Interrupt bit, always 1 for NCQ */ |
| sdb_fis->status = ide_state->status & 0x77; |
| sdb_fis->error = ide_state->error; |
| /* update SAct field in SDB_FIS */ |
| sdb_fis->payload = cpu_to_le32(ad->finished); |
| |
| /* Update shadow registers (except BSY 0x80 and DRQ 0x08) */ |
| pr->tfdata = (ad->port.ifs[0].error << 8) | |
| (ad->port.ifs[0].status & 0x77) | |
| (pr->tfdata & 0x88); |
| pr->scr_act &= ~ad->finished; |
| ad->finished = 0; |
| |
| /* |
| * TFES IRQ is always raised if ERR_STAT is set, regardless of I bit. |
| * If ERR_STAT is not set, trigger SDBS IRQ if interrupt bit is set |
| * (which currently, it always is). |
| */ |
| if (sdb_fis->status & ERR_STAT) { |
| ahci_trigger_irq(s, ad, AHCI_PORT_IRQ_BIT_TFES); |
| } else if (sdb_fis->flags & 0x40) { |
| ahci_trigger_irq(s, ad, AHCI_PORT_IRQ_BIT_SDBS); |
| } |
| } |
| |
| static void ahci_write_fis_pio(AHCIDevice *ad, uint16_t len, bool pio_fis_i) |
| { |
| AHCIPortRegs *pr = &ad->port_regs; |
| uint8_t *pio_fis; |
| IDEState *s = &ad->port.ifs[0]; |
| |
| if (!ad->res_fis || !(pr->cmd & PORT_CMD_FIS_RX)) { |
| return; |
| } |
| |
| pio_fis = &ad->res_fis[RES_FIS_PSFIS]; |
| |
| pio_fis[0] = SATA_FIS_TYPE_PIO_SETUP; |
| pio_fis[1] = (pio_fis_i ? (1 << 6) : 0); |
| pio_fis[2] = s->status; |
| pio_fis[3] = s->error; |
| |
| pio_fis[4] = s->sector; |
| pio_fis[5] = s->lcyl; |
| pio_fis[6] = s->hcyl; |
| pio_fis[7] = s->select; |
| pio_fis[8] = s->hob_sector; |
| pio_fis[9] = s->hob_lcyl; |
| pio_fis[10] = s->hob_hcyl; |
| pio_fis[11] = 0; |
| pio_fis[12] = s->nsector & 0xFF; |
| pio_fis[13] = (s->nsector >> 8) & 0xFF; |
| pio_fis[14] = 0; |
| pio_fis[15] = s->status; |
| pio_fis[16] = len & 255; |
| pio_fis[17] = len >> 8; |
| pio_fis[18] = 0; |
| pio_fis[19] = 0; |
| |
| /* Update shadow registers: */ |
| pr->tfdata = (ad->port.ifs[0].error << 8) | |
| ad->port.ifs[0].status; |
| |
| if (pio_fis[2] & ERR_STAT) { |
| ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_TFES); |
| } |
| } |
| |
| static bool ahci_write_fis_d2h(AHCIDevice *ad, bool d2h_fis_i) |
| { |
| AHCIPortRegs *pr = &ad->port_regs; |
| uint8_t *d2h_fis; |
| int i; |
| IDEState *s = &ad->port.ifs[0]; |
| |
| if (!ad->res_fis || !(pr->cmd & PORT_CMD_FIS_RX)) { |
| return false; |
| } |
| |
| d2h_fis = &ad->res_fis[RES_FIS_RFIS]; |
| |
| d2h_fis[0] = SATA_FIS_TYPE_REGISTER_D2H; |
| d2h_fis[1] = d2h_fis_i ? (1 << 6) : 0; /* interrupt bit */ |
| d2h_fis[2] = s->status; |
| d2h_fis[3] = s->error; |
| |
| d2h_fis[4] = s->sector; |
| d2h_fis[5] = s->lcyl; |
| d2h_fis[6] = s->hcyl; |
| d2h_fis[7] = s->select; |
| d2h_fis[8] = s->hob_sector; |
| d2h_fis[9] = s->hob_lcyl; |
| d2h_fis[10] = s->hob_hcyl; |
| d2h_fis[11] = 0; |
| d2h_fis[12] = s->nsector & 0xFF; |
| d2h_fis[13] = (s->nsector >> 8) & 0xFF; |
| for (i = 14; i < 20; i++) { |
| d2h_fis[i] = 0; |
| } |
| |
| /* Update shadow registers: */ |
| pr->tfdata = (ad->port.ifs[0].error << 8) | |
| ad->port.ifs[0].status; |
| |
| /* TFES IRQ is always raised if ERR_STAT is set, regardless of I bit. */ |
| if (d2h_fis[2] & ERR_STAT) { |
| ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_TFES); |
| } else if (d2h_fis_i) { |
| ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_DHRS); |
| } |
| |
| return true; |
| } |
| |
| static int prdt_tbl_entry_size(const AHCI_SG *tbl) |
| { |
| /* flags_size is zero-based */ |
| return (le32_to_cpu(tbl->flags_size) & AHCI_PRDT_SIZE_MASK) + 1; |
| } |
| |
| /** |
| * Fetch entries in a guest-provided PRDT and convert it into a QEMU SGlist. |
| * @ad: The AHCIDevice for whom we are building the SGList. |
| * @sglist: The SGList target to add PRD entries to. |
| * @cmd: The AHCI Command Header that describes where the PRDT is. |
| * @limit: The remaining size of the S/ATA transaction, in bytes. |
| * @offset: The number of bytes already transferred, in bytes. |
| * |
| * The AHCI PRDT can describe up to 256GiB. S/ATA only support transactions of |
| * up to 32MiB as of ATA8-ACS3 rev 1b, assuming a 512 byte sector size. We stop |
| * building the sglist from the PRDT as soon as we hit @limit bytes, |
| * which is <= INT32_MAX/2GiB. |
| */ |
| static int ahci_populate_sglist(AHCIDevice *ad, QEMUSGList *sglist, |
| AHCICmdHdr *cmd, int64_t limit, uint64_t offset) |
| { |
