| /* |
| * ARM gdb server stub |
| * |
| * Copyright (c) 2003-2005 Fabrice Bellard |
| * Copyright (c) 2013 SUSE LINUX Products GmbH |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "internals.h" |
| #include "exec/gdbstub.h" |
| |
| typedef struct RegisterSysregXmlParam { |
| CPUState *cs; |
| GString *s; |
| int n; |
| } RegisterSysregXmlParam; |
| |
| /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect |
| whatever the target description contains. Due to a historical mishap |
| the FPA registers appear in between core integer regs and the CPSR. |
| We hack round this by giving the FPA regs zero size when talking to a |
| newer gdb. */ |
| |
| int arm_cpu_gdb_read_register(CPUState *cs, GByteArray *mem_buf, int n) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| |
| if (n < 16) { |
| /* Core integer register. */ |
| return gdb_get_reg32(mem_buf, env->regs[n]); |
| } |
| if (n < 24) { |
| /* FPA registers. */ |
| if (gdb_has_xml) { |
| return 0; |
| } |
| return gdb_get_zeroes(mem_buf, 12); |
| } |
| switch (n) { |
| case 24: |
| /* FPA status register. */ |
| if (gdb_has_xml) { |
| return 0; |
| } |
| return gdb_get_reg32(mem_buf, 0); |
| case 25: |
| /* CPSR, or XPSR for M-profile */ |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| return gdb_get_reg32(mem_buf, xpsr_read(env)); |
| } else { |
| return gdb_get_reg32(mem_buf, cpsr_read(env)); |
| } |
| } |
| /* Unknown register. */ |
| return 0; |
| } |
| |
| int arm_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| uint32_t tmp; |
| |
| tmp = ldl_p(mem_buf); |
| |
| /* Mask out low bit of PC to workaround gdb bugs. This will probably |
| cause problems if we ever implement the Jazelle DBX extensions. */ |
| if (n == 15) { |
| tmp &= ~1; |
| } |
| |
| if (n < 16) { |
| /* Core integer register. */ |
| if (n == 13 && arm_feature(env, ARM_FEATURE_M)) { |
| /* M profile SP low bits are always 0 */ |
| tmp &= ~3; |
| } |
| env->regs[n] = tmp; |
| return 4; |
| } |
| if (n < 24) { /* 16-23 */ |
| /* FPA registers (ignored). */ |
| if (gdb_has_xml) { |
| return 0; |
| } |
| return 12; |
| } |
| switch (n) { |
| case 24: |
| /* FPA status register (ignored). */ |
| if (gdb_has_xml) { |
| return 0; |
| } |
| return 4; |
| case 25: |
| /* CPSR, or XPSR for M-profile */ |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| /* |
| * Don't allow writing to XPSR.Exception as it can cause |
| * a transition into or out of handler mode (it's not |
| * writeable via the MSR insn so this is a reasonable |
| * restriction). Other fields are safe to update. |
| */ |
| xpsr_write(env, tmp, ~XPSR_EXCP); |
| } else { |
| cpsr_write(env, tmp, 0xffffffff, CPSRWriteByGDBStub); |
| } |
| return 4; |
| } |
| /* Unknown register. */ |
| return 0; |
| } |
| |
| static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) |
| { |
| ARMCPU *cpu = env_archcpu(env); |
| int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; |
| |
| /* VFP data registers are always little-endian. */ |
| if (reg < nregs) { |
| return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg)); |
| } |
| if (arm_feature(env, ARM_FEATURE_NEON)) { |
| /* Aliases for Q regs. */ |
| nregs += 16; |
| if (reg < nregs) { |
| uint64_t *q = aa32_vfp_qreg(env, reg - 32); |
| return gdb_get_reg128(buf, q[0], q[1]); |
| } |
| } |
| switch (reg - nregs) { |
| case 0: |
| return gdb_get_reg32(buf, vfp_get_fpscr(env)); |
