| /* |
| * QEMU 64-bit address ranges |
| * |
| * Copyright (c) 2015-2016 Red Hat, Inc. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #ifndef QEMU_RANGE_H |
| #define QEMU_RANGE_H |
| |
| #include "qemu/bitops.h" |
| |
| /* |
| * Operations on 64 bit address ranges. |
| * Notes: |
| * - Ranges must not wrap around 0, but can include UINT64_MAX. |
| */ |
| |
| struct Range { |
| /* |
| * Do not access members directly, use the functions! |
| * A non-empty range has @lob <= @upb. |
| * An empty range has @lob == @upb + 1. |
| */ |
| uint64_t lob; /* inclusive lower bound */ |
| uint64_t upb; /* inclusive upper bound */ |
| }; |
| |
| static inline void range_invariant(const Range *range) |
| { |
| assert(range->lob <= range->upb || range->lob == range->upb + 1); |
| } |
| |
| /* Compound literal encoding the empty range */ |
| #define range_empty ((Range){ .lob = 1, .upb = 0 }) |
| |
| /* Is @range empty? */ |
| static inline bool range_is_empty(const Range *range) |
| { |
| range_invariant(range); |
| return range->lob > range->upb; |
| } |
| |
| /* Does @range contain @val? */ |
| static inline bool range_contains(const Range *range, uint64_t val) |
| { |
| return val >= range->lob && val <= range->upb; |
| } |
| |
| /* Initialize @range to the empty range */ |
| static inline void range_make_empty(Range *range) |
| { |
| *range = range_empty; |
| assert(range_is_empty(range)); |
| } |
| |
| /* |
| * Initialize @range to span the interval [@lob,@upb]. |
| * Both bounds are inclusive. |
| * The interval must not be empty, i.e. @lob must be less than or |
| * equal @upb. |
| */ |
| static inline void range_set_bounds(Range *range, uint64_t lob, uint64_t upb) |
| { |
| range->lob = lob; |
| range->upb = upb; |
| assert(!range_is_empty(range)); |
| } |
| |
| /* |
| * Initialize @range to span the interval [@lob,@upb_plus1). |
| * The lower bound is inclusive, the upper bound is exclusive. |
| * Zero @upb_plus1 is special: if @lob is also zero, set @range to the |
| * empty range. Else, set @range to [@lob,UINT64_MAX]. |
| */ |
| static inline void range_set_bounds1(Range *range, |
| uint64_t lob, uint64_t upb_plus1) |
| { |
| if (!lob && !upb_plus1) { |
| *range = range_empty; |
| } else { |
| range->lob = lob; |
| range->upb = upb_plus1 - 1; |
| } |
| range_invariant(range); |
| } |
| |
| /* Return @range's lower bound. @range must not be empty. */ |
| static inline uint64_t range_lob(Range *range) |
| { |
| assert(!range_is_empty(range)); |
| return range->lob; |
| } |
| |
| /* Return @range's upper bound. @range must not be empty. */ |
| static inline uint64_t range_upb(Range *range) |
| { |
| assert(!range_is_empty(range)); |
| return range->upb; |
| } |
| |
| /* |
| * Initialize @range to span the interval [@lob,@lob + @size - 1]. |
| * @size may be 0. If the range would overflow, returns -ERANGE, otherwise |
| * 0. |
| */ |
| G_GNUC_WARN_UNUSED_RESULT |
| static inline int range_init(Range *range, uint64_t lob, uint64_t size) |
| { |
| if (lob + size < lob) { |
| return -ERANGE; |
| } |
| range->lob = lob; |
| range->upb = lob + size - 1; |
| range_invariant(range); |
| return 0; |
| } |
| |
| /* |
| * Initialize @range to span the interval [@lob,@lob + @size - 1]. |
| * @size may be 0. Range must not overflow. |
| */ |
| static inline void range_init_nofail(Range *range, uint64_t lob, uint64_t size) |
| { |
| range->lob = lob; |
| range->upb = lob + size - 1; |
| range_invariant(range); |
| } |
| |
| /* |
| * Get the size of @range. |
| */ |
| static inline uint64_t range_size(const Range *range) |
| { |
| return range->upb - range->lob + 1; |
| } |
| |
| /* |
| * Check if @range1 overlaps with @range2. If one of the ranges is empty, |
| * the result is always "false". |
| */ |
| static inline bool range_overlaps_range(const Range *range1, |
| const Range *range2) |
| { |
| if (range_is_empty(range1) || range_is_empty(range2)) { |
| return false; |
| } |
| return !(range2->upb < range1->lob || range1->upb < range2->lob); |
| } |
| |
| /* |
| * Check if @range1 contains @range2. If one of the ranges is empty, |
| * the result is always "false". |
| */ |
| static inline bool range_contains_range(const Range *range1, |
| const Range *range2) |
| { |
| if (range_is_empty(range1) || range_is_empty(range2)) { |
| return false; |
| } |
| return range1->lob <= range2->lob && range1->upb >= range2->upb; |
| } |
| |
| /* |
| * Extend @range to the smallest interval that includes @extend_by, too. |
| */ |
| static inline void range_extend(Range *range, Range *extend_by) |
| { |
| if (range_is_empty(extend_by)) { |
| return; |
| } |
| if (range_is_empty(range)) { |
| *range = *extend_by; |
| return; |
| } |
| if (range->lob > extend_by->lob) { |
| range->lob = extend_by->lob; |
| } |
| if (range->upb < extend_by->upb) { |
| range->upb = extend_by->upb; |
| } |
| range_invariant(range); |
| } |
| |
| /* Get last byte of a range from offset + length. |
| * Undefined for ranges that wrap around 0. */ |
| static inline uint64_t range_get_last(uint64_t offset, uint64_t len) |
| { |
| return offset + len - 1; |
| } |
| |
| /* Check whether a given range covers a given byte. */ |
| static inline int range_covers_byte(uint64_t offset, uint64_t len, |
| uint64_t byte) |
| { |
| return offset <= byte && byte <= range_get_last(offset, len); |
| } |
| |
| /* Check whether 2 given ranges overlap. |
| * Undefined if ranges that wrap around 0. */ |
| static inline bool ranges_overlap(uint64_t first1, uint64_t len1, |
| uint64_t first2, uint64_t len2) |
| { |
| uint64_t last1 = range_get_last(first1, len1); |
| uint64_t last2 = range_get_last(first2, len2); |
| |
| return !(last2 < first1 || last1 < first2); |
| } |
| |
| /* Get highest non-zero bit position of a range */ |
| static inline int range_get_last_bit(Range *range) |
| { |
| if (range_is_empty(range)) { |
| return -1; |
| } |
| return 63 - clz64(range->upb); |
| } |
| |
| /* |
| * Return -1 if @a < @b, 1 @a > @b, and 0 if they touch or overlap. |
| * Both @a and @b must not be empty. |
| */ |
| int range_compare(Range *a, Range *b); |
| |
| GList *range_list_insert(GList *list, Range *data); |
| |
| /* |
| * Inverse an array of sorted ranges over the [low, high] span, ie. |
| * original ranges becomes holes in the newly allocated inv_ranges |
| */ |
| void range_inverse_array(GList *in_ranges, |
| GList **out_ranges, |
| uint64_t low, uint64_t high); |
| |
| #endif |