| uint16_t opts = le16_to_cpu(cmd->opts); |
| uint16_t prdtl = le16_to_cpu(cmd->prdtl); |
| uint64_t cfis_addr = le64_to_cpu(cmd->tbl_addr); |
| uint64_t prdt_addr = cfis_addr + 0x80; |
| dma_addr_t prdt_len = (prdtl * sizeof(AHCI_SG)); |
| dma_addr_t real_prdt_len = prdt_len; |
| uint8_t *prdt; |
| int i; |
| int r = 0; |
| uint64_t sum = 0; |
| int off_idx = -1; |
| int64_t off_pos = -1; |
| int tbl_entry_size; |
| IDEBus *bus = &ad->port; |
| BusState *qbus = BUS(bus); |
| |
| trace_ahci_populate_sglist(ad->hba, ad->port_no); |
| |
| if (!prdtl) { |
| trace_ahci_populate_sglist_no_prdtl(ad->hba, ad->port_no, opts); |
| return -1; |
| } |
| |
| /* map PRDT */ |
| if (!(prdt = dma_memory_map(ad->hba->as, prdt_addr, &prdt_len, |
| DMA_DIRECTION_TO_DEVICE, |
| MEMTXATTRS_UNSPECIFIED))){ |
| trace_ahci_populate_sglist_no_map(ad->hba, ad->port_no); |
| return -1; |
| } |
| |
| if (prdt_len < real_prdt_len) { |
| trace_ahci_populate_sglist_short_map(ad->hba, ad->port_no); |
| r = -1; |
| goto out; |
| } |
| |
| /* Get entries in the PRDT, init a qemu sglist accordingly */ |
| if (prdtl > 0) { |
| AHCI_SG *tbl = (AHCI_SG *)prdt; |
| sum = 0; |
| for (i = 0; i < prdtl; i++) { |
| tbl_entry_size = prdt_tbl_entry_size(&tbl[i]); |
| if (offset < (sum + tbl_entry_size)) { |
| off_idx = i; |
| off_pos = offset - sum; |
| break; |
| } |
| sum += tbl_entry_size; |
| } |
| if ((off_idx == -1) || (off_pos < 0) || (off_pos > tbl_entry_size)) { |
| trace_ahci_populate_sglist_bad_offset(ad->hba, ad->port_no, |
| off_idx, off_pos); |
| r = -1; |
| goto out; |
| } |
| |
| qemu_sglist_init(sglist, qbus->parent, (prdtl - off_idx), |
| ad->hba->as); |
| qemu_sglist_add(sglist, le64_to_cpu(tbl[off_idx].addr) + off_pos, |
| MIN(prdt_tbl_entry_size(&tbl[off_idx]) - off_pos, |
| limit)); |
| |
| for (i = off_idx + 1; i < prdtl && sglist->size < limit; i++) { |
| qemu_sglist_add(sglist, le64_to_cpu(tbl[i].addr), |
| MIN(prdt_tbl_entry_size(&tbl[i]), |
| limit - sglist->size)); |
| } |
| } |
| |
| out: |
| dma_memory_unmap(ad->hba->as, prdt, prdt_len, |
| DMA_DIRECTION_TO_DEVICE, prdt_len); |
| return r; |
| } |
| |
| static void ncq_err(NCQTransferState *ncq_tfs) |
| { |
| IDEState *ide_state = &ncq_tfs->drive->port.ifs[0]; |
| |
| ide_state->error = ABRT_ERR; |
| ide_state->status = READY_STAT | ERR_STAT; |
| qemu_sglist_destroy(&ncq_tfs->sglist); |
| ncq_tfs->used = 0; |
| } |
| |
| static void ncq_finish(NCQTransferState *ncq_tfs) |
| { |
| /* If we didn't error out, set our finished bit. Errored commands |
| * do not get a bit set for the SDB FIS ACT register, nor do they |
| * clear the outstanding bit in scr_act (PxSACT). */ |
| if (ncq_tfs->used) { |
| ncq_tfs->drive->finished |= (1 << ncq_tfs->tag); |
| } |
| |
| ahci_write_fis_sdb(ncq_tfs->drive->hba, ncq_tfs); |
| |
| trace_ncq_finish(ncq_tfs->drive->hba, ncq_tfs->drive->port_no, |
| ncq_tfs->tag); |
| |
| block_acct_done(blk_get_stats(ncq_tfs->drive->port.ifs[0].blk), |
| &ncq_tfs->acct); |
| qemu_sglist_destroy(&ncq_tfs->sglist); |
| ncq_tfs->used = 0; |
| } |
| |
| static void ncq_cb(void *opaque, int ret) |
| { |
| NCQTransferState *ncq_tfs = (NCQTransferState *)opaque; |
| IDEState *ide_state = &ncq_tfs->drive->port.ifs[0]; |
| |
| ncq_tfs->aiocb = NULL; |
| |
| if (ret < 0) { |
| bool is_read = ncq_tfs->cmd == READ_FPDMA_QUEUED; |
| BlockErrorAction action = blk_get_error_action(ide_state->blk, |
| is_read, -ret); |
| if (action == BLOCK_ERROR_ACTION_STOP) { |
| ncq_tfs->halt = true; |
| ide_state->bus->error_status = IDE_RETRY_HBA; |
| } else if (action == BLOCK_ERROR_ACTION_REPORT) { |
| ncq_err(ncq_tfs); |
| } |
| blk_error_action(ide_state->blk, action, is_read, -ret); |
| } else { |
| ide_state->status = READY_STAT | SEEK_STAT; |
| } |
| |
| if (!ncq_tfs->halt) { |
| ncq_finish(ncq_tfs); |
| } |
| } |
| |
| static int is_ncq(uint8_t ata_cmd) |
| { |
| /* Based on SATA 3.2 section 13.6.3.2 */ |
| switch (ata_cmd) { |
| case READ_FPDMA_QUEUED: |
| case WRITE_FPDMA_QUEUED: |
| case NCQ_NON_DATA: |
| case RECEIVE_FPDMA_QUEUED: |
| case SEND_FPDMA_QUEUED: |
| return 1; |
| default: |
| return 0; |
| } |
| } |
| |
| static void execute_ncq_command(NCQTransferState *ncq_tfs) |
| { |
| AHCIDevice *ad = ncq_tfs->drive; |
| IDEState *ide_state = &ad->port.ifs[0]; |