| } |
| return 0; |
| } |
| |
| static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) |
| { |
| ARMCPU *cpu = env_archcpu(env); |
| int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; |
| |
| if (reg < nregs) { |
| *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); |
| return 8; |
| } |
| if (arm_feature(env, ARM_FEATURE_NEON)) { |
| nregs += 16; |
| if (reg < nregs) { |
| uint64_t *q = aa32_vfp_qreg(env, reg - 32); |
| q[0] = ldq_le_p(buf); |
| q[1] = ldq_le_p(buf + 8); |
| return 16; |
| } |
| } |
| switch (reg - nregs) { |
| case 0: |
| vfp_set_fpscr(env, ldl_p(buf)); |
| return 4; |
| } |
| return 0; |
| } |
| |
| static int vfp_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg) |
| { |
| switch (reg) { |
| case 0: |
| return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); |
| case 1: |
| return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); |
| } |
| return 0; |
| } |
| |
| static int vfp_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) |
| { |
| switch (reg) { |
| case 0: |
| env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); |
| return 4; |
| case 1: |
| env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); |
| return 4; |
| } |
| return 0; |
| } |
| |
| /** |
| * arm_get/set_gdb_*: get/set a gdb register |
| * @env: the CPU state |
| * @buf: a buffer to copy to/from |
| * @reg: register number (offset from start of group) |
| * |
| * We return the number of bytes copied |
| */ |
| |
| static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg) |
| { |
| ARMCPU *cpu = env_archcpu(env); |
| const ARMCPRegInfo *ri; |
| uint32_t key; |
| |
| key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg]; |
| ri = get_arm_cp_reginfo(cpu->cp_regs, key); |
| if (ri) { |
| if (cpreg_field_is_64bit(ri)) { |
| return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); |
| } else { |
| return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); |
| } |
| } |
| return 0; |
| } |
| |
| static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) |
| { |
| return 0; |
| } |
| |
| static void arm_gen_one_xml_sysreg_tag(GString *s, DynamicGDBXMLInfo *dyn_xml, |
| ARMCPRegInfo *ri, uint32_t ri_key, |
| int bitsize, int regnum) |
| { |
| g_string_append_printf(s, "<reg name=\"%s\"", ri->name); |
| g_string_append_printf(s, " bitsize=\"%d\"", bitsize); |
| g_string_append_printf(s, " regnum=\"%d\"", regnum); |
| g_string_append_printf(s, " group=\"cp_regs\"/>"); |
| dyn_xml->data.cpregs.keys[dyn_xml->num] = ri_key; |
| dyn_xml->num++; |
| } |
| |
| static void arm_register_sysreg_for_xml(gpointer key, gpointer value, |
| gpointer p) |
| { |
| uint32_t ri_key = *(uint32_t *)key; |
| ARMCPRegInfo *ri = value; |
| RegisterSysregXmlParam *param = (RegisterSysregXmlParam *)p; |
| GString *s = param->s; |
| ARMCPU *cpu = ARM_CPU(param->cs); |
| CPUARMState *env = &cpu->env; |
| DynamicGDBXMLInfo *dyn_xml = &cpu->dyn_sysreg_xml; |
| |
| if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_NO_GDB))) { |
| if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
| if (ri->state == ARM_CP_STATE_AA64) { |
| arm_gen_one_xml_sysreg_tag(s , dyn_xml, ri, ri_key, 64, |
| param->n++); |
| } |
| } else { |
| if (ri->state == ARM_CP_STATE_AA32) { |
| if (!arm_feature(env, ARM_FEATURE_EL3) && |
| (ri->secure & ARM_CP_SECSTATE_S)) { |
| return; |
| } |
| if (ri->type & ARM_CP_64BIT) { |
