blkdebug: Add pass-through write_zero and discard support

In order to test the effects of artificial geometry constraints
on operations like write zero or discard, we first need blkdebug
to manage these actions.  It also allows us to inject errors on
those operations, just like we can for read/write/flush.

We can also test the contract promised by the block layer; namely,
if a device has specified limits on alignment or maximum size,
then those limits must be obeyed (for now, the blkdebug driver
merely inherits limits from whatever it is wrapping, but the next
patch will further enhance it to allow specific limit overrides).

This patch intentionally refuses to service requests smaller than
the requested alignments; this is because an upcoming patch adds
a qemu-iotest to prove that the block layer is correctly handling
fragmentation, but the test only works if there is a way to tell
the difference at artificial alignment boundaries when blkdebug is
using a larger-than-default alignment.  If we let the blkdebug
layer always defer to the underlying layer, which potentially has
a smaller granularity, the iotest will be thwarted.

Tested by setting up an NBD server with export 'foo', then invoking:
$ ./qemu-io
qemu-io> open -o driver=blkdebug blkdebug::nbd://localhost:10809/foo
qemu-io> d 0 15M
qemu-io> w -z 0 15M

Pre-patch, the server never sees the discard (it was silently
eaten by the block layer); post-patch it is passed across the
wire.  Likewise, pre-patch the write is always passed with
NBD_WRITE (with 15M of zeroes on the wire), while post-patch
it can utilize NBD_WRITE_ZEROES (for less traffic).

Signed-off-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Message-id: 20170429191419.30051-7-eblake@redhat.com
Signed-off-by: Max Reitz <mreitz@redhat.com>
1 file changed