| int port = ad->port_no; |
| |
| g_assert(is_ncq(ncq_tfs->cmd)); |
| ncq_tfs->halt = false; |
| |
| switch (ncq_tfs->cmd) { |
| case READ_FPDMA_QUEUED: |
| trace_execute_ncq_command_read(ad->hba, port, ncq_tfs->tag, |
| ncq_tfs->sector_count, ncq_tfs->lba); |
| dma_acct_start(ide_state->blk, &ncq_tfs->acct, |
| &ncq_tfs->sglist, BLOCK_ACCT_READ); |
| ncq_tfs->aiocb = dma_blk_read(ide_state->blk, &ncq_tfs->sglist, |
| ncq_tfs->lba << BDRV_SECTOR_BITS, |
| BDRV_SECTOR_SIZE, |
| ncq_cb, ncq_tfs); |
| break; |
| case WRITE_FPDMA_QUEUED: |
| trace_execute_ncq_command_write(ad->hba, port, ncq_tfs->tag, |
| ncq_tfs->sector_count, ncq_tfs->lba); |
| dma_acct_start(ide_state->blk, &ncq_tfs->acct, |
| &ncq_tfs->sglist, BLOCK_ACCT_WRITE); |
| ncq_tfs->aiocb = dma_blk_write(ide_state->blk, &ncq_tfs->sglist, |
| ncq_tfs->lba << BDRV_SECTOR_BITS, |
| BDRV_SECTOR_SIZE, |
| ncq_cb, ncq_tfs); |
| break; |
| default: |
| trace_execute_ncq_command_unsup(ad->hba, port, |
| ncq_tfs->tag, ncq_tfs->cmd); |
| ncq_err(ncq_tfs); |
| } |
| } |
| |
| |
| static void process_ncq_command(AHCIState *s, int port, const uint8_t *cmd_fis, |
| uint8_t slot) |
| { |
| AHCIDevice *ad = &s->dev[port]; |
| const NCQFrame *ncq_fis = (NCQFrame *)cmd_fis; |
| uint8_t tag = ncq_fis->tag >> 3; |
| NCQTransferState *ncq_tfs = &ad->ncq_tfs[tag]; |
| size_t size; |
| |
| g_assert(is_ncq(ncq_fis->command)); |
| if (ncq_tfs->used) { |
| /* error - already in use */ |
| qemu_log_mask(LOG_GUEST_ERROR, "%s: tag %d already used\n", |
| __func__, tag); |
| return; |
| } |
| |
| /* |
| * A NCQ command clears the bit in PxCI after the command has been QUEUED |
| * successfully (ERROR not set, BUSY and DRQ cleared). |
| * |
| * For NCQ commands, PxCI will always be cleared here. |
| * |
| * (Once the NCQ command is COMPLETED, the device will send a SDB FIS with |
| * the interrupt bit set, which will clear PxSACT and raise an interrupt.) |
| */ |
| ahci_clear_cmd_issue(ad, slot); |
| |
| /* |
| * In reality, for NCQ commands, PxCI is cleared after receiving a D2H FIS |
| * without the interrupt bit set, but since ahci_write_fis_d2h() can raise |
| * an IRQ on error, we need to call them in reverse order. |
| */ |
| ahci_write_fis_d2h(ad, false); |
| |
| ncq_tfs->used = 1; |
| ncq_tfs->drive = ad; |
| ncq_tfs->slot = slot; |
| ncq_tfs->cmdh = &((AHCICmdHdr *)ad->lst)[slot]; |
| ncq_tfs->cmd = ncq_fis->command; |
| ncq_tfs->lba = ((uint64_t)ncq_fis->lba5 << 40) | |
| ((uint64_t)ncq_fis->lba4 << 32) | |
| ((uint64_t)ncq_fis->lba3 << 24) | |
| ((uint64_t)ncq_fis->lba2 << 16) | |
| ((uint64_t)ncq_fis->lba1 << 8) | |
| (uint64_t)ncq_fis->lba0; |
| ncq_tfs->tag = tag; |
| |
| /* Sanity-check the NCQ packet */ |
| if (tag != slot) { |
| trace_process_ncq_command_mismatch(s, port, tag, slot); |
| } |
| |
| if (ncq_fis->aux0 || ncq_fis->aux1 || ncq_fis->aux2 || ncq_fis->aux3) { |
| trace_process_ncq_command_aux(s, port, tag); |
| } |
| if (ncq_fis->prio || ncq_fis->icc) { |
| trace_process_ncq_command_prioicc(s, port, tag); |
| } |
| if (ncq_fis->fua & NCQ_FIS_FUA_MASK) { |
| trace_process_ncq_command_fua(s, port, tag); |
| } |
| if (ncq_fis->tag & NCQ_FIS_RARC_MASK) { |
| trace_process_ncq_command_rarc(s, port, tag); |
| } |
| |
| ncq_tfs->sector_count = ((ncq_fis->sector_count_high << 8) | |
| ncq_fis->sector_count_low); |
| if (!ncq_tfs->sector_count) { |
| ncq_tfs->sector_count = 0x10000; |
| } |
| size = ncq_tfs->sector_count * BDRV_SECTOR_SIZE; |
| ahci_populate_sglist(ad, &ncq_tfs->sglist, ncq_tfs->cmdh, size, 0); |
| |
| if (ncq_tfs->sglist.size < size) { |
| error_report("ahci: PRDT length for NCQ command (0x" DMA_ADDR_FMT ") " |
| "is smaller than the requested size (0x%zx)", |
| ncq_tfs->sglist.size, size); |
| ncq_err(ncq_tfs); |
| ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_OFS); |
| return; |
| } else if (ncq_tfs->sglist.size != size) { |
| trace_process_ncq_command_large(s, port, tag, |
| ncq_tfs->sglist.size, size); |
| } |
| |
| trace_process_ncq_command(s, port, tag, |
| ncq_fis->command, |
| ncq_tfs->lba, |
| ncq_tfs->lba + ncq_tfs->sector_count - 1); |
| execute_ncq_command(ncq_tfs); |
| } |
| |
| static AHCICmdHdr *get_cmd_header(AHCIState *s, uint8_t port, uint8_t slot) |
| { |