| arm_gen_one_xml_sysreg_tag(s , dyn_xml, ri, ri_key, 64, |
| param->n++); |
| } else { |
| arm_gen_one_xml_sysreg_tag(s , dyn_xml, ri, ri_key, 32, |
| param->n++); |
| } |
| } |
| } |
| } |
| } |
| |
| int arm_gen_dynamic_sysreg_xml(CPUState *cs, int base_reg) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| GString *s = g_string_new(NULL); |
| RegisterSysregXmlParam param = {cs, s, base_reg}; |
| |
| cpu->dyn_sysreg_xml.num = 0; |
| cpu->dyn_sysreg_xml.data.cpregs.keys = g_new(uint32_t, g_hash_table_size(cpu->cp_regs)); |
| g_string_printf(s, "<?xml version=\"1.0\"?>"); |
| g_string_append_printf(s, "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"); |
| g_string_append_printf(s, "<feature name=\"org.qemu.gdb.arm.sys.regs\">"); |
| g_hash_table_foreach(cpu->cp_regs, arm_register_sysreg_for_xml, ¶m); |
| g_string_append_printf(s, "</feature>"); |
| cpu->dyn_sysreg_xml.desc = g_string_free(s, false); |
| return cpu->dyn_sysreg_xml.num; |
| } |
| |
| struct TypeSize { |
| const char *gdb_type; |
| int size; |
| const char sz, suffix; |
| }; |
| |
| static const struct TypeSize vec_lanes[] = { |
| /* quads */ |
| { "uint128", 128, 'q', 'u' }, |
| { "int128", 128, 'q', 's' }, |
| /* 64 bit */ |
| { "ieee_double", 64, 'd', 'f' }, |
| { "uint64", 64, 'd', 'u' }, |
| { "int64", 64, 'd', 's' }, |
| /* 32 bit */ |
| { "ieee_single", 32, 's', 'f' }, |
| { "uint32", 32, 's', 'u' }, |
| { "int32", 32, 's', 's' }, |
| /* 16 bit */ |
| { "ieee_half", 16, 'h', 'f' }, |
| { "uint16", 16, 'h', 'u' }, |
| { "int16", 16, 'h', 's' }, |
| /* bytes */ |
| { "uint8", 8, 'b', 'u' }, |
| { "int8", 8, 'b', 's' }, |
| }; |
| |
| |
| int arm_gen_dynamic_svereg_xml(CPUState *cs, int base_reg) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| GString *s = g_string_new(NULL); |
| DynamicGDBXMLInfo *info = &cpu->dyn_svereg_xml; |
| g_autoptr(GString) ts = g_string_new(""); |
| int i, j, bits, reg_width = (cpu->sve_max_vq * 128); |
| info->num = 0; |
| g_string_printf(s, "<?xml version=\"1.0\"?>"); |
| g_string_append_printf(s, "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"); |
| g_string_append_printf(s, "<feature name=\"org.gnu.gdb.aarch64.sve\">"); |
| |
| /* First define types and totals in a whole VL */ |
| for (i = 0; i < ARRAY_SIZE(vec_lanes); i++) { |
| int count = reg_width / vec_lanes[i].size; |
| g_string_printf(ts, "svev%c%c", vec_lanes[i].sz, vec_lanes[i].suffix); |
| g_string_append_printf(s, |
| "<vector id=\"%s\" type=\"%s\" count=\"%d\"/>", |
| ts->str, vec_lanes[i].gdb_type, count); |
| } |
| /* |
| * Now define a union for each size group containing unsigned and |
| * signed and potentially float versions of each size from 128 to |
| * 8 bits. |
| */ |
| for (bits = 128, i = 0; bits >= 8; bits /= 2, i++) { |
| const char suf[] = { 'q', 'd', 's', 'h', 'b' }; |
| g_string_append_printf(s, "<union id=\"svevn%c\">", suf[i]); |
| for (j = 0; j < ARRAY_SIZE(vec_lanes); j++) { |
| if (vec_lanes[j].size == bits) { |
| g_string_append_printf(s, "<field name=\"%c\" type=\"svev%c%c\"/>", |
| vec_lanes[j].suffix, |
| vec_lanes[j].sz, vec_lanes[j].suffix); |
| } |
| } |
| g_string_append(s, "</union>"); |
| } |
| /* And now the final union of unions */ |
| g_string_append(s, "<union id=\"svev\">"); |
| for (bits = 128, i = 0; bits >= 8; bits /= 2, i++) { |
| const char suf[] = { 'q', 'd', 's', 'h', 'b' }; |
| g_string_append_printf(s, "<field name=\"%c\" type=\"svevn%c\"/>", |