| if (port >= s->ports || slot >= AHCI_MAX_CMDS) { |
| return NULL; |
| } |
| |
| return s->dev[port].lst ? &((AHCICmdHdr *)s->dev[port].lst)[slot] : NULL; |
| } |
| |
| static void handle_reg_h2d_fis(AHCIState *s, int port, |
| uint8_t slot, const uint8_t *cmd_fis) |
| { |
| IDEState *ide_state = &s->dev[port].port.ifs[0]; |
| AHCICmdHdr *cmd = get_cmd_header(s, port, slot); |
| AHCIDevice *ad = &s->dev[port]; |
| uint16_t opts = le16_to_cpu(cmd->opts); |
| |
| if (cmd_fis[1] & 0x0F) { |
| trace_handle_reg_h2d_fis_pmp(s, port, cmd_fis[1], |
| cmd_fis[2], cmd_fis[3]); |
| return; |
| } |
| |
| if (cmd_fis[1] & 0x70) { |
| trace_handle_reg_h2d_fis_res(s, port, cmd_fis[1], |
| cmd_fis[2], cmd_fis[3]); |
| return; |
| } |
| |
| if (!(cmd_fis[1] & SATA_FIS_REG_H2D_UPDATE_COMMAND_REGISTER)) { |
| switch (s->dev[port].port_state) { |
| case STATE_RUN: |
| if (cmd_fis[15] & ATA_SRST) { |
| s->dev[port].port_state = STATE_RESET; |
| /* |
| * When setting SRST in the first H2D FIS in the reset sequence, |
| * the device does not send a D2H FIS. Host software thus has to |
| * set the "Clear Busy upon R_OK" bit such that PxCI (and BUSY) |
| * gets cleared. See AHCI 1.3.1, section 10.4.1 Software Reset. |
| */ |
| if (opts & AHCI_CMD_CLR_BUSY) { |
| ahci_clear_cmd_issue(ad, slot); |
| } |
| } |
| break; |
| case STATE_RESET: |
| if (!(cmd_fis[15] & ATA_SRST)) { |
| /* |
| * When clearing SRST in the second H2D FIS in the reset |
| * sequence, the device will execute diagnostics. When this is |
| * done, the device will send a D2H FIS with the good status. |
| * See SATA 3.5a Gold, section 11.4 Software reset protocol. |
| * |
| * This D2H FIS is the first D2H FIS received from the device, |
| * and is received regardless if the reset was performed by a |
| * COMRESET or by setting and clearing the SRST bit. Therefore, |
| * the logic for this is found in ahci_init_d2h() and not here. |
| */ |
| ahci_reset_port(s, port); |
| } |
| break; |
| } |
| return; |
| } |
| |
| /* Check for NCQ command */ |
| if (is_ncq(cmd_fis[2])) { |
| process_ncq_command(s, port, cmd_fis, slot); |
| return; |
| } |
| |
| /* Decompose the FIS: |
| * AHCI does not interpret FIS packets, it only forwards them. |
| * SATA 1.0 describes how to decode LBA28 and CHS FIS packets. |
| * Later specifications, e.g, SATA 3.2, describe LBA48 FIS packets. |
| * |
| * ATA4 describes sector number for LBA28/CHS commands. |
| * ATA6 describes sector number for LBA48 commands. |
| * ATA8 deprecates CHS fully, describing only LBA28/48. |
| * |
| * We dutifully convert the FIS into IDE registers, and allow the |
| * core layer to interpret them as needed. */ |
| ide_state->feature = cmd_fis[3]; |
| ide_state->sector = cmd_fis[4]; /* LBA 7:0 */ |
| ide_state->lcyl = cmd_fis[5]; /* LBA 15:8 */ |
| ide_state->hcyl = cmd_fis[6]; /* LBA 23:16 */ |
| ide_state->select = cmd_fis[7]; /* LBA 27:24 (LBA28) */ |
| ide_state->hob_sector = cmd_fis[8]; /* LBA 31:24 */ |
| ide_state->hob_lcyl = cmd_fis[9]; /* LBA 39:32 */ |
| ide_state->hob_hcyl = cmd_fis[10]; /* LBA 47:40 */ |
| ide_state->hob_feature = cmd_fis[11]; |
| ide_state->nsector = (int64_t)((cmd_fis[13] << 8) | cmd_fis[12]); |
| /* 14, 16, 17, 18, 19: Reserved (SATA 1.0) */ |
| /* 15: Only valid when UPDATE_COMMAND not set. */ |
| |
| /* Copy the ACMD field (ATAPI packet, if any) from the AHCI command |
| * table to ide_state->io_buffer */ |
| if (opts & AHCI_CMD_ATAPI) { |
| memcpy(ide_state->io_buffer, &cmd_fis[AHCI_COMMAND_TABLE_ACMD], 0x10); |
| if (trace_event_get_state_backends(TRACE_HANDLE_REG_H2D_FIS_DUMP)) { |
| char *pretty_fis = ahci_pretty_buffer_fis(ide_state->io_buffer, 0x10); |
| trace_handle_reg_h2d_fis_dump(s, port, pretty_fis); |
| g_free(pretty_fis); |
| } |
| } |
| |
| ide_state->error = 0; |
| s->dev[port].done_first_drq = false; |
| /* Reset transferred byte counter */ |
| cmd->status = 0; |
| |
| /* |
| * A non-NCQ command clears the bit in PxCI after the command has COMPLETED |
| * successfully (ERROR not set, BUSY and DRQ cleared). |
| * |
| * For non-NCQ commands, PxCI will always be cleared by ahci_cmd_done(). |
| */ |
| ad->busy_slot = slot; |
| |
| /* We're ready to process the command in FIS byte 2. */ |
| ide_bus_exec_cmd(&s->dev[port].port, cmd_fis[2]); |
| } |
| |
| static void handle_cmd(AHCIState *s, int port, uint8_t slot) |
| { |
| IDEState *ide_state; |
| uint64_t tbl_addr; |
| AHCICmdHdr *cmd; |
| uint8_t *cmd_fis; |
| dma_addr_t cmd_len; |
| |
| if (s->dev[port].port.ifs[0].status & (BUSY_STAT|DRQ_STAT)) { |
| /* Engine currently busy, try again later */ |
| trace_handle_cmd_busy(s, port); |
| return; |
| } |
| |
| if (!s->dev[port].lst) { |
| trace_handle_cmd_nolist(s, port); |
| return; |
| } |
| cmd = get_cmd_header(s, port, slot); |
| /* remember current slot handle for later */ |
| s->dev[port].cur_cmd = cmd; |
| |
| /* The device we are working for */ |
| ide_state = &s->dev[port].port.ifs[0]; |
| if (!ide_state->blk) { |
| trace_handle_cmd_badport(s, port); |
| return; |
| } |
| |
| tbl_addr = le64_to_cpu(cmd->tbl_addr); |
| cmd_len = 0x80; |
| cmd_fis = dma_memory_map(s->as, tbl_addr, &cmd_len, |
| DMA_DIRECTION_TO_DEVICE, MEMTXATTRS_UNSPECIFIED); |
| if (!cmd_fis) { |
| trace_handle_cmd_badfis(s, port); |
| return; |
| } else if (cmd_len != 0x80) { |
| ahci_trigger_irq(s, &s->dev[port], AHCI_PORT_IRQ_BIT_HBFS); |
| trace_handle_cmd_badmap(s, port, cmd_len); |
| goto out; |
| } |
| if (trace_event_get_state_backends(TRACE_HANDLE_CMD_FIS_DUMP)) { |
| char *pretty_fis = ahci_pretty_buffer_fis(cmd_fis, 0x80); |
| trace_handle_cmd_fis_dump(s, port, pretty_fis); |
| g_free(pretty_fis); |
| } |
| switch (cmd_fis[0]) { |
| case SATA_FIS_TYPE_REGISTER_H2D: |
| handle_reg_h2d_fis(s, port, slot, cmd_fis); |
| break; |
| default: |
| trace_handle_cmd_unhandled_fis(s, port, |
| cmd_fis[0], cmd_fis[1], cmd_fis[2]); |
| break; |
| } |
| |
| out: |
| dma_memory_unmap(s->as, cmd_fis, cmd_len, DMA_DIRECTION_TO_DEVICE, |
| cmd_len); |
| } |
| |
| /* Transfer PIO data between RAM and device */ |
| static void ahci_pio_transfer(const IDEDMA *dma) |
| { |
| AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); |
| IDEState *s = &ad->port.ifs[0]; |
| uint32_t size = (uint32_t)(s->data_end - s->data_ptr); |
| /* write == ram -> device */ |
| uint16_t opts = le16_to_cpu(ad->cur_cmd->opts); |
| int is_write = opts & AHCI_CMD_WRITE; |
| int is_atapi = opts & AHCI_CMD_ATAPI; |
| int has_sglist = 0; |
| bool pio_fis_i; |
| |
| /* The PIO Setup FIS is received prior to transfer, but the interrupt |
| * is only triggered after data is received. |
| * |
| * The device only sets the 'I' bit in the PIO Setup FIS for device->host |
| * requests (see "DPIOI1" in the SATA spec), or for host->device DRQs after |
| * the first (see "DPIOO1"). The latter is consistent with the spec's |
| * description of the PACKET protocol, where the command part of ATAPI requests |
| * ("DPKT0") has the 'I' bit clear, while the data part of PIO ATAPI requests |
| * ("DPKT4a" and "DPKT7") has the 'I' bit set for both directions for all DRQs. |
| */ |
| pio_fis_i = ad->done_first_drq || (!is_atapi && !is_write); |
| ahci_write_fis_pio(ad, size, pio_fis_i); |
| |
| if (is_atapi && !ad->done_first_drq) { |
| /* already prepopulated iobuffer */ |
| goto out; |
| } |
| |
| if (ahci_dma_prepare_buf(dma, size)) { |
| has_sglist = 1; |
| } |
| |
| trace_ahci_pio_transfer(ad->hba, ad->port_no, is_write ? "writ" : "read", |
| size, is_atapi ? "atapi" : "ata", |
| has_sglist ? "" : "o"); |
| |
| if (has_sglist && size) { |
| const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; |
| |
| if (is_write) { |
| dma_buf_write(s->data_ptr, size, NULL, &s->sg, attrs); |
| } else { |
| dma_buf_read(s->data_ptr, size, NULL, &s->sg, attrs); |
| } |
| } |
| |
| /* Update number of transferred bytes, destroy sglist */ |
| dma_buf_commit(s, size); |
| |
| out: |
| /* declare that we processed everything */ |
| s->data_ptr = s->data_end; |
| |
| ad->done_first_drq = true; |
| if (pio_fis_i) { |
| ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_PSS); |
| } |
| } |
| |
| static void ahci_start_dma(const IDEDMA *dma, IDEState *s, |
| BlockCompletionFunc *dma_cb) |
| { |
| AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); |
| trace_ahci_start_dma(ad->hba, ad->port_no); |
| s->io_buffer_offset = 0; |
| dma_cb(s, 0); |
| } |
| |
| static void ahci_restart_dma(const IDEDMA *dma) |
| { |
| /* Nothing to do, ahci_start_dma already resets s->io_buffer_offset. */ |
| } |
| |
| /** |