| suf[i], suf[i]); |
| } |
| g_string_append(s, "</union>"); |
| |
| /* Finally the sve prefix type */ |
| g_string_append_printf(s, |
| "<vector id=\"svep\" type=\"uint8\" count=\"%d\"/>", |
| reg_width / 8); |
| |
| /* Then define each register in parts for each vq */ |
| for (i = 0; i < 32; i++) { |
| g_string_append_printf(s, |
| "<reg name=\"z%d\" bitsize=\"%d\"" |
| " regnum=\"%d\" type=\"svev\"/>", |
| i, reg_width, base_reg++); |
| info->num++; |
| } |
| /* fpscr & status registers */ |
| g_string_append_printf(s, "<reg name=\"fpsr\" bitsize=\"32\"" |
| " regnum=\"%d\" group=\"float\"" |
| " type=\"int\"/>", base_reg++); |
| g_string_append_printf(s, "<reg name=\"fpcr\" bitsize=\"32\"" |
| " regnum=\"%d\" group=\"float\"" |
| " type=\"int\"/>", base_reg++); |
| info->num += 2; |
| |
| for (i = 0; i < 16; i++) { |
| g_string_append_printf(s, |
| "<reg name=\"p%d\" bitsize=\"%d\"" |
| " regnum=\"%d\" type=\"svep\"/>", |
| i, cpu->sve_max_vq * 16, base_reg++); |
| info->num++; |
| } |
| g_string_append_printf(s, |
| "<reg name=\"ffr\" bitsize=\"%d\"" |
| " regnum=\"%d\" group=\"vector\"" |
| " type=\"svep\"/>", |
| cpu->sve_max_vq * 16, base_reg++); |
| g_string_append_printf(s, |
| "<reg name=\"vg\" bitsize=\"64\"" |
| " regnum=\"%d\" type=\"int\"/>", |
| base_reg++); |
| info->num += 2; |
| g_string_append_printf(s, "</feature>"); |
| cpu->dyn_svereg_xml.desc = g_string_free(s, false); |
| |
| return cpu->dyn_svereg_xml.num; |
| } |
| |
| |
| const char *arm_gdb_get_dynamic_xml(CPUState *cs, const char *xmlname) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| |
| if (strcmp(xmlname, "system-registers.xml") == 0) { |
| return cpu->dyn_sysreg_xml.desc; |
| } else if (strcmp(xmlname, "sve-registers.xml") == 0) { |
| return cpu->dyn_svereg_xml.desc; |
| } |
| return NULL; |
| } |
| |
| void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) |
| { |
| CPUState *cs = CPU(cpu); |
| CPUARMState *env = &cpu->env; |
| |
| if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
| /* |
| * The lower part of each SVE register aliases to the FPU |
| * registers so we don't need to include both. |
| */ |
| #ifdef TARGET_AARCH64 |
| if (isar_feature_aa64_sve(&cpu->isar)) { |
| gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg, |
| arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs), |
| "sve-registers.xml", 0); |
| } else { |
| gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, |
| aarch64_fpu_gdb_set_reg, |
| 34, "aarch64-fpu.xml", 0); |
| } |
| #endif |
| } else { |
| if (arm_feature(env, ARM_FEATURE_NEON)) { |
| gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
| 49, "arm-neon.xml", 0); |
| } else if (cpu_isar_feature(aa32_simd_r32, cpu)) { |
| gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
| 33, "arm-vfp3.xml", 0); |
| } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) { |
| gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
| 17, "arm-vfp.xml", 0); |
| } |
| if (!arm_feature(env, ARM_FEATURE_M)) { |
| /* |
| * A and R profile have FP sysregs FPEXC and FPSID that we |
| * expose to gdb. |
| */ |
| gdb_register_coprocessor(cs, vfp_gdb_get_sysreg, vfp_gdb_set_sysreg, |
| 2, "arm-vfp-sysregs.xml", 0); |
| } |
| } |
| gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, |
| arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs), |
| "system-registers.xml", 0); |
| |
| } |