| * IDE/PIO restarts are handled by the core layer, but NCQ commands |
| * need an extra kick from the AHCI HBA. |
| */ |
| static void ahci_restart(const IDEDMA *dma) |
| { |
| AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); |
| int i; |
| |
| for (i = 0; i < AHCI_MAX_CMDS; i++) { |
| NCQTransferState *ncq_tfs = &ad->ncq_tfs[i]; |
| if (ncq_tfs->halt) { |
| execute_ncq_command(ncq_tfs); |
| } |
| } |
| } |
| |
| /** |
| * Called in DMA and PIO R/W chains to read the PRDT. |
| * Not shared with NCQ pathways. |
| */ |
| static int32_t ahci_dma_prepare_buf(const IDEDMA *dma, int32_t limit) |
| { |
| AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); |
| IDEState *s = &ad->port.ifs[0]; |
| |
| if (ahci_populate_sglist(ad, &s->sg, ad->cur_cmd, |
| limit, s->io_buffer_offset) == -1) { |
| trace_ahci_dma_prepare_buf_fail(ad->hba, ad->port_no); |
| return -1; |
| } |
| s->io_buffer_size = s->sg.size; |
| |
| trace_ahci_dma_prepare_buf(ad->hba, ad->port_no, limit, s->io_buffer_size); |
| return s->io_buffer_size; |
| } |
| |
| /** |
| * Updates the command header with a bytes-read value. |
| * Called via dma_buf_commit, for both DMA and PIO paths. |
| * sglist destruction is handled within dma_buf_commit. |
| */ |
| static void ahci_commit_buf(const IDEDMA *dma, uint32_t tx_bytes) |
| { |
| AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); |
| |
| tx_bytes += le32_to_cpu(ad->cur_cmd->status); |
| ad->cur_cmd->status = cpu_to_le32(tx_bytes); |
| } |
| |
| static int ahci_dma_rw_buf(const IDEDMA *dma, bool is_write) |
| { |
| AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); |
| IDEState *s = &ad->port.ifs[0]; |
| uint8_t *p = s->io_buffer + s->io_buffer_index; |
| int l = s->io_buffer_size - s->io_buffer_index; |
| |
| if (ahci_populate_sglist(ad, &s->sg, ad->cur_cmd, l, s->io_buffer_offset)) { |
| return 0; |
| } |
| |
| if (is_write) { |
| dma_buf_read(p, l, NULL, &s->sg, MEMTXATTRS_UNSPECIFIED); |
| } else { |
| dma_buf_write(p, l, NULL, &s->sg, MEMTXATTRS_UNSPECIFIED); |
| } |
| |
| /* free sglist, update byte count */ |
| dma_buf_commit(s, l); |
| s->io_buffer_index += l; |
| |
| trace_ahci_dma_rw_buf(ad->hba, ad->port_no, l); |
| return 1; |
| } |
| |
| static void ahci_clear_cmd_issue(AHCIDevice *ad, uint8_t slot) |
| { |
| IDEState *ide_state = &ad->port.ifs[0]; |
| |
| if (!(ide_state->status & ERR_STAT) && |
| !(ide_state->status & (BUSY_STAT | DRQ_STAT))) { |
| ad->port_regs.cmd_issue &= ~(1 << slot); |
| } |
| } |
| |
| /* Non-NCQ command is done - This function is never called for NCQ commands. */ |
| static void ahci_cmd_done(const IDEDMA *dma) |
| { |
| AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); |
| IDEState *ide_state = &ad->port.ifs[0]; |
| |
| trace_ahci_cmd_done(ad->hba, ad->port_no); |
| |
| /* no longer busy */ |
| if (ad->busy_slot != -1) { |
| ahci_clear_cmd_issue(ad, ad->busy_slot); |
| ad->busy_slot = -1; |
| } |
| |
| /* |
| * In reality, for non-NCQ commands, PxCI is cleared after receiving a D2H |
| * FIS with the interrupt bit set, but since ahci_write_fis_d2h() will raise |
| * an IRQ, we need to call them in reverse order. |
| */ |
| ahci_write_fis_d2h(ad, true); |
| |
| if (!(ide_state->status & ERR_STAT) && |
| ad->port_regs.cmd_issue && !ad->check_bh) { |
| ad->check_bh = qemu_bh_new_guarded(ahci_check_cmd_bh, ad, |
| &ad->mem_reentrancy_guard); |
| qemu_bh_schedule(ad->check_bh); |
| } |
| } |
| |
| static void ahci_irq_set(void *opaque, int n, int level) |
| { |
| qemu_log_mask(LOG_UNIMP, "ahci: IRQ#%d level:%d\n", n, level); |
| } |
| |
| static const IDEDMAOps ahci_dma_ops = { |
| .start_dma = ahci_start_dma, |
| .restart = ahci_restart, |
| .restart_dma = ahci_restart_dma, |
| .pio_transfer = ahci_pio_transfer, |
| .prepare_buf = ahci_dma_prepare_buf, |
| .commit_buf = ahci_commit_buf, |
| .rw_buf = ahci_dma_rw_buf, |
| .cmd_done = ahci_cmd_done, |
| }; |
| |
| void ahci_init(AHCIState *s, DeviceState *qdev) |
| { |
| s->container = qdev; |
| /* XXX BAR size should be 1k, but that breaks, so bump it to 4k for now */ |
| memory_region_init_io(&s->mem, OBJECT(qdev), &ahci_mem_ops, s, |
| "ahci", AHCI_MEM_BAR_SIZE); |
| memory_region_init_io(&s->idp, OBJECT(qdev), &ahci_idp_ops, s, |
| "ahci-idp", 32); |
| } |
| |
| void ahci_realize(AHCIState *s, DeviceState *qdev, AddressSpace *as) |
| { |
| qemu_irq *irqs; |
| int i; |
| |
| s->as = as; |
| assert(s->ports > 0); |
| s->dev = g_new0(AHCIDevice, s->ports); |
| ahci_reg_init(s); |
| irqs = qemu_allocate_irqs(ahci_irq_set, s, s->ports); |
| for (i = 0; i < s->ports; i++) { |
| AHCIDevice *ad = &s->dev[i]; |
| |
| ide_bus_init(&ad->port, sizeof(ad->port), qdev, i, 1); |
| ide_bus_init_output_irq(&ad->port, irqs[i]); |
| |
| ad->hba = s; |
| ad->port_no = i; |
| ad->port.dma = &ad->dma; |
| ad->port.dma->ops = &ahci_dma_ops; |
| ide_bus_register_restart_cb(&ad->port); |
| } |
| g_free(irqs); |
| } |
| |
| void ahci_uninit(AHCIState *s) |
| { |
| int i, j; |
| |
| for (i = 0; i < s->ports; i++) { |
| AHCIDevice *ad = &s->dev[i]; |
| |
| for (j = 0; j < 2; j++) { |
| ide_exit(&ad->port.ifs[j]); |
| } |
| object_unparent(OBJECT(&ad->port)); |
| } |
| |
| g_free(s->dev); |
| } |
| |
| void ahci_reset(AHCIState *s) |
| { |
| AHCIPortRegs *pr; |
| int i; |
| |
| trace_ahci_reset(s); |
| |
| s->control_regs.irqstatus = 0; |
| /* AHCI Enable (AE) |
| * The implementation of this bit is dependent upon the value of the |
| * CAP.SAM bit. If CAP.SAM is '0', then GHC.AE shall be read-write and |
| * shall have a reset value of '0'. If CAP.SAM is '1', then AE shall be |
| * read-only and shall have a reset value of '1'. |
| * |
| * We set HOST_CAP_AHCI so we must enable AHCI at reset. |
| */ |
| s->control_regs.ghc = HOST_CTL_AHCI_EN; |
| |
| for (i = 0; i < s->ports; i++) { |
| pr = &s->dev[i].port_regs; |
| pr->irq_stat = 0; |
| pr->irq_mask = 0; |
| pr->scr_ctl = 0; |
| pr->cmd = PORT_CMD_SPIN_UP | PORT_CMD_POWER_ON; |
| ahci_reset_port(s, i); |
| } |
| } |
| |
| static const VMStateDescription vmstate_ncq_tfs = { |
| .name = "ncq state", |
| .version_id = 1, |
| .fields = (const VMStateField[]) { |
| VMSTATE_UINT32(sector_count, NCQTransferState), |
| VMSTATE_UINT64(lba, NCQTransferState), |
| VMSTATE_UINT8(tag, NCQTransferState), |
| VMSTATE_UINT8(cmd, NCQTransferState), |
| VMSTATE_UINT8(slot, NCQTransferState), |
| VMSTATE_BOOL(used, NCQTransferState), |
| VMSTATE_BOOL(halt, NCQTransferState), |
| VMSTATE_END_OF_LIST() |
| }, |
| }; |
| |
| static const VMStateDescription vmstate_ahci_device = { |
| .name = "ahci port", |
| .version_id = 1, |
| .fields = (const VMStateField[]) { |
| VMSTATE_IDE_BUS(port, AHCIDevice), |
| VMSTATE_IDE_DRIVE(port.ifs[0], AHCIDevice), |
| VMSTATE_UINT32(port_state, AHCIDevice), |
| VMSTATE_UINT32(finished, AHCIDevice), |
| VMSTATE_UINT32(port_regs.lst_addr, AHCIDevice), |
| VMSTATE_UINT32(port_regs.lst_addr_hi, AHCIDevice), |
| VMSTATE_UINT32(port_regs.fis_addr, AHCIDevice), |
| VMSTATE_UINT32(port_regs.fis_addr_hi, AHCIDevice), |
| VMSTATE_UINT32(port_regs.irq_stat, AHCIDevice), |
| VMSTATE_UINT32(port_regs.irq_mask, AHCIDevice), |
| VMSTATE_UINT32(port_regs.cmd, AHCIDevice), |
| VMSTATE_UINT32(port_regs.tfdata, AHCIDevice), |
| VMSTATE_UINT32(port_regs.sig, AHCIDevice), |
| VMSTATE_UINT32(port_regs.scr_stat, AHCIDevice), |
| VMSTATE_UINT32(port_regs.scr_ctl, AHCIDevice), |
| VMSTATE_UINT32(port_regs.scr_err, AHCIDevice), |
| VMSTATE_UINT32(port_regs.scr_act, AHCIDevice), |
| VMSTATE_UINT32(port_regs.cmd_issue, AHCIDevice), |
| VMSTATE_BOOL(done_first_drq, AHCIDevice), |
| VMSTATE_INT32(busy_slot, AHCIDevice), |
| VMSTATE_BOOL(init_d2h_sent, AHCIDevice), |
| VMSTATE_STRUCT_ARRAY(ncq_tfs, AHCIDevice, AHCI_MAX_CMDS, |
| 1, vmstate_ncq_tfs, NCQTransferState), |
| VMSTATE_END_OF_LIST() |
| }, |
| }; |
| |
| static int ahci_state_post_load(void *opaque, int version_id) |
| { |
| int i, j; |
| struct AHCIDevice *ad; |
| NCQTransferState *ncq_tfs; |
| AHCIPortRegs *pr; |
| AHCIState *s = opaque; |
| |
| for (i = 0; i < s->ports; i++) { |
| ad = &s->dev[i]; |
| pr = &ad->port_regs; |
| |
| if (!(pr->cmd & PORT_CMD_START) && (pr->cmd & PORT_CMD_LIST_ON)) { |
| error_report("AHCI: DMA engine should be off, but status bit " |
| "indicates it is still running."); |
| return -1; |
| } |
| if (!(pr->cmd & PORT_CMD_FIS_RX) && (pr->cmd & PORT_CMD_FIS_ON)) { |
| error_report("AHCI: FIS RX engine should be off, but status bit " |
| "indicates it is still running."); |
| return -1; |
| } |
| |
| /* After a migrate, the DMA/FIS engines are "off" and |
| * need to be conditionally restarted */ |
| pr->cmd &= ~(PORT_CMD_LIST_ON | PORT_CMD_FIS_ON); |
| if (ahci_cond_start_engines(ad) != 0) { |
| return -1; |
| } |
| |
| for (j = 0; j < AHCI_MAX_CMDS; j++) { |
| ncq_tfs = &ad->ncq_tfs[j]; |
| ncq_tfs->drive = ad; |
| |
| if (ncq_tfs->used != ncq_tfs->halt) { |
| return -1; |
| } |
| if (!ncq_tfs->halt) { |
| continue; |
| } |
| if (!is_ncq(ncq_tfs->cmd)) { |
| return -1; |
| } |
| if (ncq_tfs->slot != ncq_tfs->tag) { |
| return -1; |
| } |
| /* If ncq_tfs->halt is justly set, the engine should be engaged, |
| * and the command list buffer should be mapped. */ |
| ncq_tfs->cmdh = get_cmd_header(s, i, ncq_tfs->slot); |
| if (!ncq_tfs->cmdh) { |
| return -1; |
| } |
| ahci_populate_sglist(ncq_tfs->drive, &ncq_tfs->sglist, |
| ncq_tfs->cmdh, |
| ncq_tfs->sector_count * BDRV_SECTOR_SIZE, |
| 0); |
| if (ncq_tfs->sector_count != ncq_tfs->sglist.size >> 9) { |
| return -1; |
| } |
| } |
| |
| |
| /* |
| * If an error is present, ad->busy_slot will be valid and not -1. |
| * In this case, an operation is waiting to resume and will re-check |
| * for additional AHCI commands to execute upon completion. |
| * |
| * In the case where no error was present, busy_slot will be -1, |
| * and we should check to see if there are additional commands waiting. |
| */ |
| if (ad->busy_slot == -1) { |
| check_cmd(s, i); |
| } else { |
| /* We are in the middle of a command, and may need to access |
| * the command header in guest memory again. */ |
| if (ad->busy_slot < 0 || ad->busy_slot >= AHCI_MAX_CMDS) { |
| return -1; |
| } |
| ad->cur_cmd = get_cmd_header(s, i, ad->busy_slot); |
| } |
| } |
| |
| return 0; |
| } |
| |
| const VMStateDescription vmstate_ahci = { |
| .name = "ahci", |
| .version_id = 1, |
| .post_load = ahci_state_post_load, |
| .fields = (const VMStateField[]) { |
| VMSTATE_STRUCT_VARRAY_POINTER_UINT32(dev, AHCIState, ports, |
| vmstate_ahci_device, AHCIDevice), |
| VMSTATE_UINT32(control_regs.cap, AHCIState), |
| VMSTATE_UINT32(control_regs.ghc, AHCIState), |
| VMSTATE_UINT32(control_regs.irqstatus, AHCIState), |
| VMSTATE_UINT32(control_regs.impl, AHCIState), |
| VMSTATE_UINT32(control_regs.version, AHCIState), |
| VMSTATE_UINT32(idp_index, AHCIState), |
| VMSTATE_UINT32_EQUAL(ports, AHCIState, NULL), |
| VMSTATE_END_OF_LIST() |
| }, |
| }; |
| |
| static const VMStateDescription vmstate_sysbus_ahci = { |
| .name = "sysbus-ahci", |
| .fields = (const VMStateField[]) { |
| VMSTATE_AHCI(ahci, SysbusAHCIState), |
| VMSTATE_END_OF_LIST() |
| }, |
| }; |
| |
| static void sysbus_ahci_reset(DeviceState *dev) |
| { |
| SysbusAHCIState *s = SYSBUS_AHCI(dev); |
| |
| ahci_reset(&s->ahci); |
| } |
| |
| static void sysbus_ahci_init(Object *obj) |
| { |
| SysbusAHCIState *s = SYSBUS_AHCI(obj); |
| SysBusDevice *sbd = SYS_BUS_DEVICE(obj); |
| |
| ahci_init(&s->ahci, DEVICE(obj)); |
| |
| sysbus_init_mmio(sbd, &s->ahci.mem); |
| sysbus_init_irq(sbd, &s->ahci.irq); |
| } |
| |
| static void sysbus_ahci_realize(DeviceState *dev, Error **errp) |
| { |
| SysbusAHCIState *s = SYSBUS_AHCI(dev); |
| |
| ahci_realize(&s->ahci, dev, &address_space_memory); |
| } |
| |
| static Property sysbus_ahci_properties[] = { |
| DEFINE_PROP_UINT32("num-ports", SysbusAHCIState, ahci.ports, 1), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static void sysbus_ahci_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| |
| dc->realize = sysbus_ahci_realize; |
| dc->vmsd = &vmstate_sysbus_ahci; |
| device_class_set_props(dc, sysbus_ahci_properties); |
| dc->reset = sysbus_ahci_reset; |
| set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); |
| } |
| |
| static const TypeInfo sysbus_ahci_info = { |
| .name = TYPE_SYSBUS_AHCI, |
| .parent = TYPE_SYS_BUS_DEVICE, |
| .instance_size = sizeof(SysbusAHCIState), |
| .instance_init = sysbus_ahci_init, |
| .class_init = sysbus_ahci_class_init, |
| }; |
| |
| static void sysbus_ahci_register_types(void) |
| { |
| type_register_static(&sysbus_ahci_info); |
| } |
| |
| type_init(sysbus_ahci_register_types) |
| |
| void ahci_ide_create_devs(AHCIState *ahci, DriveInfo **hd) |
| { |
| int i; |
| |
| for (i = 0; i < ahci->ports; i++) { |
| if (hd[i] == NULL) { |
| continue; |
| } |
| ide_bus_create_drive(&ahci->dev[i].port, 0, hd[i]); |
| } |
| } |